Skip to main content
Log in

Scalar Curvature and Betti Numbers of Compact Riemannian Manifolds

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

Let M be a compact oriented Riemannian manifolds with positive scalar curvature. We first prove a vanishing theorem for p-th Betti number of M, by assuming that the norm of the concircular curvature is less than some positive multiple of the scalar curvature at each point. In the second part, we show that if M has positive scalar curvature, then the existence of non-trivial harmonic p-forms imposes a certain integral inequality concerning the scalar curvature and the traceless Ricci curvature. Moreover, we provide a metric characterization of the equality case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor analysis and applications, Springer-Verlag. Appl. Math. Sci. 75, (1988)

  • Berger, M.: Sur quelques variétés riemaniennes suffisamment pincées. Bull. Soc. Math. France 88, 57–71 (1960)

    Article  MathSciNet  Google Scholar 

  • Bochner, S.: Vector fields and Ricci curvature. Bull. Am. Math. Soc. 52(9), 776–797 (1946)

    Article  MathSciNet  Google Scholar 

  • Bourguignon, J.P.: Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont d’Einstein. Invent. Math. 63(2), 263–286 (1981)

    Article  MathSciNet  Google Scholar 

  • Calderbank, D.M.J., Gauduchon, P., Herzlich, M.: Refined Kato inequalities and conformal weights in Riemannian geometry. J. Funct. Anal. 173(1), 214–255 (2000)

    Article  MathSciNet  Google Scholar 

  • Carron, G.: Inégalités isopérimétriques de Faber-Krahn et conséquences. In: Actes dela table ronde de géométrie différentielle (Luminy, 1992). Collection SMF Séminaires et Congrés 1, 205-232

  • Dong, Y.X., Lin, H.Z., Wei, S.W.: \(L^2\) curvature pinching theorems and vanishing theorems on complete Riemannian manifolds, to appear in Tohoku Math. J. (2018)

  • Dussan, M.P., Noronha, M.H.: Manifolds with \(2\)-nonnegative Ricci operator. Pacific J. Math. 204, 319–334 (2002)

    Article  MathSciNet  Google Scholar 

  • Gonzáles, M.: Singular sets of a class of locally conformally flat manifolds. Duke Math. J. 129(3), 551–572 (2005)

    Article  MathSciNet  Google Scholar 

  • Grosjean, J.F.: Minimal submanifolds with a parallel or a harmonic \(p\)-form. J. Geom. Phys. 51, 211–228 (2004)

    Article  MathSciNet  Google Scholar 

  • Guan, P.F., Lin, C.S., Wang, G.F.: Schouten tensor and some topological properties. Commun. Anal. Geom. 13(5), 887–902 (2005)

    Article  MathSciNet  Google Scholar 

  • Gursky, M.J.: The Weyl functional, de Rham cohomology, and Kähler-Einstein metrics. Ann. Math. 148, 315–337 (1998)

    Article  MathSciNet  Google Scholar 

  • Gursky, M.J.: Conformal vector fields on four-manifolds with negative scalar curvature. Math. Z. 232, 265–273 (1999)

    Article  MathSciNet  Google Scholar 

  • Hu, Z.J., Li, H.Z.: Scalar curvature, Killing vector fields and harmonic one-forms on compact Riemannian manifolds. Bull. Lond. Math. Soc. 36, 587–598 (2004)

    Article  MathSciNet  Google Scholar 

  • Lin, H.Z.: On the structure of conformally flat Riemannian manifolds. Nonlinear Anal. 123–124, 115–125 (2015)

    Article  MathSciNet  Google Scholar 

  • Mercuri, F., Noronha, M.H.: Low codimensional submanifolds of Euclidean space with nonnegative isotropic curvature. Trans. Am. Math. Soc. 348, 2711–2724 (1996)

    Article  MathSciNet  Google Scholar 

  • Micallef, M., Wang, M.: Metrics with nonnegative isotropic curvature. Duke Math. J. 72(3), 649–672 (1993)

    Article  MathSciNet  Google Scholar 

  • Nayatani, S.: Patterson-Sullivan measure and conformally flat metrics. Math. Z. 225, 115–131 (1997)

    Article  MathSciNet  Google Scholar 

  • Ni, L., Wilking, B.: Manifolds with 1/4-pinched flag curvature. Geom. Funct. Anal. 20, 571–591 (2010)

    Article  MathSciNet  Google Scholar 

  • Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces, Princeton Math. Series 32, Princeton University Press, Princeton, NJ, (1971)

  • Tanno, S.: Betti numbers and scalar inequalities. Math. Ann. 190, 135–148 (1970)

    Article  MathSciNet  Google Scholar 

  • Wan, J.M.: A result on Ricci curvature and the second Betti number. Asian J. Math. 18(4), 125–132 (2012)

    MathSciNet  Google Scholar 

  • Wu, H.: The Bochner technique in differential geometry, Mathematical Reports, Vol 3, Pt 2, Harwood Academic Publishing, London, (1987)

  • Zhu, P.: Harmonic two-forms on manifolds with non-negative isotropic curvature. Ann. Glob. Anal. Geom. 40, 427–434 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hezi Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by NSFC grant No. 11831005; the Natural Science Foundation of Fujian Province, China (Grant No. 2017J01398).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H. Scalar Curvature and Betti Numbers of Compact Riemannian Manifolds. Bull Braz Math Soc, New Series 51, 761–771 (2020). https://doi.org/10.1007/s00574-019-00174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-019-00174-9

Keywords

Mathematics Subject Classification