Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

On the origin of constrained superfields

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 06 May 2016
  • Volume 2016, article number 41, (2016)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
On the origin of constrained superfields
Download PDF
  • G. Dall’Agata1,2,
  • E. Dudas3 &
  • F. Farakos1,2 
  • 348 Accesses

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

In this work we analyze constrained superfields in supersymmetry and supergravity. We propose a constraint that, in combination with the constrained goldstino multiplet, consistently removes any selected component from a generic superfield. We also describe its origin, providing the operators whose equations of motion lead to the decoupling of such components. We illustrate our proposal by means of various examples and show how known constraints can be reproduced by our method.

Article PDF

Download to read the full article text

Similar content being viewed by others

Constrained superfields in supergravity

Article Open access 16 February 2016

Linear versus non-linear supersymmetry, in general

Article Open access 12 April 2016

Constrained superfields in dynamical background

Article Open access 22 February 2022

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Astrophysical magnetic fields
  • Field Theory and Polynomials
  • General Relativity
  • Mathematical Physics
  • Origin selection
  • Restriction factors
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. D.V. Volkov and V.P. Akulov, Is the neutrino a Goldstone particle?, Phys. Lett. B 46 (1973) 109 [INSPIRE].

    Article  ADS  Google Scholar 

  2. E.A. Ivanov and A.A. Kapustnikov, General relationship between linear and nonlinear realizations of supersymmetry, J. Phys. A 11 (1978) 2375 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. M. Roček, Linearizing the Volkov-Akulov model, Phys. Rev. Lett. 41 (1978) 451 [INSPIRE].

    Article  ADS  Google Scholar 

  4. R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio and R. Gatto, Nonlinear realization of supersymmetry algebra from supersymmetric constraint, Phys. Lett. B 220 (1989) 569 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. Z. Komargodski and N. Seiberg, From linear SUSY to constrained superfields, JHEP 09 (2009) 066 [arXiv:0907.2441] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. I. Antoniadis, E. Dudas, D.M. Ghilencea and P. Tziveloglou, Non-linear MSSM, Nucl. Phys. B 841 (2010) 157 [arXiv:1006.1662] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. F. Farakos and A. Kehagias, Non-linear single Higgs MSSM, Phys. Lett. B 719 (2013) 95 [arXiv:1210.4941] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. I. Antoniadis, E. Dudas, S. Ferrara and A. Sagnotti, The Volkov-Akulov-Starobinsky supergravity, Phys. Lett. B 733 (2014) 32 [arXiv:1403.3269] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. W. Buchmüller, E. Dudas, L. Heurtier and C. Wieck, Large-field inflation and supersymmetry breaking, JHEP 09 (2014) 053 [arXiv:1407.0253] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. S. Ferrara, R. Kallosh and A. Linde, Cosmology with nilpotent superfields, JHEP 10 (2014) 143 [arXiv:1408.4096] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. R. Kallosh and A. Linde, Inflation and uplifting with nilpotent superfields, JCAP 01 (2015) 025 [arXiv:1408.5950] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. R. Kallosh, A. Linde and M. Scalisi, Inflation, de Sitter landscape and super-Higgs effect, JHEP 03 (2015) 111 [arXiv:1411.5671] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  13. A. Linde, Single-field α-attractors, JCAP 05 (2015) 003 [arXiv:1504.00663] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. J.J.M. Carrasco, R. Kallosh, A. Linde and D. Roest, Hyperbolic geometry of cosmological attractors, Phys. Rev. D 92 (2015) 041301 [arXiv:1504.05557] [INSPIRE].

    ADS  Google Scholar 

  15. Y. Kahn, D.A. Roberts and J. Thaler, The Goldstone and goldstino of supersymmetric inflation, JHEP 10 (2015) 001 [arXiv:1504.05958] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. M. Scalisi, Cosmological α-attractors and de Sitter landscape, JHEP 12 (2015) 134 [arXiv:1506.01368] [INSPIRE].

    Article  ADS  Google Scholar 

  17. J.J.M. Carrasco, R. Kallosh and A. Linde, α-attractors: Planck, LHC and dark energy, JHEP 10 (2015) 147 [arXiv:1506.01708] [INSPIRE].

  18. G. Dall’Agata and F. Zwirner, On sgoldstino-less supergravity models of inflation, JHEP 12 (2014) 172 [arXiv:1411.2605] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. E. Dudas, S. Ferrara, A. Kehagias and A. Sagnotti, Properties of nilpotent supergravity, JHEP 09 (2015) 217 [arXiv:1507.07842] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. I. Antoniadis and C. Markou, The coupling of non-linear supersymmetry to supergravity, Eur. Phys. J. C 75 (2015) 582 [arXiv:1508.06767] [INSPIRE].

    Article  ADS  Google Scholar 

  21. F. Hasegawa and Y. Yamada, De Sitter vacuum from R 2 supergravity, Phys. Rev. D 92 (2015) 105027 [arXiv:1509.04987] [INSPIRE].

    ADS  Google Scholar 

  22. S. Ferrara, R. Kallosh and J. Thaler, Cosmology with orthogonal nilpotent superfields, Phys. Rev. D 93 (2016) 043516 [arXiv:1512.00545] [INSPIRE].

    ADS  Google Scholar 

  23. J.J.M. Carrasco, R. Kallosh and A. Linde, Minimal supergravity inflation, Phys. Rev. D 93 (2016) 061301 [arXiv:1512.00546] [INSPIRE].

    ADS  Google Scholar 

  24. R. Kallosh, A. Linde and T. Wrase, Coupling the inflationary sector to matter, JHEP 04 (2016) 027 [arXiv:1602.07818] [INSPIRE].

    Article  ADS  Google Scholar 

  25. A. Sagnotti and S. Ferrara, Supersymmetry and inflation, PoS(PLANCK 2015)113 [arXiv:1509.01500] [INSPIRE].

  26. U. Lindström and M. Roček, Constrained local superfields, Phys. Rev. D 19 (1979) 2300 [INSPIRE].

    ADS  Google Scholar 

  27. F. Farakos and A. Kehagias, Decoupling limits of sgoldstino modes in global and local supersymmetry, Phys. Lett. B 724 (2013) 322 [arXiv:1302.0866] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. E.A. Bergshoeff, D.Z. Freedman, R. Kallosh and A. Van Proeyen, Pure de Sitter supergravity, Phys. Rev. D 92 (2015) 085040 [Erratum ibid. D 93 (2016) 069901] [arXiv:1507.08264] [INSPIRE].

  29. F. Hasegawa and Y. Yamada, Component action of nilpotent multiplet coupled to matter in 4 dimensional N = 1 supergravity, JHEP 10 (2015) 106 [arXiv:1507.08619] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. R. Kallosh and T. Wrase, De Sitter supergravity model building, Phys. Rev. D 92 (2015) 105010 [arXiv:1509.02137] [INSPIRE].

    ADS  Google Scholar 

  31. R. Kallosh, Matter-coupled de Sitter supergravity, arXiv:1509.02136 [INSPIRE].

  32. G. Dall’Agata, S. Ferrara and F. Zwirner, Minimal scalar-less matter-coupled supergravity, Phys. Lett. B 752 (2016) 263 [arXiv:1509.06345] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. G. Dall’Agata and F. Farakos, Constrained superfields in supergravity, JHEP 02 (2016) 101 [arXiv:1512.02158] [INSPIRE].

    Article  ADS  Google Scholar 

  34. S. Ferrara, R. Kallosh, A. Van Proeyen and T. Wrase, Linear versus non-linear supersymmetry, in general, JHEP 04 (2016) 065 [arXiv:1603.02653] [INSPIRE].

    Article  ADS  Google Scholar 

  35. R. Kallosh, A. Karlsson, B. Mosk and D. Murli, Orthogonal nilpotent superfields from linear models, arXiv:1603.02661 [INSPIRE].

  36. E. Dudas, G. von Gersdorff, D.M. Ghilencea, S. Lavignac and J. Parmentier, On non-universal goldstino couplings to matter, Nucl. Phys. B 855 (2012) 570 [arXiv:1106.5792] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  37. I. Antoniadis, E. Dudas and D.M. Ghilencea, Goldstino and sgoldstino in microscopic models and the constrained superfields formalism, Nucl. Phys. B 857 (2012) 65 [arXiv:1110.5939] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  38. D.M. Ghilencea, Comments on the nilpotent constraint of the goldstino superfield, Mod. Phys. Lett. A 31 (2016) 1630011 [arXiv:1512.07484] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. S. Sugimoto, Anomaly cancellations in type-I \( D9-\overline{D}9 \) system and the USp(32) string theory, Prog. Theor. Phys. 102 (1999) 685 [hep-th/9905159] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. I. Antoniadis, E. Dudas and A. Sagnotti, Brane supersymmetry breaking, Phys. Lett. B 464 (1999) 38 [hep-th/9908023] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  41. C. Angelantonj, Comments on open string orbifolds with a nonvanishing B ab , Nucl. Phys. B 566 (2000) 126 [hep-th/9908064] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  42. G. Aldazabal and A.M. Uranga, Tachyon free nonsupersymmetric type IIB orientifolds via brane-anti-brane systems, JHEP 10 (1999) 024 [hep-th/9908072] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  43. C. Angelantonj, I. Antoniadis, G. D’Appollonio, E. Dudas and A. Sagnotti, Type I vacua with brane supersymmetry breaking, Nucl. Phys. B 572 (2000) 36 [hep-th/9911081] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  44. E. Dudas and J. Mourad, Consistent gravitino couplings in nonsupersymmetric strings, Phys. Lett. B 514 (2001) 173 [hep-th/0012071] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  45. G. Pradisi and F. Riccioni, Geometric couplings and brane supersymmetry breaking, Nucl. Phys. B 615 (2001) 33 [hep-th/0107090] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  46. R. Kallosh, F. Quevedo and A.M. Uranga, String theory realizations of the nilpotent goldstino, JHEP 12 (2015) 039 [arXiv:1507.07556] [INSPIRE].

    Article  ADS  Google Scholar 

  47. I. Bandos, L. Martucci, D. Sorokin and M. Tonin, Brane induced supersymmetry breaking and de Sitter supergravity, JHEP 02 (2016) 080 [arXiv:1511.03024] [INSPIRE].

    Article  ADS  Google Scholar 

  48. L. Aparicio, F. Quevedo and R. Valandro, Moduli stabilisation with nilpotent goldstino: vacuum structure and SUSY breaking, JHEP 03 (2016) 036 [arXiv:1511.08105] [INSPIRE].

    Article  ADS  Google Scholar 

  49. I. García-Etxebarria, F. Quevedo and R. Valandro, Global string embeddings for the nilpotent goldstino, JHEP 02 (2016) 148 [arXiv:1512.06926] [INSPIRE].

    Article  ADS  Google Scholar 

  50. S.M. Kuzenko and S.J. Tyler, Relating the Komargodski-Seiberg and Akulov-Volkov actions: exact nonlinear field redefinition, Phys. Lett. B 698 (2011) 319 [arXiv:1009.3298] [INSPIRE].

    Article  ADS  Google Scholar 

  51. E. Dudas, L. Heurtier, C. Wieck and M.W. Winkler, UV corrections in sgoldstino-less inflation, arXiv:1601.03397 [INSPIRE].

  52. A. Brignole, F. Feruglio and F. Zwirner, On the effective interactions of a light gravitino with matter fermions, JHEP 11 (1997) 001 [hep-th/9709111] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Dipartimento di Fisica “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131, Padova, Italy

    G. Dall’Agata & F. Farakos

  2. INFN, Sezione di Padova, Via Marzolo 8, 35131, Padova, Italy

    G. Dall’Agata & F. Farakos

  3. Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay, F-91128, Palaiseau, France

    E. Dudas

Authors
  1. G. Dall’Agata
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. E. Dudas
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. F. Farakos
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to F. Farakos.

Additional information

ArXiv ePrint: 1603.03416

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dall’Agata, G., Dudas, E. & Farakos, F. On the origin of constrained superfields. J. High Energ. Phys. 2016, 41 (2016). https://doi.org/10.1007/JHEP05(2016)041

Download citation

  • Received: 22 March 2016

  • Accepted: 02 May 2016

  • Published: 06 May 2016

  • DOI: https://doi.org/10.1007/JHEP05(2016)041

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Supersymmetric Effective Theories
  • Supersymmetry Breaking
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature