Skip to main content

Advertisement

Log in

On the mechanisms of melatonin in protection of aluminum phosphide cardiotoxicity

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

A Letter to the Editor, News and Views to this article was published on 21 July 2017

Abstract

Aluminum phosphide (AlP), one of the most commonly used pesticides worldwide, has been the leading cause of self-poisoning mortalities among many Asian countries. The heart is the main organ affected in AlP poisoning. Melatonin has been previously shown to be beneficial in reversing toxic changes in the heart. The present study reveals evidence on the probable protective effects of melatonin on AlP-induced cardiotoxicity in rats. The study groups included a control (almond oil only), ethanol 5% (solvent), sole melatonin (50 mg/kg), AlP (16.7 mg/kg), and 4 AlP + melatonin groups which received 20, 30, 40 and 50 mg/kg of melatonin by intraperitoneal injections following AlP treatment. An electronic cardiovascular monitoring device was used to record the electrocardiographic (ECG) parameters. Heart tissues were studied in terms of oxidative stress biomarkers, mitochondrial complexes activities, ADP/ATP ratio and apoptosis. Abnormal ECG records as well as declined heart rate and blood pressure were found to be related to AlP administration. Based on the results, melatonin was highly effective in controlling AlP-induced changes in the study groups. Significant improvements were observed in the activities of mitochondrial complexes, oxidative stress biomarkers, the activities of caspases 3 and 9, and ADP/ATP ratio following treatment with melatonin at doses of 40 and 50 mg/kg. Our results indicate that melatonin can counteract the AlP-induced oxidative damage in the heart. This is mainly done by maintaining the normal balance of intracellular ATP as well as the prevention of oxidative damage. Further research is warranted to evaluate the possibility of using melatonin as an antidote in AlP poisoning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abdolghaffari AH, Baghaei A, Solgi R et al (2015) Molecular and biochemical evidences on the protective effects of triiodothyronine against phosphine-induced cardiac and mitochondrial toxicity. Life Sci 139:30–39

    Article  CAS  PubMed  Google Scholar 

  • Acikel M, Buyukokuroglu ME, Aksoy H et al (2003) Protective effects of melatonin against myocardial injury induced by isoproterenol in rats. J Pineal Res 35:75–79

    Article  CAS  PubMed  Google Scholar 

  • Anand R, Binukumar B, Gill KD (2011) Aluminum phosphide poisoning: an unsolved riddle. J Appl Toxicol 31:499–505

    Article  CAS  PubMed  Google Scholar 

  • Anand R, Kumari P, Kaushal A et al (2012) Effect of acute aluminum phosphide exposure on rats-A biochemical and histological correlation. Toxicol Lett 215:62–69

    Article  CAS  PubMed  Google Scholar 

  • Anand R, Sharma D, Verma D et al (2013) Mitochondrial electron transport chain complexes, catalase and markers of oxidative stress in platelets of patients with severe aluminum phosphide poisoning. Hum Exp Toxicol 32:807–816

    Article  CAS  PubMed  Google Scholar 

  • Andrabi SA, Sayeed I, Siemen D et al (2004) Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism responsible for anti-apoptotic effects of melatonin. FASEB J 18:869–871

    CAS  PubMed  Google Scholar 

  • Asghari MH, Abdollahi M, De Oliveira MR et al (2017a) A review of the protective role of melatonin during phosphine-induced cardiotoxicity: focus on mitochondrial dysfunction, oxidative stress and apoptosis. J Pharm Pharmacol 69:236–243

    Article  CAS  PubMed  Google Scholar 

  • Asghari MH, Moloudizargari M, Bahadar H et al (2017b) A review of the protective effect of melatonin in pesticide-induced toxicity. Expert Opin Drug Metab Toxicol 13(5):545–554

    Article  CAS  PubMed  Google Scholar 

  • Ayobola A (2012) Assessment of lipid peroxidation and activities of antioxidant enzymes in phosphide-powder residue exposed rats. J Drug Metab Toxicol 3(5):132

    Google Scholar 

  • Baeeri M, Shariatpanahi M, Baghaei A et al (2013) On the benefit of magnetic magnesium nanocarrier in cardiovascular toxicity of aluminum phosphide. Toxicol Ind Health 29:126–135

    Article  CAS  PubMed  Google Scholar 

  • Baghaei A, Hajimohammadi N, Baeeri M et al (2014) On the protection of AlP cardiovascular toxicity by a novel mixed herbal medicine; role of oxidative stress and cellular ATP. Asian J Anim Vet Adv 9:302–311

    Article  Google Scholar 

  • Baghaei A, Solgi R, Jafari A et al (2016) Molecular and biochemical evidence on the protection of cardiomyocytes from phosphine-induced oxidative stress, mitochondrial dysfunction and apoptosis by acetyl-l-carnitine. Environ Toxicol Pharmacol 42:30–37

    Article  CAS  PubMed  Google Scholar 

  • Bertuglia S, Reiter RJ (2007) Melatonin reduces ventricular arrhythmias and preserves capillary perfusion during ischemia-reperfusion events in cardiomyopathic hamsters. J Pineal Res 42:55–63

    Article  CAS  PubMed  Google Scholar 

  • Bogle R, Theron P, Brooks P et al (2006) Aluminium phosphide poisoning. Emerg Med J 23(1):e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bumbrah GS, Krishan K, Kanchan T et al (2012) Phosphide poisoning: a review of literature. Forensic Sci Int 214:1–6

    Article  CAS  PubMed  Google Scholar 

  • Cooperstein S, Lazarow A (1951) A microspectrophotometric method for the determination of cytochrome oxidase. J Biol Chem 189:665–670

    CAS  PubMed  Google Scholar 

  • Dua R, Sunkaria A, Kumar V et al (2010) Impaired mitochondrial energy metabolism and kinetic properties of cytochrome oxidase following acute aluminium phosphide exposure in rat liver. Food Chem Toxicol 48:53–60

    Article  CAS  PubMed  Google Scholar 

  • Escames G, López A, Antonio Garcia J et al (2010) The role of mitochondria in brain aging and the effects of melatonin. Curr Neuropharmacol 8:182–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farvin KS, Anandan R, Kumar SHS et al (2004) Effect of squalene on tissue defense system in isoproterenol-induced myocardial infarction in rats. ‎Pharmacol Res 50:231–236

    Article  CAS  Google Scholar 

  • García JJ, López-Pingarrón L, Almeida-Souza P et al (2014) Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: a review. J Pineal Res 56:225–237

    Article  PubMed  Google Scholar 

  • Govender J, Loos B, Marais E et al (2014) Mitochondrial catastrophe during doxorubicin-induced cardiotoxicity: a review of the protective role of melatonin. J Pineal Res 57:367–380

    Article  CAS  PubMed  Google Scholar 

  • Gurjar M, Baronia AK, Azim A et al (2011) Managing aluminum phosphide poisonings. J Emerg Trauma Shock 4:378

    Article  PubMed  PubMed Central  Google Scholar 

  • Heusch G, Boengler K, Schulz R (2010) Inhibition of mitochondrial permeability transition pore opening: the Holy Grail of cardioprotection. Basic Res Cardiol 105:151–154

    Article  PubMed  Google Scholar 

  • Hosseini A, Sharifzadeh M, Rezayat SM et al (2010) Benefit of magnesium-25 carrying porphyrin-fullerene nanoparticles in experimental diabetic neuropathy. Int J Nanomed 5:517–523

    CAS  Google Scholar 

  • Hosseini A, Baeeri M, Rahimifard M et al (2013) Antiapoptotic effects of cerium oxide and yttrium oxide nanoparticles in isolated rat pancreatic islets. Hum Exp Toxicol 32:544–553

    Article  CAS  PubMed  Google Scholar 

  • Jafari A, Baghaei A, Solgi R et al (2015) An electrocardiographic, molecular and biochemical approach to explore the cardioprotective effect of vasopressin and milrinone against phosphide toxicity in rats. Food Chem Toxicol 80:182–192

    Article  CAS  PubMed  Google Scholar 

  • Karami-Mohajeri S, Jafari A, Abdollahi M (2013) Comprehensive review of the mechanistic approach and related therapies to cardiovascular effects of aluminum phosphide. Int J Pharmacol 9:493–500

    Article  Google Scholar 

  • Karami-Mohajeri S, Hadian M, Fouladdel S et al (2014) Mechanisms of muscular electrophysiological and mitochondrial dysfunction following exposure to malathion, an organophosphorus pesticide. Hum Exp Toxicol 33:251–263

    Article  CAS  PubMed  Google Scholar 

  • Kariman H, Heydari K, Fakhri M et al (2012) Aluminium phosphide poisoning and oxidative stress. J Med Toxicol 8:281–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korkmaz A, Reiter RJ, Topal T et al (2009) Melatonin: an established antioxidant worthy of use in clinical trials. Mol Med 15:43–50

    CAS  PubMed  Google Scholar 

  • Lall SB, Peshin S, Mitra S (2000) Methemoglobinemia in aluminium phosphide poisoning in rats. Indian J Exp Biol 38:95–97

    CAS  PubMed  Google Scholar 

  • Laudon GE, Zisapel N (2011) Effect of melatonin on nocturnal blood pressure: meta-analysis of randomized controlled trials. Vasc Health Risk Manag 7:577–584

    Article  PubMed  PubMed Central  Google Scholar 

  • Leon J, Acuña-Castroviejo D, Escames G et al (2005) Melatonin mitigates mitochondrial malfunction. J Pineal Res 38:1–9

    Article  CAS  PubMed  Google Scholar 

  • Marchetti C, Sidahmed-Adrar N, Collin F et al (2011) Melatonin protects PLPC liposomes and LDL towards radical-induced oxidation. J Pineal Res 51:286–296

    Article  CAS  PubMed  Google Scholar 

  • Marseglia L, D’Angelo G, Manti S et al (2015) Analgesic, anxiolytic and anaesthetic effects of melatonin: new potential uses in pediatrics. Int J Mol Sci 16:1209–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin M, Macias M, Escames G et al (2000) Melatonin-induced increased activity of the respiratory chain complexes I and IV can prevent mitochondrial damage induced by ruthenium red in vivo. J Pineal Res 28:242–248

    Article  CAS  PubMed  Google Scholar 

  • Mehrpour O, Jafarzadeh M, Abdollahi M (2012) A systematic review of aluminium phosphide poisoning. Arh Hig Rada Toksikol 63:61–73

    Article  CAS  PubMed  Google Scholar 

  • Mekhloufi J, Vitrac H, Yous S et al (2007) Quantification of the water/lipid affinity of melatonin and a pinoline derivative in lipid models. J Pineal Res 42:330–337

    Article  CAS  PubMed  Google Scholar 

  • Moghadamnia AA (2012) An update on toxicology of aluminum phosphide. DARU 20(1):25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Momtaz S, Lall N, Hussein A et al (2010) Investigation of the possible biological activities of a poisonous South African plant; Hyaenanche globosa (Euphorbiaceae). ‎Pharmacogn Mag 6:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mostafalou S, Abdollahi M (2017) Pesticides: an update of human exposure and toxicity. Arch Toxicol 91(2):549–599

    Article  CAS  PubMed  Google Scholar 

  • Mostafalou S, Karami-Mohajeri S, Abdollahi M (2013) Environmental and population studies concerning exposure to pesticides in Iran: a comprehensive review. Iran Red Crescent Med J 15:13896

    Article  Google Scholar 

  • Nath NS, Bhattacharya I, Tuck AG, Schlipalius DI, Ebert PR (2011) Mechanisms of phosphine toxicity. J Toxicol 2011:494168. doi:10.1155/2011/494168

    Article  PubMed  PubMed Central  Google Scholar 

  • Özcengiz D, Gunes Y, Ozmete O (2011) Oral melatonin, dexmedetomidine, and midazolam for prevention of postoperative agitation in children. J Anesth 25:184–188

    Article  PubMed  Google Scholar 

  • Paradies G, Paradies V, Ruggiero FM et al (2015) Protective role of melatonin in mitochondrial dysfunction and related disorders. Arch Toxicol 89:923–939

    Article  CAS  PubMed  Google Scholar 

  • Patel V, Upaganlawar A, Zalawadia R et al (2010) Cardioprotective effect of melatonin against isoproterenol induced myocardial infarction in rats: a biochemical, electrocardiographic and histoarchitectural evaluation. Eur J Pharmacol 644:160–168

    Article  CAS  PubMed  Google Scholar 

  • Paulis L, Simko F (2007) Blood pressure modulation and cardiovascular protection by melatonin: potential mechanisms behind. Physiol Res 56:671

    CAS  PubMed  Google Scholar 

  • Pogan L, Bissonnette P, Parent L et al (2002) The effects of melatonin on Ca2+ homeostasis in endothelial cells. J Pineal Res 33:37–47

    Article  CAS  PubMed  Google Scholar 

  • Pourkhalili N, Hosseini A, Nili-Ahmadabadi A et al (2011) Biochemical and cellular evidence of the benefit of a combination of cerium oxide nanoparticles and selenium to diabetic rats. World J Diabetes 2:204–210

    PubMed  PubMed Central  Google Scholar 

  • Radogna F, Cristofanon S, Paternoster L et al (2008) Melatonin antagonizes the intrinsic pathway of apoptosis via mitochondrial targeting of Bcl-2. J Pineal Res 44:316–325

    Article  CAS  PubMed  Google Scholar 

  • Radogna F, Albertini M, De Nicola M et al (2015) Melatonin promotes Bax sequestration to mitochondria reducing cell susceptibility to apoptosis via the lipoxygenase metabolite 5-hydroxyeicosatetraenoic acid. Mitochondrion 21:113–121

    Article  CAS  PubMed  Google Scholar 

  • Ranjbar A, Ghahremani MH, Sharifzadeh M et al (2010) Protection by pentoxifylline of malathion-induced toxic stress and mitochondrial damage in rat brain. Hum Exp Toxicol 29:851–864

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan D-X, Galano A (2014) Melatonin reduces lipid peroxidation and membrane viscosity. Front Physiol 5:377

    Article  PubMed  PubMed Central  Google Scholar 

  • Romero A, Ramos E, Los Ríos C et al (2014) A review of metal-catalyzed molecular damage: protection by melatonin. J Pineal Res 56:343–370

    Article  CAS  PubMed  Google Scholar 

  • Sahna E, Olmez E, Acet A (2002) Effects of physiological and pharmacological concentrations of melatonin on ischemia–reperfusion arrhythmias in rats: can the incidence of sudden cardiac death be reduced? J Pineal Res 32:194–198

    Article  CAS  PubMed  Google Scholar 

  • Shadnia S, Soltaninejad K, Hassanian-Moghaddam H et al (2011) Methemoglobinemia in aluminum phosphide poisoning. Hum Exp Toxicol 30:250–253

    Article  CAS  PubMed  Google Scholar 

  • Shah V, Baxi S, Vyas T (2009) Severe myocardial depression in a patient with aluminium phosphide poisoning: a clinical, electrocardiographical and histopathological correlation. Indian J Crit Care Med 13:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Sherwood S, Hirst J (2006) Investigation of the mechanism of proton translocation by NADH: ubiquinone oxidoreductase (complex I) from bovine heart mitochondria: does the enzyme operate by a Q-cycle mechanism? Biochem J 400:541–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simko F, Paulis L (2007) Melatonin as a potential antihypertensive treatment. J Pineal Res 42:319–322

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Bhalla A, Verma SK et al (2006) Cytochrome-c oxidase inhibition in 26 aluminum phosphide poisoned patients. Clin Toxicol 44:155–158

    Article  CAS  Google Scholar 

  • Solgi R, Baghaei A, Golaghaei A et al (2015) Electrophysiological and molecular mechanisms of protection by iron sucrose against phosphine-induced cardiotoxicity: a time course study. Toxicol Mech Methods 25:249–257

    Article  CAS  PubMed  Google Scholar 

  • Soltaninejad K, Beyranvand MR, Momenzadeh SA et al (2012) Electrocardiographic findings and cardiac manifestations in acute aluminum phosphide poisoning. J Forensic Leg Med 19:291–293

    Article  PubMed  Google Scholar 

  • Tehrani H, Halvaie Z, Shadnia S et al (2013) Protective effects of N-acetylcysteine on aluminum phosphide-induced oxidative stress in acute human poisoning. Clin Toxicol 51:23–28

    Article  CAS  Google Scholar 

  • Venegas C, García JA, Escames G et al (2012) Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. J Pineal Res 52:217–227

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Sun Y, Yi W et al (2014) A review of melatonin as a suitable antioxidant against myocardial ischemia–reperfusion injury and clinical heart diseases. J Pineal Res 57:357–366

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was in part supported by a Grant from TUMS coded 94-04-33-30892. The authors wish to thank INSF.

Author information

Authors and Affiliations

Authors

Contributions

MA gave the idea, AAM, and SNO were advisors; MHA did the study and participated in the literature search and drafted the article; MM participated in drafting and editing the article. MB, AJ, MR, HH, SH AB, and RS helped in performing the experimental part of the study. All authors were involved in data analysis and interpretation. MA supervised whole study. All authors read and approved the final version.

Corresponding author

Correspondence to Mohammad Abdollahi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asghari, M.H., Moloudizargari, M., Baeeri, M. et al. On the mechanisms of melatonin in protection of aluminum phosphide cardiotoxicity. Arch Toxicol 91, 3109–3120 (2017). https://doi.org/10.1007/s00204-017-1998-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-017-1998-6

Keywords

Profiles

  1. Mohammad Abdollahi