Skip to main content
Log in

Control of cardiac chronotropic function in patients after heart transplantation: effects of ivabradine and metoprolol succinate on resting heart rate in the denervated heart

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Patients after heart transplantation (HTX) present with sinus tachycardia due to graft denervation. As elevated heart rates negatively affect survival, the aim of this study was to analyze the effects of ivabradine vs metoprolol succinate on heart rate, left ventricular (LV) mass and survival following HTX.

Methods

This observational retrospective single-center study assessed 84 patients continuously receiving either ivabradine (n = 40) or metoprolol succinate (n = 44) within 2 years after HTX. Patients with dual therapy (ivabradine and metoprolol succinate), other beta blockers, amiodarone, or digitalis were excluded. Patient characteristics, post-transplant medication, heart rates, LV mass, and survival were investigated.

Results

Analysis of patient characteristics, immunosuppressive drug regimen, and post-transplant medication showed no significant differences between groups except for ivabradine and metoprolol succinate. Baseline heart rates differed not significantly between patients treated with ivabradine [87.0 beats per minute (bpm)] and metoprolol succinate (86.2 bpm; P = 0.6395). At 2-year follow-up, patients with ivabradine (76.7 bpm) had a significantly lower heart rate compared to baseline (P < 0.0001) and to metoprolol succinate (82.0 bpm; P = 0.0283). LV mass in patients receiving ivabradine was lower at 2-year follow-up compared to baseline (P = 0.0067) and patients receiving metoprolol succinate (P = 0.0179). Patients with ivabradine had a superior 2-year survival after HTX (P = 0.0049).

Conclusion

Treatment with ivabradine in patients within 2 years after HTX significantly reduced post-transplant heart rate and LV mass and was associated with a superior survival in comparison with patients receiving metoprolol succinate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Swedberg K, Komajda M, Böhm M et al (2010) Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet 376(9744):875–885

    Article  CAS  PubMed  Google Scholar 

  2. Böhm M, Swedberg K, Komajda M et al (2010) Heart rate as a risk factor in chronic heart failure (SHIFT): the association between heart rate and outcomes in a randomised placebo-controlled trial. Lancet 376(9744):886–894

    Article  PubMed  Google Scholar 

  3. Custodis F, Roggenbuck U, Lehmann N et al (2016) Resting heart rate is an independent predictor of all-cause mortality in the middle aged general population. Clin Res Cardiol 105(7):601–612

    Article  PubMed  Google Scholar 

  4. Schaeffer BN, Rybczynski M, Sheikhzadeh S et al (2015) Heart rate turbulence and deceleration capacity for risk prediction of serious arrhythmic events in Marfan syndrome. Clin Res Cardiol 104(12):1054–1063

    Article  PubMed  Google Scholar 

  5. Eick C, Duckheim M, Groga-Bada P et al (2017) Point-of-care testing of cardiac autonomic function for risk assessment in patients with suspected acute coronary syndromes. Clin Res Cardiol 106(9):686–694

  6. Zhang R, Haverich A, Strüber M, Simon A, Pichlmaier M, Bara C (2008) Effects of ivabradine on allograft function and exercise performance in heart transplant recipients with permanent sinus tachycardia. Clin Res Cardiol 97(11):811–819

    Article  CAS  PubMed  Google Scholar 

  7. Zhang R, Bobylev D, Stiefel P, Haverich A, Bara C (2012) Lasting reduction of heart transplant tachycardia with ivabradine is effective and well tolerated: results of 48-month study. Clin Res Cardiol 101(8):631–636

    Article  CAS  PubMed  Google Scholar 

  8. Doesch AO, Celik S, Ehlermann P et al (2007) Heart rate reduction after heart transplantation with beta-blocker versus the selective If channel antagonist ivabradine. Transplantation 84(8):988–996

    Article  CAS  PubMed  Google Scholar 

  9. Doesch AO, Ammon K, Konstandin M et al (2009) Heart rate reduction for 12 months with ivabradine reduces left ventricular mass in cardiac allograft recipients. Transplantation 88(6):835–841

    Article  PubMed  Google Scholar 

  10. Doesch AO, Mueller S, Erbel C et al (2013) Heart rate reduction for 36 months with ivabradine reduces left ventricular mass in cardiac allograft recipients: a long-term follow-up study. Drug Des Dev Ther 7:1323–1328

    Article  Google Scholar 

  11. Schüler S, Thomas D, Thebken M, Frei U, Wagner T, Warnecke H, Hetzer R (1987) Endocrine response to exercise in cardiac transplant patients. Transplant Proc 19(1 Pt 3):2506–2509

    PubMed  Google Scholar 

  12. Beckers F, Ramaekers D, Speijer G et al (2004) Different evolutions in heart rate variability after heart transplantation: 10-year follow-up. Transplantation 78(10):1523–1531

    Article  PubMed  Google Scholar 

  13. Halpert I, Goldberg AD, Levine AB, Levine TB, Kornberg R, Kelly C, Lesch M (1996) Reinnervation of the transplanted human heart as evidenced from heart rate variability studies. Am J Cardiol 77(2):180–183

    Article  CAS  PubMed  Google Scholar 

  14. Koglin J, Gross T, Uberfuhr P, von Scheidt W (1997) Time-dependent decrease of presynaptic inotropic supersensitivity: physiological evidence of sympathetic reinnervation after heart transplantation. J Heart Lung Transplant 16(6):621–628

    CAS  PubMed  Google Scholar 

  15. Schwaiblmair M, von Scheidt W, Uberfuhr P, Ziegler S, Schwaiger M, Reichart B, Vogelmeier C (1999) Functional significance of cardiac reinnervation in heart transplant recipients. J Heart Lung Transplant 18(9):838–845

    Article  CAS  PubMed  Google Scholar 

  16. Bengel FM, Ueberfuhr P, Schiepel N, Nekolla SG, Reichart B, Schwaiger M (2001) Effect of sympathetic reinnervation on cardiac performance after heart transplantation. N Engl J Med 345(10):731–738

    Article  CAS  PubMed  Google Scholar 

  17. Scott CD, McComb JM, Dark JH (1993) Heart rate and late mortality in cardiac transplant recipients. Eur Heart J 14(4):530–533

    Article  CAS  PubMed  Google Scholar 

  18. Dobre D, Borer JS, Fox K et al (2014) Heart rate: a prognostic factor and therapeutic target in chronic heart failure. The distinct roles of drugs with heart rate-lowering properties. Eur J Heart Fail 16(1):76–85

    Article  CAS  PubMed  Google Scholar 

  19. Li J, Franke J, Pribe-Wolferts R et al (2015) Effects of β-blocker therapy on electrocardiographic and echocardiographic characteristics of left ventricular noncompaction. Clin Res Cardiol 104(3):241–249

    Article  CAS  PubMed  Google Scholar 

  20. Tardif JC, Ford I, Tendera M, Bourassa MG, Fox K, INITIATIVE Investigators (2005) Efficacy of ivabradine, a new selective I(f) inhibitor, compared with atenolol in patients with chronic stable angina. Eur Heart J 26(23):2529–2536

    Article  CAS  PubMed  Google Scholar 

  21. Miró Ò, Müller C, Martín-Sánchez FJ et al (2016) BETAWIN-AHF study: effect of beta-blocker withdrawal during acute decompensation in patients with chronic heart failure. Clin Res Cardiol 105(12):1021–1029

    Article  PubMed  Google Scholar 

  22. DiFrancesco D (1986) Characterization of single pacemaker channels in cardiac sino-atrial node cells. Nature 324(6096):470–473

    Article  CAS  PubMed  Google Scholar 

  23. DiFrancesco D (1991) The contribution of the ‘pacemaker’ current (if) to generation of spontaneous activity in rabbit sino-atrial node myocytes. J Physiol 434:23–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. DiFrancesco D, Camm JA (2004) Heart rate lowering by specific and selective I(f) current inhibition with ivabradine: a new therapeutic perspective in cardiovascular disease. Drugs 64(16):1757–1765

    Article  CAS  PubMed  Google Scholar 

  25. Thollon C, Bedut S, Villeneuve N et al (2007) Use-dependent inhibition of hHCN4 by ivabradine and relationship with reduction in pacemaker activity. Br J Pharmacol 150(1):37–46

    Article  CAS  PubMed  Google Scholar 

  26. Fischer-Rasokat U, Honold J, Lochmann D et al (2016) β-Blockers and ivabradine differentially affect cardiopulmonary function and left ventricular filling index. Clin Res Cardiol 105(6):527–534

    Article  CAS  PubMed  Google Scholar 

  27. Mulder P, Barbier S, Chagraoui A et al (2004) Long-term heart rate reduction induced by the selective I(f) current inhibitor ivabradine improves left ventricular function and intrinsic myocardial structure in congestive heart failure. Circulation 109(13):1674–1679

    Article  CAS  PubMed  Google Scholar 

  28. Monnet X, Colin P, Ghaleh B, Hittinger L, Giudicelli JF, Berdeaux A (2004) Heart rate reduction during exercise-induced myocardial ischaemia and stunning. Eur Heart J 25(7):579–586

    Article  PubMed  Google Scholar 

  29. Rivinius R, Helmschrott M, Ruhparwar A et al (2017) Comparison of post-transplant outcomes in patients with no, acute or chronic amiodarone use before heart transplantation. Drug Des Dev Ther 11:1827–1837

    Article  Google Scholar 

  30. Rivinius R, Helmschrott M, Ruhparwar A et al (2017) The influence of surgical technique on early posttransplant atrial fibrillation—comparison of biatrial, bicaval, and total orthotopic heart transplantation. Ther Clin Risk Manag 13:287–297

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rivinius R, Helmschrott M, Ruhparwar A et al (2016) Long-term use of amiodarone before heart transplantation reduces significantly early post-transplant atrial fibrillation and is not associated with increased mortality after heart transplantation. Drug Des Dev Ther 10:677–686

    Google Scholar 

  32. Rivinius R, Helmschrott M, Ruhparwar A et al (2014) Analysis of malignancies in patients after heart transplantation with subsequent immunosuppressive therapy. Drug Des Dev Ther 9:93–102

    Google Scholar 

  33. Helmschrott M, Rivinius R, Bruckner T, Katus HA, Doesch AO (2017) Renal function in heart transplant patients after switch to combined mammalian target of rapamycin inhibitor and calcineurin inhibitor therapy. Drug Des Dev Ther 11:1673–1680

    Article  Google Scholar 

  34. Helmschrott M, Rivinius R, Ruhparwar A et al (2015) Advantageous effects of immunosuppression with tacrolimus in comparison with cyclosporine A regarding renal function in patients after heart transplantation. Drug Des Dev Ther 9:1217–1224

    Google Scholar 

  35. Doenst T, Strüning C, Moschovas A et al (2016) Cardiac surgery 2015 reviewed. Clin Res Cardiol 105(10):801–814

    Article  PubMed  Google Scholar 

  36. Doenst T, Essa Y, Jacoub K et al (2017) Cardiac surgery 2016 reviewed. Clin Res Cardiol 106(11):851–867

  37. Reed RM, Netzer G, Hunsicker L, Mitchell BD, Rajagopal K, Scharf S, Eberlein M (2014) Cardiac size and sex-matching in heart transplantation: size matters in matters of sex and the heart. JACC Heart Fail 2(1):73–83

    Article  PubMed  PubMed Central  Google Scholar 

  38. Boudoulas H, Rittgers SE, Lewis RP, Leier CV, Weissler AM (1979) Changes in diastolic time with various pharmacologic agents: implication for myocardial perfusion. Circulation 60(1):164–169

    Article  CAS  PubMed  Google Scholar 

  39. Guth BD, Heusch G, Seitelberger R, Ross J Jr (1987) Elimination of exercise-induced regional myocardial dysfunction by a bradycardiac agent in dogs with chronic coronary stenosis. Circulation 75(3):661–669

    Article  CAS  PubMed  Google Scholar 

  40. Kjekshus J (1987) Heart rate reduction—a mechanism of benefit? Eur Heart J 8(Suppl L):115–122

    Article  PubMed  Google Scholar 

  41. Kapadia SR (1999) Cytokines and heart failure. Cardiol Rev 7(4):196–206

    Article  CAS  PubMed  Google Scholar 

  42. Ide T, Tsutsui H, Kinugawa S et al (2000) Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. Circ Res 86(2):152–157

    Article  CAS  PubMed  Google Scholar 

  43. Schnoor M, Schäfer T, Lühmann D, Sievers HH (2007) Bicaval versus standard technique in orthotopic heart transplantation: a systematic review and meta-analysis. J Thorac Cardiovasc Surg 134(5):1322–1331

    Article  PubMed  Google Scholar 

  44. Locali RF, Matsuoka PK, Cherbo T, Gabriel EA, Buffolo E (2010) Should biatrial heart transplantation still be performed?: a meta-analysis. Arq Bras Cardiol 94(6):829–840

    Article  PubMed  Google Scholar 

  45. Grande AM, Rinaldi M, D’Armini AM et al (2000) Orthotopic heart transplantation: standard versus bicaval technique. Am J Cardiol 85(11):1329–1333

    Article  CAS  PubMed  Google Scholar 

  46. Weiss ES, Nwakanma LU, Russell SB, Conte JV, Shah AS (2008) Outcomes in bicaval versus biatrial techniques in heart transplantation: an analysis of the UNOS database. J Heart Lung Transplant 27(2):178–183

    Article  PubMed  Google Scholar 

  47. Dell’Aquila AM, Mastrobuoni S, Bastarrika G et al (2012) Bicaval versus standard technique in orthotopic heart transplant: assessment of atrial performance at magnetic resonance and transthoracic echocardiography. Interact Cardiovasc Thorac Surg 14(4):457–462

    Article  PubMed  PubMed Central  Google Scholar 

  48. Konertz W, Weyand M, Deiwick M, Scheld HH (1992) Is pretransplant antiarrhythmic drug therapy a risk factor? Transplant Proc 24(6):2677–2678

    CAS  PubMed  Google Scholar 

  49. Blomberg PJ, Feingold AD, Denofrio D et al (2004) Comparison of survival and other complications after heart transplantation in patients taking amiodarone before surgery versus those not taking amiodarone. Am J Cardiol 93(3):379–381

    Article  CAS  PubMed  Google Scholar 

  50. Yerebakan H, Naka Y, Sorabella R et al (2014) Amiodarone treatment prior to heart transplantation is associated with acute graft dysfunction and early mortality: a propensity-matched comparison. J Heart Lung Transplant 33(4):S105

    Article  Google Scholar 

  51. Macdonald P, Hackworthy R, Keogh A, Sivathasan C, Chang V, Spratt P (1991) The effect of chronic amiodarone therapy before transplantation on early cardiac allograft function. J Heart Lung Transplant 10:743–749

    CAS  PubMed  Google Scholar 

  52. Chelimsky-Fallick C, Middlekauff HR, Stevenson WG et al (1992) Amiodarone therapy does not compromise subsequent heart transplantation. J Am Coll Cardiol 20(7):1556–1561

    Article  CAS  PubMed  Google Scholar 

  53. Sanchez-Lazaro IJ, Almenar L, Martinez-Dolz L et al (2006) Does amiodarone influence early mortality in heart transplantation? Transplant Proc 38(8):2537–2538

    Article  CAS  PubMed  Google Scholar 

  54. Kröller-Schön S, Schulz E, Wenzel P et al (2011) Differential effects of heart rate reduction with ivabradine in two models of endothelial dysfunction and oxidative stress. Basic Res Cardiol 106(6):1147–1158

    Article  PubMed  Google Scholar 

  55. Mangiacapra F, Colaiori I, Ricottini E et al (2017) Heart rate reduction by IVabradine for improvement of ENDothELial function in patients with coronary artery disease: the RIVENDEL study. Clin Res Cardiol 106(1):69–75

    Article  CAS  PubMed  Google Scholar 

  56. Sabbah HN, Gupta RC, Kohli S, Wang M, Zhang K, Sharad R (2014) Heart rate reduction with ivabradine improves left ventricular function and reverses multiple pathological maladaptations in dogs with chronic heart failure. ESC Heart Fail 1:94–102

    Article  PubMed  Google Scholar 

  57. Fröhlich H, Torres L, Täger T et al (2017) Bisoprolol compared with carvedilol and metoprolol succinate in the treatment of patients with chronic heart failure. Clin Res Cardiol 106(9):711–721

Download references

Acknowledgements

This study was supported in part by research grants from the Faculty of Medicine, University of Heidelberg (Physician Scientist Scholarship to Ann-Kathrin Rahm). We thank Viola Deneke and Berthold Klein for their assistance and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas O. Doesch.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivinius, R., Helmschrott, M., Ruhparwar, A. et al. Control of cardiac chronotropic function in patients after heart transplantation: effects of ivabradine and metoprolol succinate on resting heart rate in the denervated heart. Clin Res Cardiol 107, 138–147 (2018). https://doi.org/10.1007/s00392-017-1165-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-017-1165-3

Keywords