Skip to main content
Log in

A new temperature-dependent anisotropic constitutive model for predicting deformation and spring-back in warm deep drawing of automotive AA5086-H111 aluminium alloy sheet

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A new temperature-dependent anisotropic hardening and yield function based on non-associated flow rule (NAFR) which accurately describes the anisotropic properties of aluminium alloy sheet metal is presented in this paper. This new NAFR coupling yield function has been successfully implemented in commercial FEM software Abaqus via user material subroutine UMAT to model warm forming of AA5086-H111 aluminium alloy and good agreement was found in the predicted earing profiles and spring-back compared with experiments. The new NAFR coupling yield function has been shown be superior to the existing Hill48 (associated flow rule) yield function making it suitable for FEA of warm deep drawing and design of tooling for various automotive panels and components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Bolt PJ, Lamboo NAPM, Rozier PJCM (2001) Feasibility of warm drawing of aluminium products. J Mater Process Technol 115(1):118–121

    Article  Google Scholar 

  2. Toros S, Ozturk F, Kacar I (2008) Review of warm forming of aluminum–magnesium alloys. J Mater Process Technol 207(1):1–12

    Article  Google Scholar 

  3. Abedrabbo N, Pourboghrat F, Carsley J (2007) Forming of AA5182-O and AA5754-O at elevated temperatures using coupled thermo-mechanical finite element models. Int J Plast 23(5):841–875

    Article  MATH  Google Scholar 

  4. Li D, Ghosh AK (2004) Biaxial warm forming behavior of aluminum sheet alloys. J Mater Process Technol 145(3):281–293

    Article  Google Scholar 

  5. Kim HS, Koç M (2008) Numerical investigations on springback characteristics of aluminum sheet metal alloys in warm forming conditions. J Mater Process Technol 204(1):370–383

    Article  Google Scholar 

  6. Laurent H, Coër J, Manach PY, Oliveira MC, Menezes LF (2015) Experimental and numerical studies on the warm deep drawing of an Al–Mg alloy. Int J Mech Sci 93:59–72

    Article  Google Scholar 

  7. Kumar M, Sotirov N, Chimani CM (2014) Investigations on warm forming of AW-7020-T6 alloy sheet. J Mater Process Technol 214(8):1769–1776

    Article  Google Scholar 

  8. Kim HS, Koç M, Ni J, Ghosh A (2006) Finite element modeling and analysis of warm forming of aluminum alloys—validation through comparisons with experiments and determination of a failure criterion. J Manuf Sci Eng 128(3):613–621

    Article  Google Scholar 

  9. Kim HS (2010) A combined FEA and design of experiments approach for the design and analysis of warm forming of aluminum sheet alloys. Int J Adv Manuf Technol 51(1):1–14

    Article  MathSciNet  Google Scholar 

  10. Mahabunphachai S, Koç M (2010) Investigations on forming of aluminum 5052 and 6061 sheet alloys at warm temperatures. Mater Des 31(5):2422–2434

    Article  Google Scholar 

  11. Kurukuri S, Van den Boogaard AH, Miroux A, Holmedal B (2009) Warm forming simulation of Al Mg sheet. J Mater Process Technol 209(15):5636–5645

    Article  Google Scholar 

  12. Grèze R, Manach PY, Laurent H, Thuillier S, Menezes LF (2010) Influence of the temperature on residual stresses and springback effect in an aluminium alloy. Int J Mech Sci 52(9):1094–1100

    Article  Google Scholar 

  13. Manach PY, Grèze R, Laurent H, Thuillier S, Menezes LF (2008) Influence of the temperature on residual stresses and springback effect in an aluminium alloy. Adv Mater Process Technol

  14. Abedrabbo N, Pourboghrat F, Carsley J (2006) Forming of aluminum alloys at elevated temperatures–Part 1: Material characterization. Int J Plast 22(2):314–341

    Article  MATH  Google Scholar 

  15. Coër J, Bernard C, Laurent H, Andrade-Campos A, Thuillier S (2011) The effect of temperature on anisotropy properties of an aluminium alloy. Exp Mech 51(7):1185–1195

    Article  Google Scholar 

  16. Abedrabbo N, Pourboghrat F, Carsley J (2006) Forming of aluminum alloys at elevated temperatures–Part 2: Numerical modeling and experimental verification. Int J Plast 22(2):342– 373

    Article  MATH  Google Scholar 

  17. Barlat F, Lian K (1989) Plastic behaviour and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions. Int J Plast 5(1):51–66

    Article  Google Scholar 

  18. Barlat F, Brem JC, Yoon JW, Chung K, Dick RE, Lege DJ, Chu E (2003) Plane stress yield function for aluminium alloy sheets—part 1: theory. Int J Plast 19(9):1297–1319

    Article  MATH  Google Scholar 

  19. Yoon JW, Barlat F, Dick RE, Chung K, Kang TJ (2004) Plane stress yield function for aluminium alloy sheets—part II: FE formulation and its implementation. Int J Plast 20(3):495–522

    Article  MATH  Google Scholar 

  20. Barlat F, Aretz H, Yoon JW, Karabin ME, Brem JC, Dick RE (2005) Linear transformation-based anisotropic yield functions. Int J Plast 21(5):1009–1039

    Article  MATH  Google Scholar 

  21. Yoon JW, Barlat F, Dick RE, Karabin ME (2006) Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function. Int J Plast 22(1):174–193

    Article  MATH  Google Scholar 

  22. Aretz H, Aegerter J, Engler O (2010) Analysis of earing in deep drawn cups. AIP Conference Proceedings 1252(1):417–424

    Article  Google Scholar 

  23. Aretz H, Barlat F (2013) New convex yield functions for orthotropic metal plasticity. Int J Non Linear Mech 51:97–111

    Article  Google Scholar 

  24. Min J, Carsley JE, Lin J, Wen Y, Kuhlenkötter B (2016) A non-quadratic constitutive model under non-associated flow rule of sheet metals with anisotropic hardening: modeling and experimental validation. Int J Mech Sci 119:343–359

    Article  Google Scholar 

  25. Lee EH, Stoughton TB, Yoon JW (2017) A yield criterion through coupling of quadratic and non-quadratic functions for anisotropic hardening with non-associated flow rule. Int J Plast 99:120–143

    Article  Google Scholar 

  26. Stoughton TB, Yoon JW (2009) Anisotropic hardening and non-associated flow in proportional loading of sheet metals. Int J Plast 25(9):1777–1817

    Article  MATH  Google Scholar 

  27. Safaei M, Lee MG, De Waele W (2015) Evaluation of stress integration algorithms for elastic–plastic constitutive models based on associated and non-associated flow rules. Comput Methods Appl Mech Eng 295:414–445

    Article  MathSciNet  Google Scholar 

  28. Park T, Chung K (2012) Non-associated flow rule with symmetric stiffness modulus for isotropic-kinematic hardening and its application for earing in circular cup drawing. Int J Solids Struct 49(25):3582–3593

    Article  Google Scholar 

  29. Yuanming L, Yugui Y, Xiaoxiao C, Shuangyang L (2010) Strength criterion and elastoplastic constitutive model of frozen silt in generalized plastic mechanics. Int J Plast 26(10):1461–1484

    Article  MATH  Google Scholar 

  30. Khan AS, Yu S, Liu H (2012) Deformation induced anisotropic responses of Ti–6Al–4V alloy Part II: A strain rate and temperature dependent anisotropic yield criterion. Int J Plast 38:14–26

    Article  Google Scholar 

  31. Van den boogaard AH, Bolt P, Werkhoven R (2001) Modeling of Al Mg sheet forming at elevated temperatures. Int J Form Process 4(3-4):361–375

    Article  Google Scholar 

  32. Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London A: Mathematical. Phys Eng Sci 193(1033):281–297

    Article  MATH  Google Scholar 

  33. Hosford WF (1972) A generalized isotropic yield criterion. J Appl Mech 39(2):607–609

    Article  Google Scholar 

  34. Manach PY, Coër J, Laurent H, Yoon JW (2016) Benchmark 3-Springback of an Al-Mg alloy in warm forming conditions. J Phys Conf Ser 734(2):022003

    Article  Google Scholar 

  35. Karbasian H, Tekkaya AE (2010) A review on hot stamping. J Mater Process Technol 210(15):2103–2118

    Article  Google Scholar 

  36. Liu W, Chen BK (2018) Sheet metal anisotropy and optimal non-round blank design in high-speed multi-step forming of AA3104-H19 aluminium alloy can body. Int J Adv Manuf Technol 95(9):4265–4277

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wencheng Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

σ1,σ2 and σ3 are the three principal values of the Cauchy stress tensor:

$$ \left[\begin{array}{llll} \sigma_{11} &\sigma_{12} &\sigma_{13}\\ \sigma_{12} &\sigma_{22} &\sigma_{23}\\ \sigma_{13} &\sigma_{23} &\sigma_{33} \end{array}\right] $$
(34)

These principal values are the roots of the characteristic equation:

$$ P(\sigma_{k})=-{\sigma_{k}^{3}}+ 3H_{1}{\sigma_{k}^{2}}+ 3H_{2}\sigma_{k}+ 2H_{3}= 0 $$
(35)

The associated 1st, 2nd and 3rd invariants of σk:

$$\begin{array}{@{}rcl@{}} H_{1}\!&=&\!\frac{\sigma_{11}+\sigma_{22}+\sigma_{33}}{3} \end{array} $$
(36a)
$$\begin{array}{@{}rcl@{}} H_{2}\!&=&\!\frac{\sigma_{23}^{2}+\sigma_{13}^{2}+\sigma_{12}^{2}-\sigma_{22}\sigma_{33}-\sigma_{11}\sigma_{33}-\sigma_{11}\sigma_{22}}{3} \end{array} $$
(36b)
$$\begin{array}{@{}rcl@{}} H_{3}\!&=&\!\frac{2\sigma_{12}\sigma_{13}\sigma_{23}+\sigma_{11}\sigma_{22}\sigma_{33}-\sigma_{11}\sigma_{23}^{2}\,-\,\sigma_{22}\sigma_{13}^{2}\,-\,\sigma_{33}\sigma_{12}^{2}}{2}\\ \end{array} $$
(36c)

Change the variable using:

$$ {\sigma}_{k}= \overline{\sigma}_{k} $$
(37)

The characteristic equation becomes:

$$ P(\overline{\sigma}_{k})=-\overline{\sigma}_{k}^{3}+ 3p\overline{\sigma}_{k}+ 2q = 0 $$
(38)

The associated invariants of \(\overline {\sigma }_{k}\):

$$\begin{array}{@{}rcl@{}} p&=&({H_{1}^{2}}+H_{2}) \end{array} $$
(39a)
$$\begin{array}{@{}rcl@{}} q&=&\left( 2{H_{1}^{3}}+ 3H_{1}H_{2}+ 2H^{3}\right)/2 \end{array} $$
(39b)
$$\begin{array}{@{}rcl@{}} &&\theta=arccos\left[\frac{q}{p^{3/2}}\right] \end{array} $$
(39c)

Cardan’s solutions to Eq. 40a:

$$\begin{array}{@{}rcl@{}} &&\overline{\sigma}_{1}=z^{1/3}+\overline{z}^{1/3} \end{array} $$
(40a)
$$\begin{array}{@{}rcl@{}} &&\overline{\sigma}_{2}=\omega z^{1/3}+{\overline{\omega}} {\overline{z}}^{1/3} \end{array} $$
(40b)
$$\begin{array}{@{}rcl@{}} &&\overline{\sigma}_{3}=\overline{\omega} z^{1/3}+{\omega} {\overline{z}}^{1/3} \end{array} $$
(40c)

where z, w are complex number and \(\overline {z}\), \(\overline {w}\) are their conjugate quantities, they are given as:

$$\begin{array}{@{}rcl@{}} &&z=q+i\sqrt{p^{3}-q^{2}} \end{array} $$
(41a)
$$\begin{array}{@{}rcl@{}} &&\overline{z}=q-i\sqrt{p^{3}-q^{2}} \end{array} $$
(41b)
$$\begin{array}{@{}rcl@{}} &&{\omega=\text{cos}\left( -\frac{2\pi}{3}\right)+i\cdot\sin\left( -\frac{2\pi}{3}\right)} \end{array} $$
(41c)
$$\begin{array}{@{}rcl@{}} &&{\overline{\omega}=\text{cos}\left( -\frac{2\pi}{3}\right)-i\cdot \sin\left( -\frac{2\pi}{3}\right)} \end{array} $$
(41d)

The principal values of Cauchy stress tensor are computed as:

$$ \sigma_{1}=\overline{\sigma}_{1}+H_{1} \qquad \sigma_{2}=\overline{\sigma}_{2}+H_{1} \qquad \sigma_{3}=\overline{\sigma}_{3}+H_{1} $$
(42)

Appendix B

First-order deviator of the new coupling yield function required in the stress integration algorithm:

$$\begin{array}{@{}rcl@{}} \frac{\partial{\sigma}_{e}}{\partial\boldsymbol{\sigma}}&=& \frac{1}{(n + 1)(\overline{\sigma}^{n + 1})} \left( \frac{\partial F_{quad}}{\partial {\boldsymbol{\sigma}}} \cdot F_{non-quad}\right.\\ &&+ \left. \frac{\partial F_{non-quad}}{\partial {\boldsymbol{\sigma}}} \cdot F_{quad}\right) \end{array} $$
(43)

where, the first-order deviator of quadric part is given by:

$$ \frac{\partial F_{quad}}{\partial {\boldsymbol{\sigma}}} = \left[\begin{array}{ll} \alpha_{3}(\sigma_{11}-\sigma_{22})-\alpha_{2}(\sigma_{33}-\sigma_{11})\\ \alpha_{1}(\sigma_{22}-\sigma_{33})-\alpha_{3}(\sigma_{11}-\sigma_{22})\\ \alpha_{2}(\sigma_{33}-\sigma_{11})-\alpha_{1}(\sigma_{22}-\sigma_{33})\\ 2\alpha_{4}(\sigma_{12})\\ 2\alpha_{5}(\sigma_{13})\\ 2\alpha_{6}(\sigma_{23}) \end{array}\right] $$

The first-order deviator of non-quadric part is given by:

$$ \frac{\partial F_{non-quad}}{\partial {\boldsymbol{\sigma}}} = \left[\begin{array}{lll} {\sum}_{k_{1}= 1}^{3} {\sum}_{k_{2}= 1}^{3} \frac{\partial{F_{non-quad}}}{\partial \sigma_{k1}} \frac{\partial {\sigma_{k1}}}{\partial{H_{k2}}} \frac{\partial H_{k2}}{\partial \sigma_{11}} \\ {\sum}_{k_{1}= 1}^{3} {\sum}_{k_{2}= 1}^{3} \frac{\partial{F_{non-quad}}}{\partial \sigma_{k1}} \frac{\partial {\sigma_{k1}}}{\partial{H_{k2}}} \frac{\partial H_{k2}}{\partial \sigma_{22}} \\ {\sum}_{k_{1}= 1}^{3} {\sum}_{k_{2}= 1}^{3} \frac{\partial{F_{non-quad}}}{\partial \sigma_{k1}} \frac{\partial {\sigma_{k1}}}{\partial{H_{k2}}} \frac{\partial H_{k2}}{\partial \sigma_{33}} \\ {\sum}_{k_{1}= 1}^{3} {\sum}_{k_{2}= 1}^{3} \frac{\partial{F_{non-quad}}}{\partial \sigma_{k1}} \frac{\partial {\sigma_{k1}}}{\partial{H_{k2}}} \frac{\partial H_{k2}}{\partial \sigma_{12}} \\ {\sum}_{k_{1}= 1}^{3} {\sum}_{k_{2}= 1}^{3} \frac{\partial{F_{non-quad}}}{\partial \sigma_{k1}} \frac{\partial {\sigma_{k1}}}{\partial{H_{k2}}} \frac{\partial H_{k2}}{\partial \sigma_{13}} \\ {\sum}_{k_{1}= 1}^{3} {\sum}_{k_{2}= 1}^{3} \frac{\partial{F_{non-quad}}}{\partial \sigma_{k1}} \frac{\partial {\sigma_{k1}}}{\partial{H_{k2}}} \frac{\partial H_{k2}}{\partial \sigma_{23}} \end{array}\right] $$

where, the terms \(\frac {\partial {F_{non-quad}}}{\partial \sigma _{k}}\) are given by:

$$\begin{array}{@{}rcl@{}} \frac{\partial{F_{non-quad}}}{\partial \sigma_{1}} &=& \frac{1}{2}n (|\sigma_{1} - \sigma_{2} ||\sigma_{1} - \sigma_{2} |^{n-2}\\ &&- |\sigma_{3} - \sigma_{1} ||\sigma_{3} - \sigma_{1} |^{n-2}) \end{array} $$
(44)
$$\begin{array}{@{}rcl@{}} \frac{\partial{F_{non-quad}}}{\partial \sigma_{2}} &=& \frac{1}{2}n (|\sigma_{2} - \sigma_{3} ||\sigma_{2} - \sigma_{3} |^{n-2}\\ &&- |\sigma_{1} - \sigma_{2} ||\sigma_{1} - \sigma_{2} |^{n-2}) \end{array} $$
(45)
$$\begin{array}{@{}rcl@{}} \frac{\partial{F_{non-quad}}}{\partial \sigma_{3}} &= &\frac{1}{2}n (|\sigma_{3} - \sigma_{1} ||\sigma_{3} - \sigma_{1} |^{n-2}\\ &&- |\sigma_{2} - \sigma_{3} ||\sigma_{2} - \sigma_{3} |^{n-2}) \end{array} $$
(46)

The terms \(\frac {\partial {\sigma _{k1}}}{\partial {H_{k2}}}\) are given by:

$$\begin{array}{@{}rcl@{}} &&\frac{\partial {\sigma_{k1}}}{\partial{H_{1}}} = \frac{\sigma_{k1}^{2}}{\sigma_{k1}^{2}-2H_{1}\sigma_{k1}-H_{2}} \end{array} $$
(49a)
$$\begin{array}{@{}rcl@{}} &&\frac{\partial {\sigma_{k1}}}{\partial{H_{2}}} = \frac{\sigma_{k1}}{\sigma_{k1}^{2}-2H_{1}\sigma_{k1}-H_{2}} \end{array} $$
(49b)
$$\begin{array}{@{}rcl@{}} &&\frac{\partial {\sigma_{k1}}}{\partial{H_{3}}} = \frac{2}{3(\sigma_{k1}^{2}-2H_{1}\sigma_{k1}-H_{2})} \end{array} $$
(49c)

The terms \(\frac {H_{k2}}{\sigma _{ij}}\) are given by:

$$\begin{array}{@{}rcl@{}} &&\frac{H_{1}}{\sigma_{ij}} = \frac{1}{3} (i=j) \qquad \frac{H_{1}}{\sigma_{ij}} = 0(i \neq j) \end{array} $$
(50a)
$$\begin{array}{@{}rcl@{}} &&\frac{H_{2}}{\sigma_{11}} = -\frac{\sigma_{22}+\sigma_{33}}{3} \qquad \frac{H_{2}}{\sigma_{22}} = -\frac{\sigma_{11}+\sigma_{33}}{3} \end{array} $$
(50b)
$$\begin{array}{@{}rcl@{}} &&\frac{H_{2}}{\sigma_{33}} = -\frac{\sigma_{11}+\sigma_{22}}{3} \qquad \frac{H_{2}}{\sigma_{ij}} = \frac{2\sigma_{ij}}{3}(i \neq j) \end{array} $$
(50c)
$$\begin{array}{@{}rcl@{}} &&\frac{H_{3}}{\sigma_{11}} = \frac{\sigma_{22}\sigma_{33}-\sigma{23}^{2}}{2} \qquad \frac{H_{3}}{\sigma_{22}} = \frac{\sigma_{11}\sigma_{33}-\sigma{13}^{2}}{2} \end{array} $$
(50d)
$$\begin{array}{@{}rcl@{}} &&\frac{H_{3}}{\sigma_{33}} = \frac{\sigma_{11}\sigma_{22}-\sigma{12}^{2}}{2} \qquad \frac{H_{3}}{\sigma_{12}} \,=\, \sigma_{23}\sigma_{13} - \sigma_{33}\sigma_{12} \end{array} $$
(50e)
$$\begin{array}{@{}rcl@{}} &&\frac{H_{3}}{\sigma_{13}} = \sigma_{12}\sigma_{23} - \sigma_{22}\sigma_{13} \qquad \frac{H_{3}}{\sigma_{23}} \,=\, \sigma_{12}\sigma_{13} - \sigma_{11}\sigma_{23} \end{array} $$
(50f)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Chen, B.K. & Pang, Y. A new temperature-dependent anisotropic constitutive model for predicting deformation and spring-back in warm deep drawing of automotive AA5086-H111 aluminium alloy sheet. Int J Adv Manuf Technol 97, 3407–3421 (2018). https://doi.org/10.1007/s00170-018-2161-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-2161-0

Keywords