Skip to main content
Log in

Concentration-compactness principle and extremal functions for a sharp Trudinger-Moser inequality

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We prove a concentration-compactness principle for the Trudinger-Moser functional associated with a class of weighted Sobolev spaces including fractional dimensions. Based in this result and using blow up analysis we establish a sharp form of Trudinger-Moser type inequality for this class of weighted Sobolev spaces. Moreover, we discuss the existence of extremal for the maximizing problem associated with this new Trudinger-Moser inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and its Applications, vol 71. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  2. Adimurthi., Druet, O.: Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality. Comm. Partial Differ. Equ. 29, 295–322 (2004)

  3. Adimurthi., do Ó, J.M., Tintarev, K.: Cocompactness and minimizers for inequalities of Hardy-Sobolev type involving N-Laplacian. NoDEA Nonlinear Differ. Equ. Appl. 17, 467–477 (2010)

    Google Scholar 

  4. Brezis, H., Merle, F.: Uniform estimates and blow-up behavior for solutions \(\Delta u=V(x){\rm e}^{u}\) in two dimensions. Comm. Partial Differ. Equ. 16, 1223–1253 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2011)

    MATH  Google Scholar 

  6. Carleson, L., Chang, S.Y.A.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. 110, 113–127 (1986)

    MATH  MathSciNet  Google Scholar 

  7. Černý, R., Cianchi, A., Hencl, S.: Concentration-compactness principles for Moser-Trudinger inequalities: new results and proofs. Ann. Mat. Pura Appl. 192, 225–243 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, W., Li, C.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63, 615–622 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Clément, P., de Figueiredo, D.G., Mitidieri, E.: Quasilinear elliptic equations with critical exponents. Topol. Methods Nonlinear Anal. 7, 133–170 (1996)

    MATH  MathSciNet  Google Scholar 

  10. de Figueiredo, D.G., Gonçalves, J.V., Miyagaki, O.H.: On a class of quasilinear elliptic problems involving critical exponents. Commun. Contemp. Math. 2, 47–59 (2000)

    MATH  MathSciNet  Google Scholar 

  11. de Figueiredo, D.G., do Ó, J.M., Ruf, B.: On an inequality by N. Trudinger and J. Moser and related elliptic equations. Comm. Pure Appl. Math. 55, 135–152 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. de Figueiredo, D.G., do Ó, J.M., Ruf, B.: Elliptic equations and systems with critical Trudinger-Moser nonlinearities. Discrete Contin. Dyn. Syst. 30, 455–476 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. de Oliveira, J.F., do Ó, J. M.: Trudinger-Moser type inequalities for weighted Sobolev spaces involving fractional dimensions. Proc. Am. Math. Soc. (to appear)

  14. do Ó, J.M.: Semilinear Dirichlet problems for the \(N\)-Laplacian in \(\mathbb{R}^N\) with nonlinearities in the critical growth range. Differ. Integr. Equ. 9, 967–979 (1996)

    MATH  Google Scholar 

  15. Flucher, M.: Extremal functions for the Trudinger-Moser inequality in 2 dimensions. Comment. Math. Helv. 67, 471–497 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hudson, S., Leckband, M.: Extremals for a Moser-Jodeit exponential inequality. Pacific J. Math. 206, 113–128 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hudson, S., Leckband, M.: Extremals for Moser inequalities. Arch. Ration. Mech. Anal. 171, 43–54 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jacobsen, J.: Radial Solutions of Quasilinear Elliptic Differential Equations. Handbook of Differential Equations, pp. 359–435. Elsevier/North-Holland, Amsterdam (2004)

    Google Scholar 

  19. Jacobsen, J., Schmitt, K.: The Liouville-Bratu-Gelfand problem for radial operators. J. Differ. Equ. 184, 283–298 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kufner, A., Opic, B.: Hardy-type Inequalities, Pitman Res. Notes in Math., vol 219. Longman Scientific and Technical, Harlow (1990)

    Google Scholar 

  21. Leckband, M.: Moser’s inequality on the ball \(B^n\) for functions with mean value zero. Comm. Pure Appl. Math. 58, 789–798 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lin, K.C.: Extremal functions for Moser’s inequality. Trans. Amer. Math. Soc. 348, 2663–2671 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  23. Li, Y.: Extremal functions for the Moser-Trudinger inequalities on compact Riemannian manifolds. Sci. China Ser. A 48(5), 618–648 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Li, Y., Liu, P., Yang, Y.: Moser-Trudinger inequalities of vector bundle over a compact Riemannian manifold of dimension \(2\). Calc. Var. Partial Differ. Equ. 28, 59–83 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case, Part 1. Rev. Mat. Iberoamericana 1, 145–201 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lu, G., Yang, Y.: Sharp constant and extremal function for the improved Moser-Trudinger inequality involving \(L^p\) norm in two dimension. Discrete Contin. Dyn. Syst. 25, 963–979 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. McLeod, J.B., Peletier, L.A.: Observations on Moser’s inequality. Arch. Ration. Mech. Anal. 106, 261–285 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  28. Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970/71)

    Google Scholar 

  29. Pohozaev, S.I.: The Sobolev embedding in the case \(pl = n\). In: Proceedings of the Technical Scientific Conference on Advances of Scientific Research 1964–1965. Mathematics Section, Moscov. Energet. Inst., pp. 158–170 (1965)

  30. Struwe, M.: Critical points of embeddings of \(H^{1, n}_{0}\) into Orlicz spaces. Ann. Inst. H. Poincaré Anal. Non Linéaire 5, 425–464 (1988)

    MATH  MathSciNet  Google Scholar 

  31. Struwe, M.: Positive solutions of critical semilinear elliptic equations on non-contractible planar domains. J. Eur. Math. Soc. 2, 329–388 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Tian, G.J., Wang, X.J.: Moser-Trudinger type inequalities for the Hessian equation. J. Funct. Anal. 259, 1974–2002 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  33. Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51, 126–150 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  34. Trudinger, N.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MATH  MathSciNet  Google Scholar 

  35. Yang, Y.: A sharp form of Moser-Trudinger inequality in high dimension. J. Func. Anal. 239, 100–126 (2006)

    Article  MATH  Google Scholar 

  36. Yudovich, V.I.: Some estimates connected with integral operators and with solutions of elliptic equations. Dok. Akad. Nauk. SSSR 138, 804–808 (1961). [English translation in Soviet Math. Doklady 2 (1961), 746–749]

    Google Scholar 

Download references

Acknowledgments

Research partially supported by the National Institute of Science and Technology of Mathematics INCT-Mat, CAPES and CNPq grants 307400/2009-3, 620108/2008-8 and 141853/2012-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Marcos do Ó.

Additional information

Communicated by A. Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira, J.F., do Ó, J.M. Concentration-compactness principle and extremal functions for a sharp Trudinger-Moser inequality. Calc. Var. 52, 125–163 (2015). https://doi.org/10.1007/s00526-014-0707-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-014-0707-z

Mathematics Subject Classification (2010)