Skip to main content

Advertisement

Log in

Radionuclide therapy beyond radioiodine

Radionuklidtherapien jenseits von Jod-131

  • main topic
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Summary

For decades, Iodine-131 has been used for the treatment of patients with thyroid cancer. In recent years, increasingly, other radiopharmaceuticals are in clinical use in the treatment of various malignant diseases. Although in principle these therapies—as in all applications of radionuclides—special radiation protection measures are required, a separate nuclear medicine therapy department is not necessary in many cases due to the lower or lack of gamma radiation. In the following article, four different radionuclide therapies are more closely presented which are emerging in the last years. One of them is the “Peptide Receptor Radionuclide Therapy,” the so-called PRRT in which radiolabeled somatostatin (SST)-receptor(R) ligands are used in patients with neuroendocrine tumors. On the basis of radiolabeled antibodies against CD20-positive cells, the so-called radioimmunotherapy is used in the treatment of certain forms of malignant lymphoma. In primary or secondary liver tumors, the 90Y-labeled particles can be administered. Last but not the least, the palliative approach of bone-seeking radiopharmaceuticals is noted in patients with painful bone metastases.

Zusammenfassung

Seit Jahrzehnten wird Iod-131 in der Behandlung von Patienten mit Schilddrüsenkrebs verwendet. In den letzten Jahren finden zunehmend auch andere Radiopharmaka im klinischen Betrieb bei der Behandlung von verschiedenen malignen Erkrankungen Anwendung. Obgleich bei diesen Therapien grundsätzlich – wie bei sämtlichen Therapien mit offenen Radionukliden – spezielle Strahlenschutzvorkehrungen erforderlich sind, ist eine eigene nuklearmedizinische Therapiestation in vielen Fällen aufgrund der geringeren bzw. fehlenden Gammastrahlung im Unterschied zur Radiojodtherapie nicht notwendig. Im Folgenden werden vier verschiedene Radionuklidtherapien näher beleuchtet, die in den letzten Jahren zunehmend an Bedeutung gewonnen haben. Bei der sog. Radionuklidpeptidtherapie bekommen die Patienten einen radioaktiv markierten Rezeptorliganden appliziert, welcher an Somatostatin-Rezeptor-exprimierendes Gewebe in neuroendokrinen Tumoren bindet. Auf der Basis eines Antikörpers gegen CD20-positive Zellen wird die sog. Radioimmuntherapie in der Behandlung von bestimmten Formen eines malignen Lymphoms eingesetzt. Bei primären oder sekundären Lebertumoren können 90Y-markierte Partikel verwendet werden, welche direkt in das Zielgewebe appliziert werden. Desweiteren ist auch der palliative Ansatz von knochenaffinen Radiopharmaka zur Behandlung von Tumorschmerzen aufgrund von Knochenmetastasen zu erwähnen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Beierwaltes WH. The history of the use of radioactive iodine. Semin Nucl Med. 1979;3:151–5.

    Google Scholar 

  2. Gabriel M, Decristoforo C, Kendler D, et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: compariaon with somatostatin receptor scintigraphy and CT. J Nucl Med. 2007;48:508–18.

    Article  PubMed  CAS  Google Scholar 

  3. Gabriel M, Andergassen U, Putzer D, et al. Individualized peptide-related-radionuclide-therapy concept using different radiolabelled somatostatin analogs in advanced cancer patients. Q J Nucl Med Mol Imaging. 2010;54:92–9.

    PubMed  CAS  Google Scholar 

  4. van Essen M, Krenning EP, Kam BL, et al. Report on short-term side effects of treatments with 177Lu-octreotate in combination with capecitabine in seven patients with gastroenteropancreatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2008;35:743–8.

    Article  PubMed  CAS  Google Scholar 

  5. Reubi JC. In vitro identification of vasoactive peptide receptors in human tumours: implications for tumour imaging. J Nucl Med. 1995;36:1846–53.

    Google Scholar 

  6. De Jong M, Bernard B, De Bruin E, et al. Internalization of radiolabelled [DTPA0]octreotide and [DOTA0, Tyr3]octreotide: peptides for somatostatin receptor-targeted scintigraphy and radionuclide therapy. Nucl Med Commun. 1998;19:283–8.

    Article  PubMed  Google Scholar 

  7. de Jong M, Breeman WA, Valkema R, et al. Combination radionuclide therapy using 177Lu- and 90Y-labeled somatostatin analogs. J Nucl Med. 2005;46(suppl. 1):13–7.

    Google Scholar 

  8. Forrer F, Valkema R, Kwekkeboom DJ, de Jong M, Krenning EP. Neuroendocrine tumors. Peptide receptor radionuclide therapy. Best Pract Res Clin Endocrinol Metabol. 2007;21:111–29.

    Article  CAS  Google Scholar 

  9. Otte A, Jermann E, Behe M, et al. DOTATOC: a powerful new tool for receptor-mediated radionuclide therapy. Eur J Nucl Med. 1997; 24:792–5.

    Google Scholar 

  10. Otte A, Mueller-Brand J, Dellas S, Nitzsche E, Herrmann R, Maecke H. 90Yttrium labelled somatostatin- analogue for cancer treatment. Lancet. 1998;351:417–8.

    Article  PubMed  CAS  Google Scholar 

  11. Otte A, Hermann R, Heppeler A, et al. 90Yttrium DOTA-DOC; first clinical results. Eur J Nucl Med. 1999;26:1439–47.

    Article  PubMed  CAS  Google Scholar 

  12. Waldherr C, Pless M, Maecke H, Haldemann A, Mueller-Brand J. The clinical value of [90Y-DOTA]-D-Phe1-Tyr3-octreotide (90Y-DOTATOC) in the treatment of neuroendocrine tumours: a clinical phase II study. Ann Oncol. 2001;12:941–5.

    Article  PubMed  CAS  Google Scholar 

  13. Waldherr C, Pless M, Maecke H, et al. Tumour response and clinical benefit in neuroendocrine tumours after 7.4 GBq 90Y-DOTATOC. J Nucl Med. 2002;43:610–6.

    PubMed  CAS  Google Scholar 

  14. Waldherr C, Schumacher T, Maecke H, et al. Does tumour response depend on the number of treatment sessions at constant injected dose using 90Yttrium-DOTA-DOC in neuroendocrine tumours? Eur J Nucl Med. 2002;29(suppl. A):100.

    Google Scholar 

  15. Imhof A, Brunner P, Marincek N, et al. Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J Clin Oncol. 2011;29:2416–23.

    Article  PubMed  CAS  Google Scholar 

  16. Chinol M, Bodei L, Cremonesi M, Paganelli G. Receptor-mediated radiotherapy with 90Y-DOTA-D-Phe-Tyr3-octreotide; the experience of the European Institute of Oncology group. Semin Nucl Med. 2002;32:141–7.

    Article  PubMed  Google Scholar 

  17. Paganelli G, Bodei L, Hankiewicz Junak D, et al. 90Y-DOTA-D-Phe1-Tyr3-octreotide in therapy of neuroendocrine malignancies. Biopolymers. 2002;66:393–8.

    Article  PubMed  CAS  Google Scholar 

  18. Bodei L, Cremonensi M, Zoboli S, et al. Receptor-mediated radionuclide therapy with 90Y-DOTA-TOC in association with amino acid infusion: a phase I study. Eur J Nucl Med Mol Imaging. 2003;30:207–16.

    Article  PubMed  CAS  Google Scholar 

  19. Valkema R, Pauwels S, Kvols L, et al. Long-term follow-up of a phase 1 study of peptide receptor radionuclide therapy (PRRT) with [90Y-DOTA0, Tyr3]-octreotide in patients with somatostatin receptor positive tumours. Eur J Nucl Med Mol Imaging. 2003;30(suppl. 2):232.

    Google Scholar 

  20. Kwekkeboom D, Teunissen J, Bakker W, et al. Radiolabelled somatostatin analog [177Lu-DOTA0,Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumours. J Clin Oncol. 2005;23:2754–62.

    Article  PubMed  CAS  Google Scholar 

  21. Kwekkeboom DJ, de Herder WW, Kam BL, et al. Treatment with the radiolabeled somatostatin analog [177Lu-DOTA0,Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol. 2008;26:2124–30.

    Article  PubMed  CAS  Google Scholar 

  22. Khan S, Krenning EP, van Essen M, et al. Quality of life in 265 patients with gastroenteropancreatic or bronchial neuroendocrine tumors treated with [177Lu-DOTA0,Tyr3]octreotate. J Nucl Med. 2011;52:1361–8.

    Article  PubMed  CAS  Google Scholar 

  23. Bushnell DL Jr, O’Dorisio TM, O’Dorisio MS, et al. 90Y-Edotreotide for metastatic carcinoid refractory to octreotide. J Clin Oncol. 2010;28:1652–9.

    Article  PubMed  CAS  Google Scholar 

  24. Ezziddin S, Lauschke H, Schaefers M, et al. Neoadjuvant downsizing by internal radiation: a case for preoperative Peptide receptor radionuclide therapy in patients with pancreatic neuroendocrine tumors. Clin Nucl Med. 2012;37:102–4.

    Article  PubMed  Google Scholar 

  25. Gabriel M, Oberauer A, Dobrozemsky G, et al. 68Ga-DOTA-Tyr3-octreotide PET for assessing response to somatostatin-receptor-mediated radionuclide therapy. J Nucl Med. 2009;50:1427–34.

    Article  PubMed  CAS  Google Scholar 

  26. Kratochwill C, Giesel FL, Bruchertseifer F, et al. Dose escalation study of peptide receptor alpha-therapy with arterially administered 213Bi-DOTATOC in GEP-NET patients refractory to beta-emitters. Eur J Nucl Med Mol Imaging. 2011;38(suppl. 2):207.

    Google Scholar 

  27. Goldsmith SJ. Radioimmunotherapy of lymphoma: Bexxar and Zevalin. Semin Nucl Med. 2010;40:122–135.

    Article  PubMed  Google Scholar 

  28. Hess G. Radioimmuntherapy—still experimental? Rational, proven indications and future Trends. Memo. 2008;1:1-11.

    Article  Google Scholar 

  29. DeNardo G, DeNardo. Dose intensified molecular targeted radiotherapy for cancer—lymphoma as a paradigm. Semin Nucl Med. 2010;40:136–144.

    Google Scholar 

  30. Witzig TE, Gordon LI, Cabanillas F et al. Randomized controlled trial of 90Y-labeled Ibritumomab-Tiuxetan radioimmunotherapy versus Rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20:2453–63.

    Article  PubMed  CAS  Google Scholar 

  31. Gordon LI, Witzig T, Molina A, et al. Yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy produces high response rates and durable remissions in patients with previously treated B-cell lymphoma. Clin Lymphoma. 2004;5:98–101.

    Article  PubMed  CAS  Google Scholar 

  32. Zinzani PL, Tani M, Pulsoni A, et al. Fludarabine and mitoxantrone followed by yttrium-90 ibritumomab tiuxetan in previously untreated patients with follicular non-Hodgkin lymphoma trial: a phase II non-randomised trial (FLUMIZ). Lancet Oncol. 2008;9:352–8.

    Article  PubMed  CAS  Google Scholar 

  33. Emmanouilides C, Witzig TE, Gordon LI et al. Treatment with 90Y-Ibritumomab-Tiuxetan at early relapse is safe and effective in patients with previously treated B-cell non-Hodgkin’s lymphoma. Leuk Lymphoma. 2006;47:629–36.

    Article  PubMed  CAS  Google Scholar 

  34. Czuczman MS, Emmanouilides C, Darif M et al. Treatment-related myelodysplastic syndrome and acute myelogenous leukemia in patients treated with ibritumomab tiuxetan radioimmunotherapy. J Clin Oncol. 2007;25:4285–92.

    Article  PubMed  CAS  Google Scholar 

  35. Gisselbrecht C, Decaudin D, Mounier N et al. 90Y-Ibritumomab-Tiuxetan (Zevalin) combined with BEAM (Z-BEAM) conditioning regimen plus autologous stem cell transplantation in relapsed or refractory follicular lymphoma; GELA Phase II Study. Blood. 2007;110:abstr 22 (ASH Annual Meeting).

  36. Schilder RJ, Emmanouilides C, Vo K et al. Yttrium-90 ibritumomab tiuxetan (Zevalin®) is safe and effective in older patients with relapsed or refractory NHL. J Clin Oncol. 2005;23:575 (abstr 6562).

    Google Scholar 

  37. Schäfer NG, Pfammutter T. Die transarterielle Radioembolisation von Leberkarzinomen mit Y-90-Harzsphären (SIR-Spheres)—Erfahrungen am Universitätsspital Zürich. SchweizMed Forum. 2010;10:706–11.

    Google Scholar 

  38. Hoffman RT, Bilbao JI, Jakobs TF, et al. Comlications and side effects. In: Bilbao JI, Reiser MF, editors. Medical radiology diagnostic imaging; liver radioembolization with 90Y-microspheres. Springer-Verlag: Berlin; 2008. pp. 139–46.

    Chapter  Google Scholar 

  39. Van Cutsem E, Nordlinger B, Cervantes A and On behalf of the ESMO. Advanced colorectal cancer: ESMO Clinical Practice Guidelines for treatment. Ann Oncol. 2010; 21(suppl. 5):93–7.

    Google Scholar 

  40. Sato KT, Lewandowski RJ, Mulcahy MF, et al. Unresectable chemorefractory liver metastases: radioembolization with 90Y microspheres—safty, efficacy, and survival. Radiology. 2008;247:507–15.

    Article  PubMed  Google Scholar 

  41. Hendlisz A, Van Den Eynde M, Peeters M, et al. Phase III trial comparing protracted intravenous fluorouracil infusion alone or with yttrium-90 resin microspheres radioembolization for liver-limited metastatic colorectal cancer refractory to standard chemotherapy. J Clin Oncol. 2010;28:3687–94.

    Article  PubMed  CAS  Google Scholar 

  42. Sharma R, van Hazel G, Morgan B, et al. Radioembolization of liver metastases from colorectal cancer using yttrium-90 microspheres with concomitant systemic oxaliplatin, fluorouracil, and leucovorin chemotherapy. J Clin Oncol. 2007;25:1099–106.

    Article  PubMed  CAS  Google Scholar 

  43. van Hazel G, Blackwell A, Anderson J, et al. Randomised phase 2 trial of SIR-Spheres plus fluorouracil/leucovorin chemotherapy versus fluorouracil/leucovorin chemotherapy alone in advanced colorectal cancer. J Surg Oncol. 2004;88:78–85.

    Article  PubMed  CAS  Google Scholar 

  44. Sangro B, Carpanese L, Cianni R, et al. European multicenter evaluation of survival for patients with HCC treated by radioembolization [RE] with 90Y-labelled resin microspheres. ASCO Annual Meeting. J Clin Oncol. 2010;28(suppl. 7):4027.

    Google Scholar 

  45. Lewandowski RJ, Kulik LM, Riaz A, et al. A comparative analysis of transarterial downstaging for hepatocellular carcinoma: chemoembolization versus radioembolization. Am J Transplant. 2009;9:1920–8.

    Article  PubMed  CAS  Google Scholar 

  46. Kennedy AS, Dezarn W, McNeillie P, et al. Radioembolization for unresectable neuroendocrine hepatic metastases using resin 90Ymicrospheres: early results in 148 patients. Am J Clin Oncol. 2008;31:271–9.

    Article  PubMed  Google Scholar 

  47. Jakobs TF, Hoffmann RT, Fischer T, et al. Radioembolization in patients with hepatic metastases from breast cancer. J Vasc Interv Radiol. 2008;19:683–90.

    Article  PubMed  Google Scholar 

  48. Saxena A, Bester L, Chua TC, et al. Yttrium-90 radiotherapy for unresectable intrahepatic cholangiocarcinoma: a preliminary assessment of this novel treatment option. Ann Surg Oncol. 2010;17:484–91.

    Article  PubMed  Google Scholar 

  49. Bagni O, D’arienzo M, Salvatori R, et al. Can 90Y-PET predict the outcome of lesions after SIRT? Biodistribution assessment and preliminary data of voxel based dosimetry. Eur J Nucl Med Mol Imaging. 2011;38(suppl. 2):OP023.

    Google Scholar 

  50. Dieudonné A, Garin E, Laffont S, et al. Clinical feasibility of 3D dosimetry using S-values for the treatment of hepatocellular carcinoma with yttrium-90 microspheres. Eur J Nucl Med Mol Imaging. 2011;38(suppl. 2):OP135.

    Google Scholar 

  51. Paes FM, Serafini AN. Systemic metabolic radiopharmaceutical therapy in the treatment of metastatic bone pain. Semin Nucl Med. 2010;40:89–104.

    Article  PubMed  Google Scholar 

  52. Bodei L, Lam M, Chiesa C, et al. EANM procedure guideline for treatment of refractory metastatic bone pain. Eur J Nucl Med Mol Imaging. 2008;35:1934–40.

    Article  PubMed  Google Scholar 

  53. Leitha T. Palliation des Prostatakarzinoms: Medikamentöse Schmerztherapie, Schmerztherapie mit offenen Radionukliden, systemische Chemotherapie, Therapie mit Biphosphonaten. J Urol. 2003;10:13–7.

    Google Scholar 

  54. Kraeber-Bodere F, Campion L, Rousseau C, et al. Treatment of bone metastases of prostate cancer with strontium-89 chloride: efficacy in relation to the degree of bone involvement. Eur J Nucl Med. 2000;27:1487–93.

    Article  PubMed  CAS  Google Scholar 

  55. Gkialas I, Iordanidou L, Galanakis I, et al. The use of radioisotopes for palliation of metastatic bone pain. J BUON. 2008;13:177–183.

    PubMed  CAS  Google Scholar 

  56. Finlay IG, Mason MD, Shelley M. Radioisotopes for the palliation of metastatic bone cancer: a systematic review. Lancet Oncol. 2005;6:392–400.

    Article  PubMed  CAS  Google Scholar 

  57. Pons F, Herranz R, Garcia A, et al. Strontium-89 for palliation of pain from bone metastases in patients with prostate and breast cancer. Eur J Nucl Med. 1997;24:1210–4.

    Article  PubMed  CAS  Google Scholar 

  58. Baziotis N, Yakoumakis E, Zissimopoulos, et al. Strontium-89 chloride in the treatment of bone metastases from breast cancer. Oncology. 1998;55:377–81.

  59. Liepe K, Kotzerke J. A comparative study of 188Re-HEDP, 186Re-HEDP, 153Sm-EDTMP and 89Sr in the treatment of painful skeletal metastases. Nucl Med Commun. 2007;28:623–30.

    Article  PubMed  CAS  Google Scholar 

  60. Roquè I, Figuls M, Martinez-Zapata MJ, Scott-Brown M, Alonso-Coello P. Radioisotopes for metastatic bone pain. Cochrane Database Syst Rev. 2011;6:CD003347.

    Google Scholar 

  61. Baumann G, Charette M, Reid R, Satthya J. Radiopharmaceuticals for the palliation of painful bone metastasis-a systemic review. Radiother Oncol. 2005;75:258–70.

    Google Scholar 

  62. Kendler D, Donnemiller E, Oberladstätter M, et al. An individual approach to 153Sm-EDTMP therapy for pain palliation in bone metastases in correlation with clinical results. Nucl Med Commun. 2004;25:367–73.

    Article  PubMed  Google Scholar 

  63. Storto G, Klain M, Paone G, et al. Combined therapy of Sr-89 and zoledronic acid in patients with painful bone metastases. Bone. 2006;39:35–41.

    Article  PubMed  CAS  Google Scholar 

  64. Nilsson S, Franzén L, Parker C et al. Bone-targeted radium-223 in symptomatic, hormone-refractory prostate cancer: a randomised, multicentre, placebo-controlled phase II study. Lancet Oncol. 2007;8:587–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that there is no actual or potential conflict of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gabriel MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabriel, M. Radionuclide therapy beyond radioiodine. Wien Med Wochenschr 162, 430–439 (2012). https://doi.org/10.1007/s10354-012-0128-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-012-0128-6

Keywords

Schlüsselwörter