Skip to main content
Log in

Topochemical models for prediction of cyclin-dependent kinase 2 inhibitory activity of indole-2-ones

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The relationship between the topochemical indices and cyclin-dependent kinase 2 (CDK2) inhibitory activity of indole-2-ones has been investigated. The relationship of topochemical versions of well known topological indices of Wiener’s index—a distance-based topological descriptor, molecular connectivity index, an adjacency-based topological descriptor and eccentric connectivity index—an adjacency-cum-distance based topological descriptor with CDK2 inhibitory activity of indole-2-ones has been investigated. A data set comprising 67 analogues of substituted indole-2-ones was selected for the present investigation. The values of the Wiener’s topochemical index, molecular connectivity topochemical index and eccentric connectivity topochemical index for each of 67 analogues comprising the data set were computed. The resulting data was analyzed and suitable models developed after identification of the active ranges. Subsequently, a biological activity was assigned to each analogue in the data set using these models, which was then compared with the reported CDK2 inhibitory activity. Accuracy of prediction was found to vary from a minimum of 88% for a model based upon molecular connectivity topochemical index to a maximum of ~90% for model based upon eccentric connectivity topochemical index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Basak SC (1987) Med Sci Res 15:605–609

    CAS  Google Scholar 

  2. Basak SC, Niemi GJ, Veith GD (1990) J Math Chem 4:185–205

    Article  CAS  Google Scholar 

  3. Randic M (1975) J Am Chem Soc 97:6609–6615

    Article  CAS  Google Scholar 

  4. Magnuson VR, Harriss DK, Basak SC (1983) In: King RB (ed) Chemical applications of topology and graph theory. Elsevier, Amsterdam, p 178

  5. Basak SC, Harriss DK, Magnuson VR (1984) J Pharm Sci 73:429–437

    Article  PubMed  CAS  Google Scholar 

  6. Randic M (1984) Int J Quantum Chem Quant Biol Symp 11:137–153

    Article  CAS  Google Scholar 

  7. Kier LB, Hall LH (1986) Molecular connectivity in structure-activity analysis. Research studies press, Letchworth, England, pp 1–262

    Google Scholar 

  8. Basak SC (1988) Med Sci Res 16:281–282

    CAS  Google Scholar 

  9. Trinajstic N (1983) Chemical graph theory, vols 1 and 2. CRC Press, Boca Raton, FL

  10. Harary F (1969) Graph theory. Addison-Wesley publishing company, Reading, MA

    Google Scholar 

  11. Basak SC, Balaban AT, Grunwald GD, Gute BD (2000) J Chem Inf Comput Sci 40:891–898

    Article  PubMed  CAS  Google Scholar 

  12. Hosoya H (1971) Bull Chem Soc Jpn 44:2332–2337

    Article  CAS  Google Scholar 

  13. Hosoya H (1972) J Chem Doc 12:181–183

    Article  CAS  Google Scholar 

  14. Gupta S, Singh M, Madan AK (2001) J Mol Struct (THEOCHEM) 571:147–152

    Article  CAS  Google Scholar 

  15. Rose K, Hall LH, Kier LB (2002) J Chem Inf Comput Sci 42:651–656

    Article  PubMed  CAS  Google Scholar 

  16. Hall LM, Hall LH, Kier LB (2003) J Chem Inf Comput Sci 43:2120–2128

    Article  PubMed  CAS  Google Scholar 

  17. Balaban AT, Chiriac A, Motoc I, Simon Z (1980) Lect Notes Chem 15:22–27

    Google Scholar 

  18. Balaban AT (1982) Chem Phys Lett 89:399–404

    Article  CAS  Google Scholar 

  19. Balaban AT (1985) J Chem Inf Comput Sci 25:334–343

    Article  CAS  Google Scholar 

  20. Balaban AT, Filip P (1984) J Math Chem 16:163–190

    CAS  Google Scholar 

  21. Wiener H (1947) J Chem Phys 15:766–766

    Article  CAS  Google Scholar 

  22. Wiener H (1947) J Am Chem Soc 69:2636–2638

    Article  CAS  Google Scholar 

  23. Randic M, Guo X, Oxely T, Krishnapriyan H (1993) J Chem Inf Comput Sci 33:709–716

    Article  CAS  Google Scholar 

  24. Gutman I, Randic M (1977) Chem Phys Lett 47:15–19

    Article  CAS  Google Scholar 

  25. Gutman I, Ruscic B, Trinajstic N, Wilcox CF (1975) J Chem Phys 62:3399–3405

    Article  CAS  Google Scholar 

  26. Sharma V, Goswami R, Madan AK (1997) J Chem Inf Comput Sci 37:273–282

    Article  CAS  Google Scholar 

  27. Sardana S, Madan AK (2001) MATCH Commun Math Comput Chem 43:85–98

    CAS  Google Scholar 

  28. Sardana S, Madan AK (2002) J Comput Aid Mol Des 16:1–6

    Article  Google Scholar 

  29. Sardana S, Madan AK (2002) J Mol Model 8:258–265

    Article  CAS  Google Scholar 

  30. Gupta S, Singh M, Madan AK (2002) J Math Anal Applic 266:259–268

    Article  Google Scholar 

  31. Sardana S, Madan AK (2002) MATCH Commun Math Comput Chem 45:36–53

    Google Scholar 

  32. Kumar V, Madan AK (2004) MATCH Commun Math Comput Chem 51:59–78

    MathSciNet  CAS  Google Scholar 

  33. Webster KR (1998) Expert Opin Invest Drugs 7:865–887

    Article  CAS  Google Scholar 

  34. Meijer L, Leclerc S, Leost M (1999) Pharmacol Ther 82:279–284

    Article  PubMed  CAS  Google Scholar 

  35. Garrett MD, Fattaey A (1999) Curr Opin Genet Dev 9:104–111

    Article  PubMed  CAS  Google Scholar 

  36. Davis ST, Benson BG, Bramson HN, Chapman DE, Dickerson SH (2001) Science 291:134–137

    Article  PubMed  CAS  Google Scholar 

  37. Morgan DO (1997) Annu Rev Cell Div Bio 13:261–291

    Article  CAS  Google Scholar 

  38. Lenobel R, Havli L, Kryscaron PV, Otyepka M, Strnad M (2001) Scientific World J 1(suppl 3):128

    Google Scholar 

  39. Pavletich NP (1999) J Mol Biol 287:821–828

    Article  PubMed  CAS  Google Scholar 

  40. Malumbers M, Ortega S, Barbacid M (2000) Biol Chem 381:827–838

    Article  PubMed  Google Scholar 

  41. Nikolic M, Tsai LH (2000) Methods Enzymol 325:200–213

    Article  PubMed  CAS  Google Scholar 

  42. Maccioni RB, Otth C, Concha II, Munoz JP (2001) Eur J Biochem 268:1518–1527

    Article  PubMed  CAS  Google Scholar 

  43. Dhavan R, Tsai LH (2001) Nat Rev Mol Cell Biol 2:749–759

    Article  PubMed  CAS  Google Scholar 

  44. Gladden AB, Diehl JA (2003) Cancer Cell 4:160–162

    Article  PubMed  CAS  Google Scholar 

  45. Pardee AB (1974) Proc Natl Acad Sci USA 71:1286–1290

    Article  PubMed  CAS  Google Scholar 

  46. Paulovich AG, Toczyski DP, Hartwell LH (1997) Cell 88:315–321

    Article  PubMed  CAS  Google Scholar 

  47. Grant S, Roberts JD (2003) Drug Resist Updat 6:15–26

    Article  PubMed  CAS  Google Scholar 

  48. Fischer PM, Lane DP (2000) Curr Med Chem 7:1213–1245

    PubMed  CAS  Google Scholar 

  49. Sielecki TM, Boylan JF, Benfield PA, Trainor GL (2000) J Med Chem 43:1–18

    Article  CAS  Google Scholar 

  50. Kelland LR (2000) Expert Opin Invest Drugs 9:2903–2911

    Article  CAS  Google Scholar 

  51. Senderowicz AM, Headlee D, Stinson SF, Lush RM, Kalil N (1998) J Clin Oncol 16:2986–2999

    PubMed  CAS  Google Scholar 

  52. Webster KR (2000) Chem Res Toxicol 13:940–943

    Article  PubMed  CAS  Google Scholar 

  53. Knockaert M, Greengard P, Meijer L (2002) Trends Pharmacol Sci 23:417–425

    Article  PubMed  CAS  Google Scholar 

  54. Randic M (1993) Chem Phys Lett 211:478–483

    Article  CAS  Google Scholar 

  55. Gutman I (2004) Croat Chem Acta 77:61–64

    CAS  Google Scholar 

  56. Bajaj S, Sambi SS, Madan AK (2004) J Mol Struct (THEOCHEM) 684:197–203

    Article  CAS  Google Scholar 

  57. Goel A, Madan AK (1995) J Chem Inf Comput Sci 35:510–514

    Article  PubMed  CAS  Google Scholar 

  58. Bajaj S, Sambi SS, Madan AK (2005) Croat Chem Acta (in press)

  59. Kumar V, Sardana S, Madan AK (2004) J Mol Mod 10:399–407

    Article  CAS  Google Scholar 

  60. Bramson HN, Corona J, Davis ST, Dickerson SH, Edelstein M, Frye SV, Gampe RT, Harris PA Jr, Hassell A, Holmes WD, Hunter RN, Lackey KE, Lovejoy B, Luzzio MJ, Montana V, Rocque WJ, Rusnak D, Shewchuk L, Veal JM, Walker DH, Kuyper LF (2001) J Med Chem 44:4339–4358

    Article  PubMed  CAS  Google Scholar 

  61. Gupta S, Singh M, Madan AK (2001) J Comput Aid Mol Des 15:671–678

    Article  CAS  Google Scholar 

  62. Balaban AT, Motoc I, Bonchev D, Mekennyan O (1983) Top Curr Chem 114:21–55

    CAS  Google Scholar 

  63. Basak SC, Bertlsen S, Grunwold GD (1994) J Chem Inf Comput Sci 34:270–276

    Article  CAS  Google Scholar 

  64. Ruetz S, Fabbro D, Zimmermann J, Meyer T, Gray N (2003) Curr Med Chem Anti-Canc Agents 3:1–14

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Madan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dureja, H., Madan, A.K. Topochemical models for prediction of cyclin-dependent kinase 2 inhibitory activity of indole-2-ones. J Mol Model 11, 525–531 (2005). https://doi.org/10.1007/s00894-005-0276-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0276-3

Keywords