Abstract
Let M be a compact oriented Riemannian manifolds with positive scalar curvature. We first prove a vanishing theorem for p-th Betti number of M, by assuming that the norm of the concircular curvature is less than some positive multiple of the scalar curvature at each point. In the second part, we show that if M has positive scalar curvature, then the existence of non-trivial harmonic p-forms imposes a certain integral inequality concerning the scalar curvature and the traceless Ricci curvature. Moreover, we provide a metric characterization of the equality case.
Similar content being viewed by others
References
Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor analysis and applications, Springer-Verlag. Appl. Math. Sci. 75, (1988)
Berger, M.: Sur quelques variétés riemaniennes suffisamment pincées. Bull. Soc. Math. France 88, 57–71 (1960)
Bochner, S.: Vector fields and Ricci curvature. Bull. Am. Math. Soc. 52(9), 776–797 (1946)
Bourguignon, J.P.: Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont d’Einstein. Invent. Math. 63(2), 263–286 (1981)
Calderbank, D.M.J., Gauduchon, P., Herzlich, M.: Refined Kato inequalities and conformal weights in Riemannian geometry. J. Funct. Anal. 173(1), 214–255 (2000)
Carron, G.: Inégalités isopérimétriques de Faber-Krahn et conséquences. In: Actes dela table ronde de géométrie différentielle (Luminy, 1992). Collection SMF Séminaires et Congrés 1, 205-232
Dong, Y.X., Lin, H.Z., Wei, S.W.: \(L^2\) curvature pinching theorems and vanishing theorems on complete Riemannian manifolds, to appear in Tohoku Math. J. (2018)
Dussan, M.P., Noronha, M.H.: Manifolds with \(2\)-nonnegative Ricci operator. Pacific J. Math. 204, 319–334 (2002)
Gonzáles, M.: Singular sets of a class of locally conformally flat manifolds. Duke Math. J. 129(3), 551–572 (2005)
Grosjean, J.F.: Minimal submanifolds with a parallel or a harmonic \(p\)-form. J. Geom. Phys. 51, 211–228 (2004)
Guan, P.F., Lin, C.S., Wang, G.F.: Schouten tensor and some topological properties. Commun. Anal. Geom. 13(5), 887–902 (2005)
Gursky, M.J.: The Weyl functional, de Rham cohomology, and Kähler-Einstein metrics. Ann. Math. 148, 315–337 (1998)
Gursky, M.J.: Conformal vector fields on four-manifolds with negative scalar curvature. Math. Z. 232, 265–273 (1999)
Hu, Z.J., Li, H.Z.: Scalar curvature, Killing vector fields and harmonic one-forms on compact Riemannian manifolds. Bull. Lond. Math. Soc. 36, 587–598 (2004)
Lin, H.Z.: On the structure of conformally flat Riemannian manifolds. Nonlinear Anal. 123–124, 115–125 (2015)
Mercuri, F., Noronha, M.H.: Low codimensional submanifolds of Euclidean space with nonnegative isotropic curvature. Trans. Am. Math. Soc. 348, 2711–2724 (1996)
Micallef, M., Wang, M.: Metrics with nonnegative isotropic curvature. Duke Math. J. 72(3), 649–672 (1993)
Nayatani, S.: Patterson-Sullivan measure and conformally flat metrics. Math. Z. 225, 115–131 (1997)
Ni, L., Wilking, B.: Manifolds with 1/4-pinched flag curvature. Geom. Funct. Anal. 20, 571–591 (2010)
Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces, Princeton Math. Series 32, Princeton University Press, Princeton, NJ, (1971)
Tanno, S.: Betti numbers and scalar inequalities. Math. Ann. 190, 135–148 (1970)
Wan, J.M.: A result on Ricci curvature and the second Betti number. Asian J. Math. 18(4), 125–132 (2012)
Wu, H.: The Bochner technique in differential geometry, Mathematical Reports, Vol 3, Pt 2, Harwood Academic Publishing, London, (1987)
Zhu, P.: Harmonic two-forms on manifolds with non-negative isotropic curvature. Ann. Glob. Anal. Geom. 40, 427–434 (2011)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supported by NSFC grant No. 11831005; the Natural Science Foundation of Fujian Province, China (Grant No. 2017J01398).
About this article
Cite this article
Lin, H. Scalar Curvature and Betti Numbers of Compact Riemannian Manifolds. Bull Braz Math Soc, New Series 51, 761–771 (2020). https://doi.org/10.1007/s00574-019-00174-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00574-019-00174-9