Skip to main content
Log in

Geometric inequalities for hypersurfaces with nonnegative sectional curvature in hyperbolic space

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this article, we will use inverse mean curvature flow to establish an optimal Sobolev-type inequality for hypersurfaces \(\Sigma \) with nonnegative sectional curvature in \(\mathbb {H}^n\). As an application, we prove the hyperbolic Alexandrov–Fenchel inequalities for hypersurfaces with nonnegative sectional curvature in \(\mathbb {H}^n\):

$$\begin{aligned} \int _{\Sigma } p_{2k}\ge \omega _{n-1}\left[ \left( \frac{|\Sigma |}{\omega _{n-1}}\right) ^\frac{1}{k} +\left( \frac{|\Sigma |}{\omega _{n-1}}\right) ^{\frac{1}{k}\frac{n-1-2k}{n-1}}\right] ^k, \end{aligned}$$

where \(p_i\) is the normalized i-th mean curvature. Equality holds if and only if \(\Sigma \) is a geodesic sphere in \(\mathbb {H}^n\). For a domain \(\Omega \subset \mathbb {H}^n\) with \(\Sigma =\partial \Omega \) having nonnegative sectional curvature, we prove an optimal inequality for quermassintegral in \(\mathbb {H}^n\):

$$\begin{aligned} W_{2k+1}(\Omega )\ge \frac{\omega _{n-1}}{n}\sum _{i=0}^{k}\frac{n-1-2k}{n-1-2i} C_k^i\left( \frac{|\Sigma |}{\omega _{n-1}}\right) ^\frac{n-1-2i}{n-1}, \end{aligned}$$

where \(W_i(\Omega )\) is the i-th quermassintegral in integral geometry. Equality holds if and only if \(\Sigma \) is a geodesic sphere in \(\mathbb {H}^n\). All these inequalities were previously proved by Ge et al. (J Differ Geom 98:237–260, 2014) under the stronger condition that \(\Sigma \) is horospherical convex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, S., Currier, R.J.: Nonnegatively curved hypersurfaces of hyperbolic space and subharmonic functions. J. London Math. Soc. 41, 347–360 (1990)

    Article  MathSciNet  Google Scholar 

  2. Alexander, S., Currier, R.J.: Hypersurfaces and nonnegative curvature. Proc. Symp. Pure Math. 54(3), 37–44 (1993)

    Article  MathSciNet  Google Scholar 

  3. Andrews, B.: Contraction of convex hypersurfaces in Riemannian spaces. J. Differ. Geom. 39, 407–431 (1994)

    Article  MathSciNet  Google Scholar 

  4. Andrews, B.: Pinching estimates and motion of hypersurfaces by curvature functions. J. Reine Angew. Math. 608, 17–33 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Andrews, B., Chen, X., Wei, Y.: Volume preserving flow and Alexandrov–Fenchel type inequalities in hyperbolic space. arXiv:1805.11776v1

  6. Andrews, B., Hopper, C.: The Ricci flow in Riemannian geometry, Lecture Notes in Mathematics, vol. 2011. Springer, Heidelberg (2011)

    Book  Google Scholar 

  7. Andrews, B., Wei, Y.: Quermassintegral preserving curvature flow in hyperbolic space, to appear in GAFA. arXiv:1708.09583v1

  8. Chen, D., Li, H., Zhou, T.: A Penrose type inequality for graphs over Reissner-Nordström-anti-deSitter manifold. arXiv:1710.02340v1 (2017)

  9. Cheng, X., Zhou, D.: Rigidity for closed totally umbilical hypersurfaces in space forms. J. Geom. Anal. 24, 1337–1345 (2014)

    Article  MathSciNet  Google Scholar 

  10. Chern, S.S.: A simple intrinsic proof of the Gauss–Bonnet formula for closed Riemannian manifolds. Ann. Math. (2) 45, 747–752 (1944)

    Article  MathSciNet  Google Scholar 

  11. Chern, S.S.: On the curvatura integra in a Riemannian manifold. Ann. Math. (2) 46, 674–684 (1945)

    Article  MathSciNet  Google Scholar 

  12. Do Carmo, M.P., Warner, F.W.: Rigidity and convexity of hypersurfaces in spheres. J. Differ. Geom. 4, 134–144 (1970)

    MathSciNet  MATH  Google Scholar 

  13. Gao, F., Hug, D., Schneider, R.: Intrinsic volumes and polar sets in spherical space. Homage to Luis Santaló, vol.1 (Spanish), Math. Notae 41, 159-76, (2001/02)

  14. Ge, Y., Wang, G., Wu, J.: Hyperbolic Alexandorv–Fenchel quermassintegral inequality I. arXiv:1303.1714v2

  15. Ge, Y., Wang, G., Wu, J.: Hyperbolic Alexandorv–Fenchel quermassintegral inequality II. J. Differ. Geom. 98, 237–260 (2014)

    Article  Google Scholar 

  16. Ge, Y., Wang, G., Wu, J., Xia, C.: A penrose inequality for graphs over Kottler space. Calc. Var. 52, 755–782 (2015)

    Article  MathSciNet  Google Scholar 

  17. Gerhardt, C.: Curvature Problems, Series in Geometry and Topology, vol. 39. International Press, Somerville (2006)

    MATH  Google Scholar 

  18. Gerhardt, C.: Inverse curvature flows in hyperbolic space. J. Differ. Geom. 89, 487–527 (2011)

    Article  MathSciNet  Google Scholar 

  19. Guan, P.: Fully nonlinear PDEs in real and complex geometry and optics, Fondazione CIME/CIME Foundation Subseries. Springer, Cham; Fondazione C.I.M.E., Florence, xii+210 pp. (2014). ISBN: 978-3-319-00941-4

  20. Guan, P., Wang, G.: Geometric inequalities on locally conformally flat manifolds. Duke Math. J. 124, 177–212 (2004)

    Article  MathSciNet  Google Scholar 

  21. Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)

    Article  MathSciNet  Google Scholar 

  22. Hamilton, R.S.: Four-manifolds with positive curvature operator. J. Differ. Geom. 24(2), 153–179 (1986)

    Article  MathSciNet  Google Scholar 

  23. Hu, Y.: Willmore inequality on hypersurfaces in hyperbolic space. Proc. Am. Math. Soc. 146(6), 2679–2688 (2018)

    Article  MathSciNet  Google Scholar 

  24. Li, H., Wei, Y.: On inverse mean curvature flow in Schwarzschild space and Kottler space. Calc. Var. 56, 62 (2017)

    Article  MathSciNet  Google Scholar 

  25. Li, H., Wei, Y., Xiong, C.: A geometric inequality on hypersurface in hyperbolic space. Adv. Math. 253, 152–162 (2014)

    Article  MathSciNet  Google Scholar 

  26. Reilly, R.C.: Variational properties of functions of the mean curvatures for hypersurfaces in space forms. J. Differ. Geom. 8, 465–477 (1973)

    Article  MathSciNet  Google Scholar 

  27. Santaló, L.A.: Integral Geometry and Geometric Probability. Wesley, Reading (1976)

    MATH  Google Scholar 

  28. Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Cambridge University, Cambridge (1993)

    Book  Google Scholar 

  29. Solanes, G.: Integrals de curvatura i geometria integral a l’espai hiperbolic, PhD thesis, Univ. Aut. Barcelona, (2003)

  30. Solanes, G.: Integral geometry and the Gauss–Bonnet theorem in constant curvature spaces. Trans. Amer. Math. Soc. 358, 1105–1115 (2006)

    Article  MathSciNet  Google Scholar 

  31. Wang, G., Xia, C.: Isoperimetric type problems and Alexandorv–Fenchel type inequalities in the hyperbolic space. Adv. Math. 259, 532–556 (2014)

    Article  MathSciNet  Google Scholar 

  32. Wei, Y.: New pinching estimates for inverse curvature flows in space forms. J. Geom, Anal (2018). https://doi.org/10.1007s12220-018-0051-1

Download references

Acknowledgements

We would like to thank Yong Wei for his interest and comments. The first author was supported by China Postdoctoral Science Foundation (No. 2018M641317). The second author was supported by NSFC Grant No.11671224, 11831005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingxiang Hu.

Additional information

Communicated by J. Jost.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Li, H. Geometric inequalities for hypersurfaces with nonnegative sectional curvature in hyperbolic space. Calc. Var. 58, 55 (2019). https://doi.org/10.1007/s00526-019-1488-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1488-1

Keywords

Mathematics Subject Classification