Skip to main content
Log in

Aspartic acid racemisation in purified elastin from arteries as basis for age estimation

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Aspartic acid racemisation (AAR) results in an age-dependent accumulation of d-aspartic acid in durable human proteins and can be used as a basis for age estimation. Routinely, age estimation based on AAR is performed by analysis of dentine. However, in forensic practise, teeth are not always available. Non-dental tissues for age estimation may be suitable for age estimation based on AAR if they contain durable proteins that can be purified and analysed. Elastin is such a durable protein. To clarify if purified elastin from arteries is a suitable sample for biochemical age estimation, AAR was determined in purified elastin from arteries from individuals of known age (n = 68 individuals, including n = 15 putrefied corpses), considering the influence of different stages of atherosclerosis and putrefaction on the AAR values. AAR was found to increase with age. The relationship between AAR and age was good enough to serve as basis for age estimation, but worse than known from dentinal proteins. Intravital and post-mortem degradation of elastin may have a moderate effect on the AAR values. Age estimation based on AAR in purified elastin from arteries may be a valuable additional tool in the identification of unidentified cadavers, especially in cases where other methods cannot be applied (e.g., no available teeth and body parts).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. In proteins, the so-called racemisation of aspartic acid involves both aspargine and aspartic acid that decompose via a succimide ring to the same four residues, namely l-aspartyl, d-aspartyl, l-isoaspartyl, and d-isoaspartyl residues, all of which are in chemical equilibrium via the succimide ring (for overview, see [24]). Asparingyl, aspartyl, isoaspartyl, and succinimidyl residues are all converted to free aspartic acid during acid hydrolysis, a preparative step in chromatographic amino acid analysis for biochemical age estimation.

References

  1. Daamen WF, Hafmans T, Veerkamp JH, van Kuppevelt TH (2001) Comparison of five procedures for the purification of insoluble elastin. Biomaterials 22:1997–2005

    Article  CAS  PubMed  Google Scholar 

  2. Fu S-J, Fan C-C, Song H-W, Wei F-Q (1995) Age estimation using a modified HPLC determination of ratio of aspartic acid in dentin. Forensic Sci Int 73:35–40

    Article  CAS  PubMed  Google Scholar 

  3. Heems D, Luck G, Fradeau C, Vérette E (1998) Fully automated precolumn derivatization, online dialysis and high-performance liquid chromatography analysis of amino acids in food, beverages and foodstuff. J Chromatogr A 789:9–17

    Article  Google Scholar 

  4. Holman RL, Brown BW, Gore I et al (1960) An index for the evaluation of arteriosclerotic lesions in the abdominal aorta. Circulation 27:1137–1143

    Google Scholar 

  5. Kaufman DS, Manley WF (1998) A new procedure for determining DL amino acid ratios in fossils using reverse phase liquid chromatography. Quat Geochronol 17:987–1000

    Google Scholar 

  6. Landa MI, Garamendi PM, Botella MC, Alemán I (2009) Application of the method of Kvaal et al. to digital orthopantomograms. Int J Legal Med 123:123–128

    Article  CAS  PubMed  Google Scholar 

  7. Miller EJ (1984) Chemistry of the collagens and their distribution. In: Piez KA, Reddi AH (eds) Extracellular matrix proteins. Elsevier, New York, Amsterdam, Oxford, pp 40–81

    Google Scholar 

  8. Mörnstad H, Pfeiffer H, Teivens A (1994) Estimation of dental age using HPLC technique to determine the degree of aspartic acid racemization. J Forensic Sci 39:1425–1431

    PubMed  Google Scholar 

  9. Ogino T, Ogino H, Nagy B (1985) Application of aspartic acid racemization to forensic odontology: post mortem designation of age of death. Forensic Sci Int 29:259–267

    Article  CAS  PubMed  Google Scholar 

  10. Ohtani S (1995) Estimation of age from the teeth of unidentified corpses using the amino acid racemization method with reference to actual cases. Am J Forensic Med Pathol 16:238–242

    Article  CAS  PubMed  Google Scholar 

  11. Ohtani S (1995) Estimation of age from dentin by using the racemization reaction of aspartic acid. Am J Forensic Med Pathol 16:158–161

    Article  CAS  PubMed  Google Scholar 

  12. Ohtani S, Yamamoto K (1987) Age estimation using the racemisation of aspartic acid in human dentin. Nippon Hoigaku Zasshi 41:181–190

    CAS  PubMed  Google Scholar 

  13. Paewinsky E, Pfeiffer H, Brinkmann B (2005) Quantification of secondary dentine formation from orthopantomograms—a contribution to forensic age estimation in adults. Int J Legal Med 119:27–30

    Article  CAS  PubMed  Google Scholar 

  14. Parks WC (1997) Posttranscriptional regulation of lung elastin production. Am J Respir Cell Mol Biol 17:1–2

    CAS  PubMed  Google Scholar 

  15. Pfeiffer H, Mörnstad H, Teivens A (1995) Estimation of chronological age using the aspartic-acid racemization method. 1. On human rib cartilage. Int J Legal Med 108:19–23

    Article  CAS  PubMed  Google Scholar 

  16. Pfeiffer H, Mörnstad H, Teivens A (1995) Estimation of chronological age using the aspartic-acid racemization method. 2. On human cortical bone. Int J Legal Med 108:24–26

    Article  CAS  PubMed  Google Scholar 

  17. Powell JT, Vine N, Crossman M (1992) On the accumulation of d-aspartate in elastin and other proteins of the aging aorta. Atherosclerosis 97:201–208

    Article  CAS  PubMed  Google Scholar 

  18. Prockop DJ, Kivirikko KI, Tuderman L, Guzman NA (1979) Biosynthesis of collagen and its disorders. N Engl J Med 301(13–23):77–85

    Article  CAS  PubMed  Google Scholar 

  19. Ritz S, Schütz HW (1993) Aspartic acid racemization in intervertebral discs as an aid to post mortem estimation of age at death. J Forensic Sci 38:633–640

    CAS  PubMed  Google Scholar 

  20. Ritz S, Schütz H-W, Schwarzer B (1990) The extent of aspartic acid racemization in dentin: a possible method for a more accurate determination of age at death? Z Rechtsmed 103:457–462

    Article  CAS  PubMed  Google Scholar 

  21. Ritz S, Schütz HW, Peper C (1993) Postmortem estimation of age at death based on aspartic acid racemization in dentin: its applicability for root dentin. Int J Legal Med 105:289–293

    Article  CAS  PubMed  Google Scholar 

  22. Ritz S, Stock R, Schütz HW, Kaatsch H-J (1995) Age estimation in biopsy specimens of dentin. Int J Legal Med 108:135–139

    Article  CAS  PubMed  Google Scholar 

  23. Ritz-Timme S (1999) Lebensaltersbestimmung aufgrund des Razemisierungsgrades von Asparaginsäure. Grundlagen, Methodik, Möglichkeiten, Grenzen, Anwendungsbereiche. In: Berg S, Brinkmann B (eds) Arbeitsmethoden der medizinischen und naturwissenschaftlichen Kriminalistik, Band 23. Lübeck, Schmidt-Römhild, pp 15–41

    Google Scholar 

  24. Ritz-Timme S, Collins MJ (2002) Racemization of aspartic acid in human proteins. Age Res Rev 1:43–59

    Article  CAS  Google Scholar 

  25. Ritz-Timme S, Cattaneo C, Collins M, Waite ER, Schütz HW, Kaatsch H-J, Borrman HIM (2000) Age estimation: the state of the art in relation to the specific demands of forensic practise. Int J Legal Med 113:129–136

    Article  CAS  PubMed  Google Scholar 

  26. Ritz-Timme S, Rochholz G, Schütz HW, Collins MJ, Waite ER, Cattaneo C, Kaatsch HJ (2000) Quality assurance in age estimation based on aspartic acid racemization. Int J Legal Med 114:83–86

    Article  CAS  PubMed  Google Scholar 

  27. Ritz-Timme S, Laumeier I, Collins M (2003) Age estimation on aspartic acid racemization in elastin from the yellow ligaments. Int J Legal Med 117:96–101

    CAS  PubMed  Google Scholar 

  28. Ritz-Timme S, Laumeier I, Collins M (2003) Aspartic acid racemization: evidence for marked longevitiy of elastin in human skin. Br J Dermatol 149:951–959

    Article  CAS  PubMed  Google Scholar 

  29. Rösing FW, Kvaal SI (1998) Dental age in adults. A review of estimation methods. In: Rösing FW, Kvaal SI, Alt KW, Rösing FW, Teschler-Nicola M (eds) Dental anthropology. Fundamentals, limits, and prospects Springer, Wien New York, pp 443–469

    Google Scholar 

  30. Rucker RB, Dubick MA (1984) Elastin metabolism and chemistry: potential roles in lung development and structure. Env Hlth Pers 55:179–191

    Article  CAS  Google Scholar 

  31. Schmeling A, Reisinger W, Loreck D, Vendura K, Markus W, Geserick G (2000) Effects of ethnicity on skeletal maturation: consequences for forensic age estimations. Int J Legal Med 113:253–258

    Article  CAS  PubMed  Google Scholar 

  32. Schmeling A, Schulz R, Danner B, Rösing FW (2006) The impact of economic progress and modernization in medicine on the ossification of hand and wrist. Int J Legal Med 120:121–126

    Article  PubMed  Google Scholar 

  33. Schmeling A, Grundmann C, Fuhrmann A, Kaatsch H-J, Knell B, Ramsthaler F, Reisinger W, Riepert T, Ritz-Timme S, Rösing FW, Rötzscher K, Geserick G (2008) Criteria for age estimatin in living individuals. Int J Legal Med 122:457–460

    Article  CAS  PubMed  Google Scholar 

  34. Shapiro SD, Endicott SK, Province MA, Pierce JA, Campbell EJ (1991) Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of d-aspartate and nuclear weapons-related radiocarbon. J Clin Invest 87:1828–1834

    Article  CAS  PubMed  Google Scholar 

  35. Zhang M, Pierce RA, Wachi H, Mecham RP, Parks WC (1999) An open reading frame element mediates posttranscriptional regulation of tropoelastin and responsiveness to transforming growth factor β1. Mol Cell Biol 19:7314–7326

    CAS  PubMed  Google Scholar 

  36. Zar JH (1984) Biostatistical analysis. Prentice Hall, Englewood Cliffs, pp 276–277

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Dobberstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobberstein, R.C., Tung, SM. & Ritz-Timme, S. Aspartic acid racemisation in purified elastin from arteries as basis for age estimation. Int J Legal Med 124, 269–275 (2010). https://doi.org/10.1007/s00414-009-0392-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-009-0392-1

Keywords