Skip to main content
Log in

Counting glycans revisited

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We present an algorithm for counting glycan topologies of order \(n\) that improves on previously described algorithms by a factor \(n\) in both time and space. More generally, we provide such an algorithm for counting rooted or unrooted \(d\)-ary trees with labels or masses assigned to the vertices, and we give a “recipe” to estimate the asymptotic growth of the resulting sequences. We provide constants for the asymptotic growth of \(d\)-ary trees and labeled quaternary trees (glycan topologies). Finally, we show how a classical result from enumeration theory can be used to count glycan structures where edges are labeled by bond types. Our method also improves time bounds for counting alkanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. In this paper, we do not consider the comparatively rare case of monosaccharide which do not have exactly four carbon hydroxy groups.

References

  • Bell JP, Burris SN, Yeats KA (2006) Counting rooted trees: the universal law \(t(n)\sim C\rho ^{-n} n^{-3/2}\). Electron J Combin 13(1): R63, 64 (electronic)

  • Böcker S, Kehr B, Rasche F (2011) Determination of glycan structure from tandem mass spectra. IEEE/ACM Trans Comput Biol Bioinform 8(4):976–986

    Article  Google Scholar 

  • Böcker S, Lipták Zs (2005) Efficient mass decomposition. In: Proccedings of the ACM symposium on applied computing (ACM SAC 2005), ACM Press, Santa Fe, pp 151–157

  • Böcker S, Lipták Zs (2007) A fast and simple algorithm for the money changing problem. Algorithmica 48(4):413–432

    Article  MathSciNet  MATH  Google Scholar 

  • Cayley A (1881) On the analytical forms called trees. Am J Math 4:266–268

    Article  MathSciNet  MATH  Google Scholar 

  • Ethier M, Saba JA, Spearman M, Krokhin O, Butler M, Ens W, Standing KG, Perreault H (2003) Application of the StrOligo algorithm for the automated structure assignment of complex N-linked glycans from glycoproteins using tandem mass spectrometry. Rapid Commun Mass Spectrom 17(24):2713–2720

    Article  Google Scholar 

  • Flajolet P, Sedgewick R (2009) Analytic combinatorics. Cambridge University Press. Available from http://algo.inria.fr/flajolet/Publications/book.pdf

  • Gaucher SP, Morrow J, Leary JA (2000) STAT: a saccharide topology analysis tool used in combination with tandem mass spectrometry. Anal Chem 72(11):2331–2336

    Article  Google Scholar 

  • Goldberg D, Bern MW, Li B, Lebrilla CB (2006) Automatic determination of O-glycan structure from fragmentation spectra. J Proteome Res 5(6):1429–1434

    Article  Google Scholar 

  • Harary F, Palmer EM (1973) Graphical enumeration. Academic Press, New York

    MATH  Google Scholar 

  • Harary F, Robinson RW, Schwenk AJ (1975) Twenty-step algorithm for determining the asymptotic number of trees of various species. J Aust Math Soc Ser A 20(4):483–503

    Article  MathSciNet  MATH  Google Scholar 

  • Henze HR, Blair CM (1931) The number of structurally isomeric alcohols of the methanol series. J Am Chem Soc 53(8):3042–3046

    Article  Google Scholar 

  • Jayo RG, Li J, Chen DD (2013) Capillary electrophoresis mass spectrometry for the characterization of O-acetylated N-glycans from fish serum. Anal Chem 84(20):8756–8762

    Article  Google Scholar 

  • Otter R (1948) The number of trees. Ann Math 49(3):583–599

    Article  MathSciNet  MATH  Google Scholar 

  • Palmisano G, Antonacci D, Larsen MR (2010) Glycoproteomic profile in wine: a ‘sweet’ molecular renaissance. J Proteome Res 9(12):6148–6159

    Article  Google Scholar 

  • Pólya G (1937) Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen. Acta Math 68(1):145–254

    Article  MathSciNet  Google Scholar 

  • Rains EM and Sloane NJA (1999) On Cayley’s enumeration of alkanes (or 4-valent trees). J Integer Seq 2:(electronic)

  • Raman R, Raguram S, Venkataraman G, Paulson JC, Sasisekharan R (2005) Glycomics: an integrated systems approach to structure-function relationships of glycans. Nat Methods 2(11):817–824

    Article  Google Scholar 

  • Trinajstić N, Jeričević Ž, Knop JV, Müller WR, Szymanski K (1983) Computer generation of isomeric structures. Pure Appl Chem 55(2):379–390

    Google Scholar 

  • Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) (2009) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press. Available from http://www.ncbi.nlm.nih.gov/books/NBK1908/

Download references

Acknowledgments

We thank Birte Kehr for preparing Fig. 1. This material is based upon work supported financially by the National Research Foundation of South Africa under grant number 70560.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Böcker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (txt 2 KB)

Supplementary material 2 (groovy 1 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böcker, S., Wagner, S. Counting glycans revisited. J. Math. Biol. 69, 799–816 (2014). https://doi.org/10.1007/s00285-013-0721-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-013-0721-3

Keywords

Mathematics Subject Classification