Skip to main content

Uniformly convex and uniformly smooth Banach spaces

  • Chapter
  • First Online:
Geometry of Banach Spaces-Selected Topics

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 485))

  • 1299 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. A. Akimovic, On uniformly convex and univormly smooth Orlicz spaces, Teor. Funckii Funkcional Anal. i Prilozen, 15 (1970), 114–120, (Russian).

    Google Scholar 

  2. A. Baernstein II, On reflexivity and summability, Studia Math., 42 (1972), 91–94.

    MathSciNet  MATH  Google Scholar 

  3. J. W. Baker, Dispersed images of topological spaces and uncomplemented subspaces of C(X), Proc. AMS, 41 (1973), 309–314.

    MathSciNet  MATH  Google Scholar 

  4. S. Banach and S. Saks, Sur la convergence forte dans les champs LP Studia Math, 2 (1930), 51–57.

    MATH  Google Scholar 

  5. B. Beauzamy, Operateurs uniformement convexifiants, preprint.

    Google Scholar 

  6. A. Beck, A convexity condition in Banach spaces and the strong law of large numbers, Proc. AMS, 13 (1962), 329–334.

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Bessaga and A. Pelczynski, On bases and unconditional convergence of series in Banach spaces, Studia Math, 18 (1958), 151–164.

    MathSciNet  MATH  Google Scholar 

  8. C. Bessaga and A. Pelczynski, Spaces of continuous functions IV, Studia Math, 19 (1960), 53–62.

    MathSciNet  MATH  Google Scholar 

  9. D. Brown, B-convexity and reflexivity in Banach spaces.

    Google Scholar 

  10. D. Brown, P-convexity and B-convexity in Banach spaces.

    Google Scholar 

  11. A. Brunel and L. Sucheston, Sur quelques conditions equivalentes a la super-reflexivite dans les espoces de Banach, CRAS, 275 (1972), 993–994.

    MathSciNet  MATH  Google Scholar 

  12. A. Brunel and L. Sucheston, On B-conves Banach spaces, Math Systems Theory, 7 (1974), 294–299.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. A. Clarkson, Uniformly convex spaces, Trans. AMS, 40 (1936), 396–414.

    Article  MathSciNet  MATH  Google Scholar 

  14. W. J. Davis and W. B. Johnson, Compact non-nuclear operations, Studia Math., 51 (1974), 81–85.

    MathSciNet  MATH  Google Scholar 

  15. W. J. Davis, W. B. Johnson and J. Lindenstrauss, The ℓ (n)1 problem and degrees of non-reflexivity, preprint.

    Google Scholar 

  16. M. M. Day, Reflexive Banach spaces not isomorphic to uniformly convex spaces, Bull AMS, 47 (1941), 313–317.

    Article  MathSciNet  MATH  Google Scholar 

  17. E. Dubinsky, A. Pełczynski and H. P. Rosenthal, On Banach spaces X for which π2,X)=B(δ,X), Studia Math, 44 (1972), 617–648.

    MathSciNet  MATH  Google Scholar 

  18. J. Dixmier, Formes Pineatines sur un anneau d'operateurs, Bull. Soc. Math. France, 81 (1953), 9–39.

    MathSciNet  MATH  Google Scholar 

  19. P. Enflo, Banach spaces which can be given an equivalent uniformly convex norm, Israel J. Math., 13 (1972), 281–288.

    Article  MathSciNet  Google Scholar 

  20. N. R. Farnum, The Banach-Saks Theorem in C(S), Can. J. Math., 26 (1974), 91–97.

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Figiel, W. B. Johnson and L. Tzafriri, On Banach lattices and spaces having local unconditional structure with applications to Lorentz function spaces, preprint.

    Google Scholar 

  22. T. Figiel and G. Pisier, Rademacher averages in uniformly convex spaces, preprint.

    Google Scholar 

  23. D. P. Giesy, On a convexity condition in normed linear spaces, Trans. AMS, 125 (1966), 114–146.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. P. Giesy, B-convexity and reflexivity, Israel J. Math, 15 (1973), 430–436.

    Article  MathSciNet  MATH  Google Scholar 

  25. D. P. Giesy and R. C. James, Uniformly ℓ(1) and B convex Banach spaces, Studia Math, 48 (1973), 61–69.

    MathSciNet  MATH  Google Scholar 

  26. Y. Gordon and D. R. Lewis, Absolutely summing operators and local unconditional structures, Acta Math.

    Google Scholar 

  27. A. Grothendieck, Resume de la theorie metrique des produits tensonels topologiques, Bol. Soc. Matem., Sao Paolo, 8 (1956), 1–79.

    MATH  Google Scholar 

  28. V.I. Gurarii and N. I. Gurarii, On bases in uniformly convex and uniformly smooth Banach spaces, Izv. Akad. Nauk., 35 (1971), 210–215.

    MathSciNet  MATH  Google Scholar 

  29. O. Hanner, On the uniform convexity of Lp and ℓP, Ark. f. Mat., 3 (1956), 239–244.

    Article  MathSciNet  MATH  Google Scholar 

  30. R. E. Harrell and L. A. Karlovitz, Girths and flat Banach spaces, Bull. AMS, 76 (1970), 1288–1291.

    Article  MathSciNet  MATH  Google Scholar 

  31. R. E. Harrell and L. A. Karlovitz, Nonreflexivity and the girth of spheres, Inequalities III, Academic Press, New York (1972), 121–127.

    MATH  Google Scholar 

  32. R. E. Harrell and L. A. Karlovitz, The geometry of flat Banach spaces, Trans. AMS, 192 (1974), 209–218.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. R. Holub, On subspaces of separable norm ideals, Bull. Amer. Math. Soc., 79 (1973), 446–448.

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Hsieh, Convergent and divergent series in Banach spaces, M. S. Thesis, LSU (1970).

    Google Scholar 

  35. M. I. Kadec, Unconditional convergence of series in uniformly convex spaces, Uspehi Mat. Nauk, 11 (1956), 185–190, (Russian).

    MathSciNet  Google Scholar 

  36. R. C. James, Uniformly non-square Banach spaces, Ann. of Math., 80 (1964), 542–550.

    Article  MathSciNet  MATH  Google Scholar 

  37. R. C. James, Some self-dual properties of normed linear spaces, Symposium on Infinite Dimensional Topology, Annals of Mathematics Studies, 69 (1972), 159–175.

    Google Scholar 

  38. R. C. James, Super-reflexive spaces with bases, Pac. J. Math., 41 (1972), 409–419.

    Article  MathSciNet  MATH  Google Scholar 

  39. R. C. James, Super-reflexive Banach spaces, Can. J. Math., 24 (1972), 896–904.

    Article  MathSciNet  MATH  Google Scholar 

  40. R. C. James, A nonreflexive Banach space that is uniformly non-octahedral, preprint.

    Google Scholar 

  41. R. C. James and J. J. Schäffer, Super-reflexivity and the girth of spheres, Israel Jour. Math., 11 (1972), 398–404.

    Article  MathSciNet  MATH  Google Scholar 

  42. W. B. Johnson, On finite dimensional subspaces of Banach spaces with local unconditional structure, Studia Math, 51 (1974), 223–238.

    MathSciNet  Google Scholar 

  43. W. B. Johnson and L. Tzafriri, On the local structure of subspaces of Banach lattices, preprint.

    Google Scholar 

  44. M. I. Kadec, Unconditional convergence of series in uniformly convex spaces, Uspehi Mat. Nauk, 11 (1956), 185–190, (Russian).

    MathSciNet  Google Scholar 

  45. S. Kakutani, Weak convergence in uniformly convex spaces, Tohoku Math. J., 45 (1938), 188–193.

    MATH  Google Scholar 

  46. L. A. Karlovitz, On the derals of flat Banach spaces, Math. Ann., 202 (1973), 245–250.

    Article  MathSciNet  MATH  Google Scholar 

  47. G. Köthe, Topological Vector Spaces I, Springer-Verlag, Berlin-Heidelber-New York, 1969.

    MATH  Google Scholar 

  48. C. A. Kottman, Packing and reflexivity in Banach spaces, Trans. AMS, 150 (1970), 565–576.

    Article  MathSciNet  MATH  Google Scholar 

  49. K. J. Lindberg, On subspaces of Orlicz sequence spaces, Studia Math., 45 (1973), 119–146.

    MathSciNet  MATH  Google Scholar 

  50. J. Lindenstrauss, On the modulus of smoothness and divergent series in Banach spaces, Mich. Math. J., 10 (1963), 241–252.

    Article  MathSciNet  MATH  Google Scholar 

  51. J. Lindenstrauss and L. Tzatriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379–390.

    Article  MathSciNet  MATH  Google Scholar 

  52. J. Lindenstrauss and L. Tzatriri, On Orlicz sequence spaces II, Israel J. Math., 11 (1972), 355–379.

    Article  MathSciNet  MATH  Google Scholar 

  53. J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces III, Israel J. Math., 14 (1973), 368–389.

    Article  MathSciNet  MATH  Google Scholar 

  54. C. A. McCarthy, CP, Israel J. Math., 5 (1967), 249–271.

    Article  MathSciNet  Google Scholar 

  55. E. J. McShane, Linear functionals on certain Banach spaces, Proc. AMS, 1 (1950), 402–408.

    Article  MathSciNet  MATH  Google Scholar 

  56. V. D. Milman, The geometric theory of Banach spaces, Part I, Russian Math Surveys, 25 (1970), 111–170.

    Article  Google Scholar 

  57. V. D. Milman, The geometric theory of Banach spaces, Part II, Russian Math Surveys, 26 (1971), 79–163.

    Article  MathSciNet  Google Scholar 

  58. H. W. Milnes, Convexity of Orlicz spaces, Pacific J. Math, 7 (1957), 1451–1483.

    Article  MathSciNet  MATH  Google Scholar 

  59. T. Nishiura and D. Waterman, Reflexivity and summability, Studia Math, 23 (1963), 53–57.

    MathSciNet  MATH  Google Scholar 

  60. G. Nordlander, The modulus of convexity in normed linear spaces, Ark. Mat., 4 (1960), 15–17.

    Article  MathSciNet  MATH  Google Scholar 

  61. P. Nyikos and J. J. Schäffer, Flat spaces of continuous functions, Studia Math, 42 (1972), 221–229.

    MathSciNet  MATH  Google Scholar 

  62. W. Orlicz, Uber unbedingte Konvergenz in Funtionraumen, Studia Math, 1 (1930), 83–85.

    Google Scholar 

  63. G. Pisier, Martingales a valeurs dans les espaces uniformement convexes, preprint.

    Google Scholar 

  64. J. J. Schäffer, Inner diameter, perimeter and girth of spheres, Math. Annalen, 173 (1967), 59–79.

    Article  MathSciNet  MATH  Google Scholar 

  65. J. J. Schäffer, Addendum: Inner diameter, perimeter, and girth of spheres, Math Ann., 173 (1967), 163–168.

    Article  MATH  Google Scholar 

  66. J. J. Schäffer, Minimum girth of spheres, Math. Ann., 184 (1970), 169–171.

    Article  MathSciNet  MATH  Google Scholar 

  67. J. J. Schäffer, Spheres with maximum inner diameter, Math Ann., 190 (1971), 242–247.

    Article  MathSciNet  MATH  Google Scholar 

  68. J. J. Schäffer, On the geometry of spheres in L-spaces, Israel J. Math, 10 (1971), 114–120.

    Article  MathSciNet  MATH  Google Scholar 

  69. J. J. Schäffer and K. Sundaresan, Reflexivity and the girth of spheres, Math. Annalen, 184 (1970), 163–168.

    Article  MathSciNet  MATH  Google Scholar 

  70. J. Schreier, Ein Gegen beispiel zur Theorie der schwachen Konvergenz, Studia Math, 2 (1930), 58–62.

    MATH  Google Scholar 

  71. I. Singer, A remark on reflexivity and summability, Studia Math., 26 (1965), 113–114.

    MathSciNet  MATH  Google Scholar 

  72. K. Sundaresan, Uniformly non-ℓ (1)n Orlicz spaces, Israel J. Math, 3 (1965), 139–146.

    Article  MathSciNet  MATH  Google Scholar 

  73. K. Sundaresan, Uniform convexity of Banach spaces ℓ({Pi}), Studia Math, 39 (1971), 227–231.

    MathSciNet  MATH  Google Scholar 

  74. W. Szlenk, Sur les suites faiblementes convergentes daus l'espace L, Studia Math., 25 (1965), 337–341.

    MathSciNet  MATH  Google Scholar 

  75. N. Tomczak-Jaegermann, The moduli of smoothness and convexity and the Rademacher averages of trace class Sp, Studia Math., 50 (1974), 163–182.

    MathSciNet  MATH  Google Scholar 

  76. D. Waterman, Reflexivity and summability, II. Studia Math., 32 (1969), 61–63.

    MathSciNet  MATH  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag

About this chapter

Cite this chapter

Diestel, J. (1975). Uniformly convex and uniformly smooth Banach spaces. In: Geometry of Banach Spaces-Selected Topics. Lecture Notes in Mathematics, vol 485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0082082

Download citation

  • DOI: https://doi.org/10.1007/BFb0082082

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07402-1

  • Online ISBN: 978-3-540-37913-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics