Skip to main content
Log in

Chronic inflammation with Helicobacter pylori infection is implicated in CD44 overexpression through miR-328 suppression in the gastric mucosa

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Infection with Helicobacter pylori is the main risk factor for development of gastric cancer. CD44 overexpression, especially that of variant 9 (CD44v9), has also been implicated in the local inflammatory response and metaplasia–carcinoma sequence in human stomach. We recently identified miR-328 as one of the microRNAs targeting CD44 in gastric cancer. The aim of the current study was to determine the relationship between miR-328 and CD44v9 expression in H. pylori-infected gastric mucosa during the development of preneoplastic lesions.

Methods

Immunohistochemical staining of myeloperoxidase and CD44v9 was performed using paraffin-embedded tissue sections obtained from 54 patients who underwent gastric resection without preoperative treatment. The levels of miR-328 expression in the gastric mucosa were measured in the same patients using quantitative reverse transcription polymerase chain reaction.

Results

Both infiltration of myeloperoxidase-positive inflammatory cells and expression of proinflammatory cytokines closely correlated with H. pylori infection in the cancer-afflicted gastric mucosa. High CD44v9 expression levels, identified in the gastric mucosa in 61 % of samples (33/54), correlated significantly with H. pylori infection in the gastric mucosa. Notably, high CD44v9 expression was significantly associated with low miR-328 expression, whereas low CD44v9 expression was significantly associated with high miR-328 expression.

Conclusions

We showed that miR-328 downregulation and de novo expression of CD44v9 occurred in H. pylori-infected gastric mucosa adjacent to gastric cancer compared with gastric mucosa not infected with H. pylori adjacent to gastric cancer. CD44v9-overexpressing cells are known to acquire reactive oxygen species resistance; thus, these cells may avoid cell death caused by various stress inducers, which may be linked to the origin of gastric cancer development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Hohenberger P, Gretschel S. Gastric cancer. Lancet. 2003;362(9380):305–15.

    Article  PubMed  Google Scholar 

  2. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108.

    Article  PubMed  Google Scholar 

  3. Peek RM Jr, Blaser MJ. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer. 2002;2(1):28–37.

    Article  CAS  PubMed  Google Scholar 

  4. Nomura S, Baxter T, Yamaguchi H, Leys C, Vartapetian AB, Fox JG, et al. Spasmolytic polypeptide expressing metaplasia to preneoplasia in H. felis-infected mice. Gastroenterology. 2004;127(2):582–94.

    Article  CAS  PubMed  Google Scholar 

  5. Nozaki K, Ogawa M, Williams JA, Lafleur BJ, Ng V, Drapkin RI, et al. A molecular signature of gastric metaplasia arising in response to acute parietal cell loss. Gastroenterology. 2008;134(2):511–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Schmidt PH, Lee JR, Joshi V, Playford RJ, Poulsom R, Wright NA, et al. Identification of a metaplastic cell lineage associated with human gastric adenocarcinoma. Lab Investig 1999;79(6):639–46.

    CAS  PubMed  Google Scholar 

  7. Yamaguchi H, Goldenring JR, Kaminishi M, Lee JR. Identification of spasmolytic polypeptide expressing metaplasia (SPEM) in remnant gastric cancer and surveillance postgastrectomy biopsies. Dig Dis Sci. 2002;47(3):573–8.

    Article  PubMed  Google Scholar 

  8. Halldorsdottir AM, Sigurdardottrir M, Jonasson JG, Oddsdottir M, Magnusson J, Lee JR, et al. Spasmolytic polypeptide-expressing metaplasia (SPEM) associated with gastric cancer in Iceland. Dig Dis Sci. 2003;48(3):431–41.

    Article  CAS  PubMed  Google Scholar 

  9. Oshima H, Oshima M, Inaba K, Taketo MM. Hyperplastic gastric tumors induced by activated macrophages in COX-2/mPGES-1 transgenic mice. EMBO J. 2004;23(7):1669–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Oshima H, Matsunaga A, Fujimura T, Tsukamoto T, Taketo MM, Oshima M. Carcinogenesis in mouse stomach by simultaneous activation of the Wnt signaling and prostaglandin E2 pathway. Gastroenterology. 2006;131(4):1086–95.

    Article  CAS  PubMed  Google Scholar 

  11. Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev. 2003;4(1):33–45.

    Article  CAS  Google Scholar 

  12. Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T, Oshima H, et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc and thereby promotes tumor growth. Cancer Cell. 2011;19(3):387–400.

    Article  CAS  PubMed  Google Scholar 

  13. Nagano O, Okazaki S, Saya H. Redox regulation in stem-like cancer cells by CD44 variant isoforms. Oncogene. 2013;32(44):5191–8.

    Article  CAS  PubMed  Google Scholar 

  14. Fan X, Long A, Goggins M, Fan X, Keeling PW, Kelleher D. Expression of CD44 and its variants on gastric epithelial cells of patients with Helicobacter pylori colonisation. Gut. 1996;38(4):507–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Wada T, Ishimoto T, Seishima R, Tsuchihashi K, Yoshikawa M, Oshima H, et al. Functional role of CD44v-xCT system in the development of spasmolytic polypeptide-expressing metaplasia. Cancer Sci. 2013;104(10):1323–9.

    Article  CAS  PubMed  Google Scholar 

  16. Ishimoto T, Sugihara H, Watanabe M, Sawayama H, Iwatsuki M, Baba Y, et al. Macrophage-derived reactive oxygen species suppress miR-328 targeting CD44 in cancer cells and promote redox adaptation. Carcinogenesis. 2014;35(5):1003–11.

  17. Higashikawa K, Yokozaki H, Ue T, Taniyama K, Ishikawa T, Tarin D, et al. Evaluation of CD44 transcription variants in human digestive tract carcinomas and normal tissues. Int J Cancer. 1996;66(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  18. Dhingra S, Feng W, Brown RE, Zhou Z, Khoury T, Zhang R, et al. Clinicopathologic significance of putative stem cell markers, CD44 and nestin, in gastric adenocarcinoma. Int J Clin Exp Pathol. 2011;4(8):733–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Khurana SS, Riehl TE, Moore BD, Fassan M, Rugge M, Romero-Gallo J, et al. The hyaluronic acid receptor CD44 coordinates normal and metaplastic gastric epithelial progenitor cell proliferation. J Biol Chem. 2013;288(22):16085–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Zeilstra J, Joosten SP, Dokter M, Verwiel E, Spaargaren M, Pals ST. Deletion of the WNT target and cancer stem cell marker CD44 in Apc(Min/+) mice attenuates intestinal tumorigenesis. Cancer Res. 2008;68(10):3655–61.

    Article  CAS  PubMed  Google Scholar 

  21. Ishimoto T, Oshima H, Oshima M, Kai K, Torii R, Masuko T, et al. CD44+ slow-cycling tumor cell expansion is triggered by cooperative actions of Wnt and prostaglandin E2 in gastric tumorigenesis. Cancer Sci. 2010;101(3):673–8.

    Article  CAS  PubMed  Google Scholar 

  22. Gee K, Lim W, Ma W, Nandan D, Diaz-Mitoma F, Kozlowski M, et al. Differential regulation of CD44 expression by lipopolysaccharide (LPS) and TNF-α in human monocytic cells: distinct involvement of c-Jun N-terminal kinase in LPS-induced CD44 expression. J Immunol. 2002;169(10):5660–72.

    Article  CAS  PubMed  Google Scholar 

  23. Muthukumaran N, Miletti-Gonzalez KE, Ravindranath AK, Rodriguez-Rodriguez L. Tumor necrosis factor-α differentially modulates CD44 expression in ovarian cancer cells. Mol Cancer Res. 2006;4(8):511–20.

    Article  CAS  PubMed  Google Scholar 

  24. Takahashi E, Nagano O, Ishimoto T, Yae T, Suzuki Y, Shinoda T, et al. Tumor necrosis factor-α regulates transforming growth factor-β-dependent epithelial-mesenchymal transition by promoting hyaluronan-CD44-moesin interaction. J Biol Chem. 2010;285(6):4060–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Krishnamachary B, Penet MF, Nimmagadda S, Mironchik Y, Raman V, Solaiyappan M, et al. Hypoxia regulates CD44 and its variant isoforms through HIF-1α in triple negative breast cancer. PLoS One. 2012;7(8):e44078.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Nishizawa T, Suzuki H. The role of microRNA in gastric malignancy. Int J Mol Sci. 2013;14(5):9487–96.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17(2):211–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Cheng W, Liu T, Wan X, Gao Y, Wang H. MicroRNA-199a targets CD44 to suppress the tumorigenicity and multidrug resistance of ovarian cancer-initiating cells. FEBS J. 2012;279(11):2047–59.

    Article  CAS  PubMed  Google Scholar 

  29. Tovuu LO, Imura S, Utsunomiya T, Morine Y, Ikemoto T, Arakawa Y, et al. Role of CD44 expression in non-tumor tissue on intrahepatic recurrence of hepatocellular carcinoma. Int J Clin Oncol. 2013;18(4):651–6.

    Article  CAS  PubMed  Google Scholar 

  30. Utsunomiya T, Ishikawa D, Asanoma M, Yamada S, Iwahashi S, Kanamoto M, et al. Specific miRNA expression profiles of non-tumor liver tissue predict a risk for recurrence of hepatocellular carcinoma. Hepatol Res. 2014;44(6):631–8.

Download references

Acknowledgments

This work was supported in part by the Okukubo Memorial Fund for Medical Research at Kumamoto University School of Medicine, the Medical Research Encouragement Prize of the Japan Medical Association, and the Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research (24591912) (given to T.I.).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Baba.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishimoto, T., Izumi, D., Watanabe, M. et al. Chronic inflammation with Helicobacter pylori infection is implicated in CD44 overexpression through miR-328 suppression in the gastric mucosa. J Gastroenterol 50, 751–757 (2015). https://doi.org/10.1007/s00535-014-1019-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-014-1019-y

Keywords