Skip to main content
Log in

Molecular simulations of droplet evaporation by heat transfer

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Droplet evaporation by heat transfer is investigated by molecular dynamics simulations for a pure Lennard-Jones fluid. Two different initial conditions are treated: (1) a droplet surrounded by its vapor in equilibrium, (2) a cold droplet surrounded by warm vapor. In both cases heat is transferred from a heat bath. Results are the numbers of droplet molecules N d and density, drift velocity, and temperature profiles as functions of time. For the small droplets considered N d depends on the definition of a droplet molecule. The density profiles as function of time show a transition from a droplet with liquid–vapor interface to a cluster of interfacial type and finally to the gas state. The temperature at a given time is nearly constant within the droplets or clusters but strong gradients occur in the gas. In case of evaporation of a cold droplet surrounded by warm vapor we observed initially cooling down of the droplet corresponding to pressure jump evaporation and thereafter slower evaporation because of lower initial state vapor density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Allen MP, Tildesley DJ (1994) Computer simulation of liquids, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • Bhansali AP, Bayazitoglu Y, Maruyama S (1999) Molecular dynamics simulation of an evaporating sodium droplet. Int J Therm Sci 38:66–74

    Article  Google Scholar 

  • Bhatnagar PL, Gross ER, Krook M (1954) A model for collision processes in gases I. Small amplitude processes in charged and neutral one-component systems. Phys Rev 94:511–525

    Article  MATH  Google Scholar 

  • Consolini L, Aggarwal SK, Murad S (2003) A molecular dynamics simulation of droplet evaporation. Int J Heat Mass Transf 46:3179–3188

    Article  MATH  Google Scholar 

  • Davis HT (1987) Kinetic theory of flows in strongly inhomogeneous fluids. Chem Eng Commun 58:413

    Google Scholar 

  • Fischer J (1976) Distribution of pure vapor between two parallel plates under the influence of strong evaporation and condensation. Phys Fluids 19:1305–1311

    Article  MATH  Google Scholar 

  • Fischer J, Methfessel M (1980) Born–Green–Yvon approach to the local densities of a fluid at interfaces. Phys Rev A22:2836–2843

    Google Scholar 

  • Gear CW (1971) Numerical initial value problems in ordinary differential equations. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Haile JM (1980) A primer on the computer simulation of atomic fluids by molecular dynamics. Script, Clemson University, Clemson

  • Haile JM (1992) Molecular dynamics, elementary methods. Wiley, New York

    Google Scholar 

  • Heinbuch U, Fischer J (1989) Liquid flow in pores: slip, no-slip or multilayer-sticking? Phys Rev A40:1144–1146

    Google Scholar 

  • Hertz H (1882) Über die Verdunstung der Flüssigkeiten, insbesondere des Quecksilbers, im luftleeren Raume. Ann Phys 253:177–200

    Google Scholar 

  • Kaltz TL, Long LN, Micci MM, Little JK (1998) Supercritical vaporization of liquid oxygen droplets using molecular dynamics. Combust Sci Technol 136:279–301

    Google Scholar 

  • Knudsen M (1915) Die maximale Verdampfungsgeschwindigkeit des Quecksilbers. Ann Phys 352:697–709

    Google Scholar 

  • Kogan MN (1969) Rarefied gas dynamics. Plenum Press, New York

    Google Scholar 

  • Kryukov AP, Levashov VY, Sazhin SS (2004) Evaporation of diesel fuel droplets: kinetic versus hydrodynamic models. Int J Heat Mass Transf 47:2541–2549

    Article  MATH  Google Scholar 

  • Long NL, Micci MM, Wong BC (1996) Molecular dynamics simulation of droplet evaporation. Comput Phys Commun 96:167–172

    Article  Google Scholar 

  • Lotfi A (1993) Molekulardynamische Simulationen an Fluiden: Phasengleichgewicht und Verdampfung. Fortschritt-Berichte VDI, VDI-Verlag Düsseldorf (ISBN 3-18-143503-1) (PhD thesis at Ruhr-Universität-Bochum, Germany, 1993, supervised by J. Fischer, see also: http://www.map.boku.ac.at/2906.html)

  • Lotfi A, Vrabec J, Fischer J (1992) Vapor liquid equilibria of the Lennard-Jones fluid from the NpT + test particle method. Mol Phys 76:1319–1333

    Article  Google Scholar 

  • Matsumoto M, Yasuoka K, Kataoka Y (1995) Molecular simulation of evaporation and condensation. Fluid Phase Equilib 104:431–439

    Article  Google Scholar 

  • Mecke M, Winkelmann J, Fischer J (1997) Molecular dynamics simulation of the liquid–vapor interface: the Lennard-Jones fluid. J Chem Phys 107:9264–9270

    Article  Google Scholar 

  • Rein ten Wolde P, Frenkel D (1998) Computer simulation study of gas–liquid nucleation in a Lennard-Jones system. J Chem Phys 109:9901–9918

    Article  Google Scholar 

  • Smit B (1992) Phase diagrams of Lennard-Jones fluids. J Chem Phys 96:8639–8640

    Article  Google Scholar 

  • Sumardiono S, Fischer J (2005) Molecular dynamics simulations of mixture droplet evaporation. In: Pagliarini J, Rainieri S (eds) Proceedings of eurotherm seminar 77, heat and mass transfer in food processing, parma, Edizione ETS Parma, pp 323–328, ISBN 88-467-1302-8

  • Sumardiono S, Fischer J (2006) Molecular simulations of droplet evaporation processes: adiabatic pressure jump evaporation. Int J Heat Mass Transf 49:1148–1161

    Article  Google Scholar 

  • Tegeler Ch, Span R, Wagner W (1999) A new equation of state for argon covering the fluid region for temperatures from the melting line to 700 K at pressures up to 1000 MPa. J Phys Chem Ref Data 28:779–850

    Google Scholar 

  • Thompson SM, Gubbins KE, Walton JPRB, Chantry RAR, Rowlinson JS (1984) A molecular dynamics study of liquid drops. J Chem Phys 81:530–542

    Article  Google Scholar 

  • Volmer M (1939) Kinetik der Phasenbildung. Steinkopff Verlag, Dresden Leipzig

    Google Scholar 

  • Vrabec J, Kedia GK, Fuchs G, Hasse H (2006) Comprehensive study on vapor–liquid coexistence of the truncated and shifted Lennard-Jones fluid including planar and spherical interface properties. Mol Phys 104:1509–1527

    Article  Google Scholar 

  • Walther JH, Koumoutsakos PJ (2001) Molecular dynamics simulation of nanodroplet evaporation. J Heat Transf 123:741–748

    Article  Google Scholar 

  • Wei Shi, Johnson JK (2001) Histogram reweighting and finite-size scaling study of the Lennard-Jones fluids. Fluid Phase Equilib 187–188:171–191

    Article  Google Scholar 

  • Yasuoka K, Matsumoto M, Kataoka Y (1994) Evaporation and condensation at a liquid surface. I. Argon. J Chem Phys 101:7904–7911

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge that J. Vrabec, Gaurav Kumar Kedia, G. Fuchs, and H. Hasse from Universität Stuttgart have made available to them results from their paper (Vrabec et al. 2006) prior to publication. One of us (S.S.) gratefully acknowledges a fellowship in the program ASEA-Uninet sponsored by Österreichischer Akademischer Austauschdienst (Austrian Academic Exchange Service) and the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Fischer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sumardiono, S., Fischer, J. Molecular simulations of droplet evaporation by heat transfer. Microfluid Nanofluid 3, 127–140 (2007). https://doi.org/10.1007/s10404-006-0110-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-006-0110-y

Keywords

Profiles

  1. Siswo Sumardiono