Skip to main content

Advertisement

Log in

Fracture in strain gradient elasticity

  • Published:
Metals and Materials Aims and scope Submit manuscript

Abstract

Recent experiments have shown that the microscale material behavior is very different from that of bulk materials, and displays strong size effects when the characteristic length associated with the deformation is on the order of microns. Conventional continuum theories, however, can not predict this size dependence because they do not have an intrinsic length in their constitutive models. A new continuum theory, namely the strain gradient theory, has been proposed to investigate the deformation of solids at the microscale. For materials undergoing plastic deformation, the basis of strain gradient theory is the dislocation theory in materials science, and strain gradient plasticity has agreed remarkably well with experiments. For elastic materials with microstructures, it has also been established that the material behavior can be represented by an elastic strain gradient theory. A general approach to investigate fracture of materials with strain gradient effects is established. Both the near-tip asymptotic fields and the elastic full-field solutions are obtained in closed form. Due to stain gradient effects, stresses ahead of a crack tip are significantly higher than those in the classical K field. The plastic zone size surronunding a crack tip is estimated by elastic near-tip fields, as well as by the Dugdale model. It is established that the plastic zone is, in general, much more round and larger than that estimated from the classical K field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. N. A. Fleck, G. M. Muller, M. F. Ashby, and J. W. Hutchinson,Acta metall. mater. 42, 475 (1994).

    Article  CAS  Google Scholar 

  2. J. S. Stolken, “The Role of Oxygen in Nickel-Sapphire Interface Fracture”,Ph.D. Dissertation, University of California, Santa Barbara (1997).

    Google Scholar 

  3. W. D. Nix,Metall. Trans. 20A, 2217 (1998).

    Google Scholar 

  4. N. A. Stelmashenko, A. G. Walls, L. M. Brown and Y. V. Milman,Acta metall. mater. 41, 2855 (1993).

    Article  CAS  Google Scholar 

  5. Q. Ma and D. R. Clarke,J. Mater. Res. 10, 853 (1996).

    Article  ADS  Google Scholar 

  6. W. J. Poole, M. F. Ashby and N. A Fleck,Scripta metall. mater. 34, 559 (1996).

    CAS  Google Scholar 

  7. K. W. McElhaney, J. J. Vlassak and W. D. Nix, “Determination of indenter tip geometry and indentation contact area for depth-sensing indentation eperiments,J. Mat. Res. (in press).

  8. J. F. Nye,Acta metall. 1, 153 (1953).

    Article  CAS  Google Scholar 

  9. A. H. Cottrell, “The mechanical properties of materials” ,J. Willey, 277 (1964).

  10. M. F. Ashby,Phil. Mag. 21, 399 (1970).

    Article  ADS  CAS  Google Scholar 

  11. N. A. Fleck and J. W. Hutchinson,J. Mech. Phys. Solids 41, 1825 (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. N. A. Fleck and J. W. Hutchinson, inAdvances in applied Mechanics (eds., Hutchinson, J. W. and Wu, T. Y.), v. 33, p. 295, Academic Press (1996).

  13. M. E. Curtin,Arch. Rational Mech. Anal. 19, 339 (1965).

    ADS  MathSciNet  Google Scholar 

  14. A. Acharya and J. L. Bassani, inFracture and Plastic Instabilities-Proceedings of an AMD symposium at the ASME Summer Meeting at UCLA (1995).

  15. A. Acharya and T. G. Shawki,J. Mech. Phys. Solids 43, 1751 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. W. D. Nix and H. Gao, “Indentation size efects in crystalline materials: A law for strain gradient plasticity”,J. Mech. Phys. Solids (in press).

  17. J. W. Hutchinson, inAdvances in Fracture Research (eds, B. L. Karihaloo, Y.-W. Mai, M. I. Ripley and R. O. Ritchite), p. 1, Pregamon Press, New York (1997).

    Google Scholar 

  18. Y. Huang, L. Zhang, T. F. Guo and K. C. Hwang, inIUTAM Symposium on Nonlinear Analysis of Fracture (ed., Willis, J. R.), p. 231, Kluwer Academic Publisher (1995).

  19. Z. C. Xia and J. W. Hutchinson,J. Mech. Phys. Solids 44, 1621 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Y. Huang, L. Zhang, T. F. Guo and K. C. Hwang,J. Mech. Phys. Solids 45, 439 (1997).

    Article  MATH  ADS  Google Scholar 

  21. Y. Wei and J. W. Hutchinson,J. Mech. Phys. Solids 45, 1253 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Y. Huang, L. Zhang, T. F. Guo and K. C. Hwang, inAdvances in Fracture Research (eds., B. L. Karihaloo, Y.-W. Mai, M. I. Ripley and R. O. Ritchie), P. 2275, Pregamon Press, New York (1997).

    Google Scholar 

  23. J. Y. Chen, Y. Hang and M. Ortiz, “Fracture analysis of cellular materials: A strain gradient model”,I. Mech. Phys. Solids (in press).

  24. N. A. fleck and J. Shu,J. Mech. Phys. Solids 43, 1887 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. R. A. Toupin,Arch. Rational Mech. Anal. 11, 385 (1962).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. W. T. Koiter,Proc. Ned. Akad. Wet. (B) 67, 17 (1964).

    MATH  Google Scholar 

  27. R. D. Mindlin,Arch. Rational Mech. Anal. 16, 51 (1964).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. R. D. Mindlin,Int. J. Solids Struct. 1, 417 (1965).

    Article  Google Scholar 

  29. C. Atkinson and F. G. Leppington,Int. J. Solids Struct. 13, 1103 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  30. Y. Huang, J. Y. Chen, T. F. Guo, L. Zhang and K. C. Hwang, “Analytical and numerical studies on mode I and mode II fracture in elastic-plastic materials with strain gradient effects”,Int. J. Fracture (in press).

  31. D. S. Dugdale,J. Mech. Phys. Solids 8, 100 (1960).

    Article  ADS  Google Scholar 

  32. G. I. Barenblatt, inAdvances in Applied Mechanics, p. 7, Academic Press, (1962).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, K.C., Cuo, T.F., Huang, Y. et al. Fracture in strain gradient elasticity. Metals and Materials 4, 593–600 (1998). https://doi.org/10.1007/BF03026364

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03026364

Key words