Summary
For decades, Iodine-131 has been used for the treatment of patients with thyroid cancer. In recent years, increasingly, other radiopharmaceuticals are in clinical use in the treatment of various malignant diseases. Although in principle these therapies—as in all applications of radionuclides—special radiation protection measures are required, a separate nuclear medicine therapy department is not necessary in many cases due to the lower or lack of gamma radiation. In the following article, four different radionuclide therapies are more closely presented which are emerging in the last years. One of them is the “Peptide Receptor Radionuclide Therapy,” the so-called PRRT in which radiolabeled somatostatin (SST)-receptor(R) ligands are used in patients with neuroendocrine tumors. On the basis of radiolabeled antibodies against CD20-positive cells, the so-called radioimmunotherapy is used in the treatment of certain forms of malignant lymphoma. In primary or secondary liver tumors, the 90Y-labeled particles can be administered. Last but not the least, the palliative approach of bone-seeking radiopharmaceuticals is noted in patients with painful bone metastases.
Zusammenfassung
Seit Jahrzehnten wird Iod-131 in der Behandlung von Patienten mit Schilddrüsenkrebs verwendet. In den letzten Jahren finden zunehmend auch andere Radiopharmaka im klinischen Betrieb bei der Behandlung von verschiedenen malignen Erkrankungen Anwendung. Obgleich bei diesen Therapien grundsätzlich – wie bei sämtlichen Therapien mit offenen Radionukliden – spezielle Strahlenschutzvorkehrungen erforderlich sind, ist eine eigene nuklearmedizinische Therapiestation in vielen Fällen aufgrund der geringeren bzw. fehlenden Gammastrahlung im Unterschied zur Radiojodtherapie nicht notwendig. Im Folgenden werden vier verschiedene Radionuklidtherapien näher beleuchtet, die in den letzten Jahren zunehmend an Bedeutung gewonnen haben. Bei der sog. Radionuklidpeptidtherapie bekommen die Patienten einen radioaktiv markierten Rezeptorliganden appliziert, welcher an Somatostatin-Rezeptor-exprimierendes Gewebe in neuroendokrinen Tumoren bindet. Auf der Basis eines Antikörpers gegen CD20-positive Zellen wird die sog. Radioimmuntherapie in der Behandlung von bestimmten Formen eines malignen Lymphoms eingesetzt. Bei primären oder sekundären Lebertumoren können 90Y-markierte Partikel verwendet werden, welche direkt in das Zielgewebe appliziert werden. Desweiteren ist auch der palliative Ansatz von knochenaffinen Radiopharmaka zur Behandlung von Tumorschmerzen aufgrund von Knochenmetastasen zu erwähnen.



Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Beierwaltes WH. The history of the use of radioactive iodine. Semin Nucl Med. 1979;3:151–5.
Gabriel M, Decristoforo C, Kendler D, et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: compariaon with somatostatin receptor scintigraphy and CT. J Nucl Med. 2007;48:508–18.
Gabriel M, Andergassen U, Putzer D, et al. Individualized peptide-related-radionuclide-therapy concept using different radiolabelled somatostatin analogs in advanced cancer patients. Q J Nucl Med Mol Imaging. 2010;54:92–9.
van Essen M, Krenning EP, Kam BL, et al. Report on short-term side effects of treatments with 177Lu-octreotate in combination with capecitabine in seven patients with gastroenteropancreatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2008;35:743–8.
Reubi JC. In vitro identification of vasoactive peptide receptors in human tumours: implications for tumour imaging. J Nucl Med. 1995;36:1846–53.
De Jong M, Bernard B, De Bruin E, et al. Internalization of radiolabelled [DTPA0]octreotide and [DOTA0, Tyr3]octreotide: peptides for somatostatin receptor-targeted scintigraphy and radionuclide therapy. Nucl Med Commun. 1998;19:283–8.
de Jong M, Breeman WA, Valkema R, et al. Combination radionuclide therapy using 177Lu- and 90Y-labeled somatostatin analogs. J Nucl Med. 2005;46(suppl. 1):13–7.
Forrer F, Valkema R, Kwekkeboom DJ, de Jong M, Krenning EP. Neuroendocrine tumors. Peptide receptor radionuclide therapy. Best Pract Res Clin Endocrinol Metabol. 2007;21:111–29.
Otte A, Jermann E, Behe M, et al. DOTATOC: a powerful new tool for receptor-mediated radionuclide therapy. Eur J Nucl Med. 1997; 24:792–5.
Otte A, Mueller-Brand J, Dellas S, Nitzsche E, Herrmann R, Maecke H. 90Yttrium labelled somatostatin- analogue for cancer treatment. Lancet. 1998;351:417–8.
Otte A, Hermann R, Heppeler A, et al. 90Yttrium DOTA-DOC; first clinical results. Eur J Nucl Med. 1999;26:1439–47.
Waldherr C, Pless M, Maecke H, Haldemann A, Mueller-Brand J. The clinical value of [90Y-DOTA]-D-Phe1-Tyr3-octreotide (90Y-DOTATOC) in the treatment of neuroendocrine tumours: a clinical phase II study. Ann Oncol. 2001;12:941–5.
Waldherr C, Pless M, Maecke H, et al. Tumour response and clinical benefit in neuroendocrine tumours after 7.4 GBq 90Y-DOTATOC. J Nucl Med. 2002;43:610–6.
Waldherr C, Schumacher T, Maecke H, et al. Does tumour response depend on the number of treatment sessions at constant injected dose using 90Yttrium-DOTA-DOC in neuroendocrine tumours? Eur J Nucl Med. 2002;29(suppl. A):100.
Imhof A, Brunner P, Marincek N, et al. Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J Clin Oncol. 2011;29:2416–23.
Chinol M, Bodei L, Cremonesi M, Paganelli G. Receptor-mediated radiotherapy with 90Y-DOTA-D-Phe-Tyr3-octreotide; the experience of the European Institute of Oncology group. Semin Nucl Med. 2002;32:141–7.
Paganelli G, Bodei L, Hankiewicz Junak D, et al. 90Y-DOTA-D-Phe1-Tyr3-octreotide in therapy of neuroendocrine malignancies. Biopolymers. 2002;66:393–8.
Bodei L, Cremonensi M, Zoboli S, et al. Receptor-mediated radionuclide therapy with 90Y-DOTA-TOC in association with amino acid infusion: a phase I study. Eur J Nucl Med Mol Imaging. 2003;30:207–16.
Valkema R, Pauwels S, Kvols L, et al. Long-term follow-up of a phase 1 study of peptide receptor radionuclide therapy (PRRT) with [90Y-DOTA0, Tyr3]-octreotide in patients with somatostatin receptor positive tumours. Eur J Nucl Med Mol Imaging. 2003;30(suppl. 2):232.
Kwekkeboom D, Teunissen J, Bakker W, et al. Radiolabelled somatostatin analog [177Lu-DOTA0,Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumours. J Clin Oncol. 2005;23:2754–62.
Kwekkeboom DJ, de Herder WW, Kam BL, et al. Treatment with the radiolabeled somatostatin analog [177Lu-DOTA0,Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol. 2008;26:2124–30.
Khan S, Krenning EP, van Essen M, et al. Quality of life in 265 patients with gastroenteropancreatic or bronchial neuroendocrine tumors treated with [177Lu-DOTA0,Tyr3]octreotate. J Nucl Med. 2011;52:1361–8.
Bushnell DL Jr, O’Dorisio TM, O’Dorisio MS, et al. 90Y-Edotreotide for metastatic carcinoid refractory to octreotide. J Clin Oncol. 2010;28:1652–9.
Ezziddin S, Lauschke H, Schaefers M, et al. Neoadjuvant downsizing by internal radiation: a case for preoperative Peptide receptor radionuclide therapy in patients with pancreatic neuroendocrine tumors. Clin Nucl Med. 2012;37:102–4.
Gabriel M, Oberauer A, Dobrozemsky G, et al. 68Ga-DOTA-Tyr3-octreotide PET for assessing response to somatostatin-receptor-mediated radionuclide therapy. J Nucl Med. 2009;50:1427–34.
Kratochwill C, Giesel FL, Bruchertseifer F, et al. Dose escalation study of peptide receptor alpha-therapy with arterially administered 213Bi-DOTATOC in GEP-NET patients refractory to beta-emitters. Eur J Nucl Med Mol Imaging. 2011;38(suppl. 2):207.
Goldsmith SJ. Radioimmunotherapy of lymphoma: Bexxar and Zevalin. Semin Nucl Med. 2010;40:122–135.
Hess G. Radioimmuntherapy—still experimental? Rational, proven indications and future Trends. Memo. 2008;1:1-11.
DeNardo G, DeNardo. Dose intensified molecular targeted radiotherapy for cancer—lymphoma as a paradigm. Semin Nucl Med. 2010;40:136–144.
Witzig TE, Gordon LI, Cabanillas F et al. Randomized controlled trial of 90Y-labeled Ibritumomab-Tiuxetan radioimmunotherapy versus Rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20:2453–63.
Gordon LI, Witzig T, Molina A, et al. Yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy produces high response rates and durable remissions in patients with previously treated B-cell lymphoma. Clin Lymphoma. 2004;5:98–101.
Zinzani PL, Tani M, Pulsoni A, et al. Fludarabine and mitoxantrone followed by yttrium-90 ibritumomab tiuxetan in previously untreated patients with follicular non-Hodgkin lymphoma trial: a phase II non-randomised trial (FLUMIZ). Lancet Oncol. 2008;9:352–8.
Emmanouilides C, Witzig TE, Gordon LI et al. Treatment with 90Y-Ibritumomab-Tiuxetan at early relapse is safe and effective in patients with previously treated B-cell non-Hodgkin’s lymphoma. Leuk Lymphoma. 2006;47:629–36.
Czuczman MS, Emmanouilides C, Darif M et al. Treatment-related myelodysplastic syndrome and acute myelogenous leukemia in patients treated with ibritumomab tiuxetan radioimmunotherapy. J Clin Oncol. 2007;25:4285–92.
Gisselbrecht C, Decaudin D, Mounier N et al. 90Y-Ibritumomab-Tiuxetan (Zevalin) combined with BEAM (Z-BEAM) conditioning regimen plus autologous stem cell transplantation in relapsed or refractory follicular lymphoma; GELA Phase II Study. Blood. 2007;110:abstr 22 (ASH Annual Meeting).
Schilder RJ, Emmanouilides C, Vo K et al. Yttrium-90 ibritumomab tiuxetan (Zevalin®) is safe and effective in older patients with relapsed or refractory NHL. J Clin Oncol. 2005;23:575 (abstr 6562).
Schäfer NG, Pfammutter T. Die transarterielle Radioembolisation von Leberkarzinomen mit Y-90-Harzsphären (SIR-Spheres)—Erfahrungen am Universitätsspital Zürich. SchweizMed Forum. 2010;10:706–11.
Hoffman RT, Bilbao JI, Jakobs TF, et al. Comlications and side effects. In: Bilbao JI, Reiser MF, editors. Medical radiology diagnostic imaging; liver radioembolization with 90Y-microspheres. Springer-Verlag: Berlin; 2008. pp. 139–46.
Van Cutsem E, Nordlinger B, Cervantes A and On behalf of the ESMO. Advanced colorectal cancer: ESMO Clinical Practice Guidelines for treatment. Ann Oncol. 2010; 21(suppl. 5):93–7.
Sato KT, Lewandowski RJ, Mulcahy MF, et al. Unresectable chemorefractory liver metastases: radioembolization with 90Y microspheres—safty, efficacy, and survival. Radiology. 2008;247:507–15.
Hendlisz A, Van Den Eynde M, Peeters M, et al. Phase III trial comparing protracted intravenous fluorouracil infusion alone or with yttrium-90 resin microspheres radioembolization for liver-limited metastatic colorectal cancer refractory to standard chemotherapy. J Clin Oncol. 2010;28:3687–94.
Sharma R, van Hazel G, Morgan B, et al. Radioembolization of liver metastases from colorectal cancer using yttrium-90 microspheres with concomitant systemic oxaliplatin, fluorouracil, and leucovorin chemotherapy. J Clin Oncol. 2007;25:1099–106.
van Hazel G, Blackwell A, Anderson J, et al. Randomised phase 2 trial of SIR-Spheres plus fluorouracil/leucovorin chemotherapy versus fluorouracil/leucovorin chemotherapy alone in advanced colorectal cancer. J Surg Oncol. 2004;88:78–85.
Sangro B, Carpanese L, Cianni R, et al. European multicenter evaluation of survival for patients with HCC treated by radioembolization [RE] with 90Y-labelled resin microspheres. ASCO Annual Meeting. J Clin Oncol. 2010;28(suppl. 7):4027.
Lewandowski RJ, Kulik LM, Riaz A, et al. A comparative analysis of transarterial downstaging for hepatocellular carcinoma: chemoembolization versus radioembolization. Am J Transplant. 2009;9:1920–8.
Kennedy AS, Dezarn W, McNeillie P, et al. Radioembolization for unresectable neuroendocrine hepatic metastases using resin 90Ymicrospheres: early results in 148 patients. Am J Clin Oncol. 2008;31:271–9.
Jakobs TF, Hoffmann RT, Fischer T, et al. Radioembolization in patients with hepatic metastases from breast cancer. J Vasc Interv Radiol. 2008;19:683–90.
Saxena A, Bester L, Chua TC, et al. Yttrium-90 radiotherapy for unresectable intrahepatic cholangiocarcinoma: a preliminary assessment of this novel treatment option. Ann Surg Oncol. 2010;17:484–91.
Bagni O, D’arienzo M, Salvatori R, et al. Can 90Y-PET predict the outcome of lesions after SIRT? Biodistribution assessment and preliminary data of voxel based dosimetry. Eur J Nucl Med Mol Imaging. 2011;38(suppl. 2):OP023.
Dieudonné A, Garin E, Laffont S, et al. Clinical feasibility of 3D dosimetry using S-values for the treatment of hepatocellular carcinoma with yttrium-90 microspheres. Eur J Nucl Med Mol Imaging. 2011;38(suppl. 2):OP135.
Paes FM, Serafini AN. Systemic metabolic radiopharmaceutical therapy in the treatment of metastatic bone pain. Semin Nucl Med. 2010;40:89–104.
Bodei L, Lam M, Chiesa C, et al. EANM procedure guideline for treatment of refractory metastatic bone pain. Eur J Nucl Med Mol Imaging. 2008;35:1934–40.
Leitha T. Palliation des Prostatakarzinoms: Medikamentöse Schmerztherapie, Schmerztherapie mit offenen Radionukliden, systemische Chemotherapie, Therapie mit Biphosphonaten. J Urol. 2003;10:13–7.
Kraeber-Bodere F, Campion L, Rousseau C, et al. Treatment of bone metastases of prostate cancer with strontium-89 chloride: efficacy in relation to the degree of bone involvement. Eur J Nucl Med. 2000;27:1487–93.
Gkialas I, Iordanidou L, Galanakis I, et al. The use of radioisotopes for palliation of metastatic bone pain. J BUON. 2008;13:177–183.
Finlay IG, Mason MD, Shelley M. Radioisotopes for the palliation of metastatic bone cancer: a systematic review. Lancet Oncol. 2005;6:392–400.
Pons F, Herranz R, Garcia A, et al. Strontium-89 for palliation of pain from bone metastases in patients with prostate and breast cancer. Eur J Nucl Med. 1997;24:1210–4.
Baziotis N, Yakoumakis E, Zissimopoulos, et al. Strontium-89 chloride in the treatment of bone metastases from breast cancer. Oncology. 1998;55:377–81.
Liepe K, Kotzerke J. A comparative study of 188Re-HEDP, 186Re-HEDP, 153Sm-EDTMP and 89Sr in the treatment of painful skeletal metastases. Nucl Med Commun. 2007;28:623–30.
Roquè I, Figuls M, Martinez-Zapata MJ, Scott-Brown M, Alonso-Coello P. Radioisotopes for metastatic bone pain. Cochrane Database Syst Rev. 2011;6:CD003347.
Baumann G, Charette M, Reid R, Satthya J. Radiopharmaceuticals for the palliation of painful bone metastasis-a systemic review. Radiother Oncol. 2005;75:258–70.
Kendler D, Donnemiller E, Oberladstätter M, et al. An individual approach to 153Sm-EDTMP therapy for pain palliation in bone metastases in correlation with clinical results. Nucl Med Commun. 2004;25:367–73.
Storto G, Klain M, Paone G, et al. Combined therapy of Sr-89 and zoledronic acid in patients with painful bone metastases. Bone. 2006;39:35–41.
Nilsson S, Franzén L, Parker C et al. Bone-targeted radium-223 in symptomatic, hormone-refractory prostate cancer: a randomised, multicentre, placebo-controlled phase II study. Lancet Oncol. 2007;8:587–94.
Conflict of interest
The authors declare that there is no actual or potential conflict of interest in relation to this article.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gabriel, M. Radionuclide therapy beyond radioiodine. Wien Med Wochenschr 162, 430–439 (2012). https://doi.org/10.1007/s10354-012-0128-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10354-012-0128-6