Skip to main content
Log in

The Baia–Fondi di Baia eruption at Campi Flegrei: stratigraphy and dynamics of a multi-stage caldera reactivation event

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The Baia–Fondi di Baia eruption is one of the sporadic events that have occurred in the western sector of the Campi Flegrei caldera. It dates back to 9525–9696 bp and opened Epoch 2 of the caldera activity after a 1000-year-long period of quiescence. Although relatively small in terms of erupted volume with respect to most of the events of the past 15 ka, the Baia–Fondi di Baia eruption was characterized by a complex series of events, which have led to different interpretations in the literature. We present a detailed stratigraphic study of 40 outcrops in a sector of about 90 km2, coupled with sedimentological (grain size, componentry), physical (density, vesicularity), textural, and compositional analyses of the erupted deposits. Based on these data, we interpret the stratigraphic succession as being related to two distinct eruptive episodes (Baia and Fondi di Baia). These were separated by a short time interval, and each was characterized by different eruptive phases. The Baia eruptive episode started in a shallow-water environment with an explosive vent-opening phase that formed a breccia deposit (Unit I), rapidly followed by alternating fallout activity and dense, pyroclastic density current deposits generation (Unit II). Sedimentological features and pumice textural analyses suggest that deposition of Unit II coincided with the intensity peak of the eruption, with the fallout deposit being characterized by a volume of 0.06 ± 0.008 km3 (corresponding to a total erupted mass of 4.06 ± 0.5 × 1010 kg), a column height of 17 km, and a corresponding mass flow rate of 1.8 × 107 kg s−1. The associated tephra also shows the highest vesicularity (up to 81 vol.%) the highest vesicle number density (1.01 × 108 cm−3) and decompression rate (0.69 MPa s−1). This peak phase waned to turbulent, surge-like activity possibly associated with Vulcanian explosions and characterized by progressively lower intensity, as shown by density/vesicularity and textural properties of the erupted juvenile material (Unit III). This first eruptive episode was followed by a short quiescence, interrupted by the onset of a second eruptive episode (Fondi di Baia) whose vent opening deposited a breccia bed (Unit IV) which at some key outcrops directly overlies the fallout deposit of Unit II. The final phase of the Fondi di Baia episode strongly resembles Unit II, although sedimentological (presence of obsidian clasts which are absent in the Baia deposits) and textural (lower vesicularity, vesicle number density, and decompression rate values) features, together with a more limited dispersal, suggest that this phase of the eruption had a lower intensity. The large range of groundmass glass compositions, associated with variable proportions of highly (phonolitic–trachytic) and mildly (tephriphonolitic–latitic) evolved end-members in the erupted products, also suggests that these eruptive episodes were fed by at least two different magma batches that interacted during the different phases, with an increase of tephriphonolitic–latitic magma occurring during the Fondi di Baia stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arienzo I, Moretti R, Civetta L, Orsi G, Papale P (2010) The feeding system of Agnano-Monte Spina eruption (Campi Flegrei, Italy): dragging the past into the present activity and future scenarios. Chem Geol 270(1–4):135–147

    Article  Google Scholar 

  • Armienti P, Barberi F, Bizouard H, Clocchiatti R, Innocenti F, Metrich N, Rosi M, Sbrana A (1983) The Phlegraean fields: magma evolution within a shallow chamber. J Volcanol Geotherm Res 17:289–311

    Article  Google Scholar 

  • Barberi F, Corrado G, Innocenti F, Luongo G (1984) Phlegrean fields 1982–1984: brief chronicle of a volcano emergency in a densely populated area. Bull Volcanol 47(2):175–185

    Article  Google Scholar 

  • Barberi F, Carapezza M, Innocenti F, Luongo G, Santacroce R (1989) The problem of volcanic unrest: the Phlegrean fields case history. Atti Conv Lincei 80:387–405

    Google Scholar 

  • Bevilacqua A, Isaia R, Neri A, Vitale S, Aspinall WP, Bisson M, Flandoli F, Baxter PJ, Bertagnini A, Esposti Ongaro T, Iannuzzi E, Pistolesi M, Rosi M (2015) Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: 1. Vent opening maps. J Geophys Res Solid Earth 120:2309–2329

    Article  Google Scholar 

  • Bonadonna C, Costa A (2013) Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function. Bull Volcanol 75(8):1–19. doi:10.1007/s00445-013-0742-1

    Article  Google Scholar 

  • Bonadonna C, Houghton BF (2005) Total grainsize distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456

    Article  Google Scholar 

  • Bonadonna C, Cioni R, Pistolesi M, Connor CB, Scollo S, Pioli M, Rosi M (2013) Determination of the largest clast sizes of tephra deposits for the characterization of explosive eruptions: a study of the IAVCEI commission on tephra hazard modelling. Bull Volcanol 75(1):1–15. doi:10.1007/s00445-012-0680-3

    Article  Google Scholar 

  • Bonadonna C, Cioni R, Pistolesi M, Elissondo M, Baumann V (2015) Sedimentation of long-lasting wind-affected volcanic plumes: the example of the 2011 rhyolitic Cordón Caulle eruption, Chile. Bull Volcanol 77(13):1–19. doi:10.1007/s00445-015-0900-8

    Google Scholar 

  • Büttner R, Dellino P, Zimanowski B (1999) Identifying magma–water interaction from the surface features of ash particles. Nature 401:688–690

    Article  Google Scholar 

  • Carey SN, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125

    Article  Google Scholar 

  • Chiodini G, Caliro S, De Martino P, Avino R, Gherardi F (2012) Early signals of new volcanic unrest at Campi Flegrei caldera? Insights from geochemical data and physical simulations. Geology 40:943–946

    Article  Google Scholar 

  • Chiodini G, Vandemeulebrouck J, Caliro S, D’Auria L, De Martino P, Mangiacapra A, Petrillo Z (2015) Evidence of thermal-driven processes triggering the 2005–2014 unrest at Campi Flegrei caldera. Earth Planet Sci Lett 414:58–67

    Article  Google Scholar 

  • Chiodini G, Paonita A, Aiuppa A, Costa A, Caliro S, De Martino P, Acocella V, Vandemeulebrouck J (2016) Magmas near the critical degassing pressure drive volcanic unrest towards a critical state. Nature Comm 7:13712. doi:10.1038/ncomms13712

    Article  Google Scholar 

  • Cioni R, Pistolesi M, Bertagnini A, Bonadonna C, Hoskuldsson A, Scateni B (2014) Insights into the dynamics and evolution of the 2010 Eyjafjallajökull summit eruption (Iceland) provided by volcanic ash textures. Earth Planet Sci Lett 394:111–123. doi:10.1016/j.epsl.2014.02.051

    Article  Google Scholar 

  • Civetta L, Orsi G, Pappalardo L, Fisher RV, Heiken G, Ort M (1997) Geochemical zoning, mingling, eruptive dynamics and depositional processes—the Campanian ignimbrite, Campi Flegrei caldera, Italy. J Volcanol Geotherm Res 75:183–219

    Article  Google Scholar 

  • Costa A, Pioli L, Bonadonna C (2016) Assessing tephra total grain-size distribution: insights from field data analysis. Earth Planet Sci Lett 443:90–107

    Article  Google Scholar 

  • Crandell DR (1989) Gigantic debris avalanche of Pleistocene age from ancestral Mount Shasta volcano, California and debris-avalanche hazard zonation. USGS Bull 1861

  • D’Antonio M, Civetta L, Orsi G, Pappalardo L, Piochi M, Carandente A, De Vita S, Di Vito MA, Isaia R, Southon J (1999) The present state of the magmatic system of the Campi Flegrei caldera based on the reconstruction of its behaviour in the past 12 ka. J Volcanol Geotherm Res 91:247–268

    Article  Google Scholar 

  • D’Oriano C, Poggianti E, Bertagnini A, Cioni R, Landi P, Polacci M, Rosi M (2005) Changes in eruptive style during the A.D. 1538 Monte Nuovo eruption (Phlegrean fields, Italy): the role of syn-eruptive crystallization. Bull Volcanol 67:601–621

    Article  Google Scholar 

  • De Vita S, Orsi G, Civetta L, Carandente A, D’Antonio M, Di Cesare T, Di Vito M, Fisher RV, Isaia R, Marotta E, Ort M, Pappalardo L, Piochi M, Southon J (1999) The Agnano-Monte Spina eruption (4.1 ka) in the resurgent, nested Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91:269–301

    Article  Google Scholar 

  • Deino AL, Orsi G, De Vita S, Piochi M (2004) The age of the Neapolitan yellow tuff caldera-forming eruption (Campi Flegrei caldera—Italy) assessed by 40Ar/39Ar dating method. J Volcanol Geotherm Res 133:157–170

    Article  Google Scholar 

  • Di Renzo V, Arienzo I, Civetta L, D’Antonio M, Tonarini S, Di Vito MA, Orsi G (2011) The magmatic feeding system of the Campi Flegrei caldera: architecture and temporal evolution. Chem Geol 281:227–241

    Article  Google Scholar 

  • Di Vito MA, Isaia R, Orsi G, Southon J, de Vita S, D’Antonio M, Pappalardo L, Piochi M (1999) Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). J Volcanol and Geotherm Res 91:221–246

    Article  Google Scholar 

  • Di Vito MA, Arienzo I, Briar G, Civetta L, D’Antonio M, Di Renzo V, Orsi G (2010) The Averno 2 fissure eruption: a recent small-size explosive event at the Campi Flegrei caldera (Italy). Bull Volcanol 73:295–320

    Article  Google Scholar 

  • D'Oriano C, Cioni R, Bertagnini A, Andronico D, Cole PD (2011) Dynamics of ash-dominated eruptions at Vesuvius: the post-512 AD AS1a event. Bull Volcanol 73(6):699–715. doi:10.1007/s00445-010-0432-1

    Article  Google Scholar 

  • Durant AJ, Rose WI, Sarna-Wojcicki AM, Carey S, Volentik ACM (2009) Hydrometeor-enhanced tephra sedimentation: constraints from the 18 May 1980 eruption of Mount St. Helens. J Geophys Res 114(B3):B03204. doi:10.1029/2008JB005756

    Article  Google Scholar 

  • Fierstein J, Nathenson M (1992) Another look at the calculation of tephra volumes. Bull Volcanol 54:156–167

    Article  Google Scholar 

  • Fourmentraux C, Métrich N, Bertagnini A, Rosi M (2012) Crystal fractionation, magma step ascent, and syn-eruptive mingling: the Averno 2 eruption (Phlegraean fields, Italy). Contrib Mineral Petrol 163:1121–1137

    Article  Google Scholar 

  • Freda C, Baker DR, Romano C, Scarlato P (2003) Water diffusion in natural potassic melts. Geol Soc London Spec Publ 213:53–62

    Article  Google Scholar 

  • Giaccio B, Hajdas I, Isaia R, Deino A, Nomade S (2017) High-precision 14C and 40Ar/39 Ar dating of the Campanian ignimbrite (Y-5) reconciles the time-scales of climatic-cultural processes at 40 ka. Sci Rep 7:45940

    Article  Google Scholar 

  • Guidoboni E, Ciuccarelli C (2011) The Campi Flegrei caldera: historical revision and new data on seismic crises, bradyseisms, the Monte Nuovo eruption and ensuing earthquakes (twelfth century 1582 AD). Bull Volcanol 73:655. doi:10.1007/s00445-010-0430-3

    Article  Google Scholar 

  • Heiken G, Wohletz KH (1985) Volcanic ash. University of California Press, Berkeley, 245 pp

    Google Scholar 

  • Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462

    Article  Google Scholar 

  • Inman DL (1952) Measures for describing the size distribution of sediments. J Sediment Petrol 22:125–145

    Google Scholar 

  • Isaia R, Marianelli P, Sbrana A (2009) Caldera unrest prior to intense volcanism in Campi Flegrei (Italy) at 4.0 ka B.P.: implications for caldera dynamics and future eruptive scenarios. Geoph Res Lett 36:L21303

    Article  Google Scholar 

  • Kokelaar P (1986) Magma–water interactions in subaqueous and emergent basaltic. Bull Volcanol 48:275–289

    Article  Google Scholar 

  • Lange RA, Carmichael ISE (1987) Densities of Na2O-K2O-MgO-MgO-FeO-Fe2O3-Al3O3-TiO2-SiO2 liquids: new measurements and derived partial molar properties. Geochim Cosmochim Acta 51:2931–2946. doi:10.1016/0016-7037(87)90368-1

    Article  Google Scholar 

  • Le Maitre RW (1989) In: Bateman P, Dudek A, Keller J, Lameyr J, Le Bas MJ, Sabine PJ, Schmid R, Sørensen H, Streckeisen A, Woolley AR, Zanettin B (eds) A classification of igneous rocks and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the systematics of igneous rocks. Blackwell Scientific Publications, Trowbridge, pp 1–193

    Google Scholar 

  • Mastin LG, Guffanti M, Servranckx R, Webley P, Barsotti S, Dean K, Durant A, Ewert JW, Neri A, Rose WI, Schneider D, Siebert L, Stunder B, Swanson G, Tupper A., Volentik A., Waythomas C.F. (2009) A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions: J Volcanol Geotherm Res 186(1–2):10–21, doi:10.1016/j.jvolgeores.2009.01.008

  • Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87(NC2):1231–1238. doi:10.1029/JC087iC02p01231

    Article  Google Scholar 

  • Orsi G, D’Antonio M, De Vita S, Gallo G (1992) The Neapolitan yellow tuff, a large-magnitude trachytic phreatoplinian eruption: eruptive dynamics, magma withdrawal and caldera collapse. J Volcanol Geotherm Res 53:275–287

    Article  Google Scholar 

  • Orsi G, Civetta L, D’Antonio M, Di Girolamo P, Piochi M (1995) Step-filling and development of three layer magma chamber: the Neapolitan yellow tuff case history. J Volcanol Geotherm Res 67:291–312

    Article  Google Scholar 

  • Orsi G, Di Vito MA, Isaia R (2004) Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull Volcanol 66:514–530

    Article  Google Scholar 

  • Piochi M, Polacci M, De Astis G et al (2008) Texture and composition of pumices and scoriae from the Campi Flegrei caldera (Italy): implications on the dynamics of explosive eruptions. Geochemistry Geophys Geosystems 9:Q03013. doi:10.1029/2007GC001746

    Article  Google Scholar 

  • Pistolesi M, Isaia R, Marianelli P, Bertagnini A, Fourmentraux C, Albert PG, Tomlinson EL, Menzies MA, Rosi M, Sbrana A (2016) Simultaneous eruptions from multiple vents at Campi Flegrei (Italy) highlight new eruption processes at calderas. Geology 44(6):487–490. doi:10.1130/G37870.1

    Article  Google Scholar 

  • Pyle DM (1989) The thickness, volume and grain size of tephra fall deposits. Bull Volcanol 51(1):1–15

    Article  Google Scholar 

  • Pyle David M (2000) Sizes of volcanic eruptions. In: Sigurdsson H et al (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 263–269

  • Rosi M, Sbrana A (1987) The Phlegraean fields. Quad Ric Sci CNR Rome 114(10):175

    Google Scholar 

  • Scarpati C, Cole P, Perrotta A (1993) The Neapolitan yellow tuff—a large volume mutiphase eruption from Campi Flegrei, southern Italy. Bull Volcanol 55:343–356

    Article  Google Scholar 

  • Shea T, Houghton BF, Gurioli L, Cashman KV, Hammer JE, Hobden BJ (2010) Textural studies of vesicles in volcanic rocks: an integrated methodology. J Volcanol Geotherm Res 190:271–289. doi:10.1016/j.jvolgeores.2009.12.003

    Article  Google Scholar 

  • Shea T, Gurioli L, Houghton BF, Cioni R, Cashman KV (2011) Column collapse and generation of pyroclastic density currents during the A.D. 79 eruption of Vesuvius: the role of pyroclast density. Geology 39:695–698. doi:10.1130/G32092.1

    Article  Google Scholar 

  • Smith VC, Isaia R, Pearce NJG (2011) Tephrostratigraphy and glass compositions of post-15 kyr Campi Flegrei eruptions: implications for eruption history and chronostratigraphic markers. Quat Sci Rev 30:3638–3660

    Article  Google Scholar 

  • Smith VC, Isaia R, Engwell SL, Albert PG (2016) Bull Volcanol 78:45. doi:10.1007/s00445-016-1037-0

    Article  Google Scholar 

  • Sparks RSJ, Wilson L, Sigurdsson H (1981) The pyroclastic deposits of the 1875 eruption of Askja, Iceland. Philos Trans R Soc Lond 229:241–273

    Article  Google Scholar 

  • Tarquini S, Isola I, Favalli M, Mazzarini F, Bisson M, Pareschi MT, Boschi E (2007) TINITALY/01: a new triangular irregular network of Italy. Ann Geophys 50(3):407–425

    Google Scholar 

  • Tonarini S, D’Antonio M, Di Vito MA, Orsi G, Carandente A (2009) Geochemical and B-Sr-Nd isotopic evidence for mingling and mixing processes in the magmatic system feeding the Astroni volcano (4.1–3.8 ka) within the Campi Flegrei caldera (South Italy). Lithos 107:135–151

    Article  Google Scholar 

  • Toramaru A (2006) BND (bubble number density) decompression rate meter for explosive volcanic eruptions. J Volcanol Geotherm Res 154:303–316. doi:10.1016/j.jvolgeores.2006.03.027

    Article  Google Scholar 

  • Vilardo G, Isaia R, Ventura G, De Martino P, Terranova C (2010) InSAR permanent scatterer analysis reveals fault reactivation during inflation and deflation episodes at Campi Flegrei caldera. Remote Sens Environ 114:2373–2383

    Article  Google Scholar 

  • Vitale S, Isaia R (2014) Fractures and faults in volcanic rocks (Campi Flegrei, southern Italy): insights into volcano-tectonic processes. Int J Earth Sci 103:801–819. doi:10.1007/s00531-013-0979-0

    Article  Google Scholar 

  • Voloschina M (2016) Compositional studies of the Baia–Fondi di Baia eruption, Campi Flegrei, Italy: insights into the magmatic system. MSc thesis, Dipartimento di Scienze della Terra, Università di Pisa

  • Wohletz K, Orsi G, De Vita S (1995) Eruptive mechanisms of the Neapolitan yellow tuff interpreted from stratigraphic, chemical and granulometric data. J Volcanol Geotherm Res 67:263–290

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the “Project V1: Probabilistic Volcanic Hazard Analysis” in the framework of the agreement between Dipartimento di Protezione Civile e Istituto Nazionale di Geofisica e Vulcanologia (Research Unit UNIFI, responsible M. Pistolesi). We thank F. Mazzone and M. Voloschina for laboratory analyses and M. Pompilio, M. Rosi, C. Romano, and S. Campagnola for discussions in the field. D. Mazzarella is greatly thanked for having provided access to his private properties. We are also grateful to D. Swanson and to an anonymous reviewer for their constructive comments and to C. Bonadonna for editorial handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Pistolesi.

Additional information

Editorial responsibility: C. Bonadonna

Electronic supplementary material

Figure S1

Backscattered images of the MD, LD, and HD analyzed clasts from the different samples. (JPEG 2441 kb).

High resolution image (TIFF 19248 kb).

Figure S2

Cumulative vesicle size distribution (CVSD) and cumulative volume fraction plots of the different analyzed samples. (JPEG 367 kb).

High resolution image (TIFF 22132 kb).

Table S1

(DOCX 92 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pistolesi, M., Bertagnini, A., Di Roberto, A. et al. The Baia–Fondi di Baia eruption at Campi Flegrei: stratigraphy and dynamics of a multi-stage caldera reactivation event. Bull Volcanol 79, 67 (2017). https://doi.org/10.1007/s00445-017-1149-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-017-1149-1

Keywords