Skip to main content

Advertisement

Log in

Long non-coding RNAs in metastasis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Long non-coding RNA (lncRNA) genes have recently been discovered as key regulators of developmental, physiological, and pathological processes in humans. Recent studies indicate that lncRNAs regulate every step of gene expression, and their aberrant expression can be found in the majority of cancer types. Particularly, lncRNAs were found to function in tumor development and metastasis, which is the major cause of cancer-related death. Thus, exploring key roles of lncRNAs in metastasis is predicted to enhance our knowledge of metastasis, and uncover novel therapeutic targets and biomarkers of this process. In this review, we discuss the molecular mechanisms of lncRNAs in gene expression regulation and their function in metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M. C., Maeda, N., et al. (2005). The transcriptional landscape of the mammalian genome. Science, 309, 1559–1563.

    Article  CAS  PubMed  Google Scholar 

  2. Banfai, B., Jia, H., Khatun, J., Wood, E., Risk, B., Gundling Jr., W. E., et al. (2012). Long noncoding RNAs are rarely translated in two human cell lines. Genome Research, 22, 1646–1657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hon, C. C., Ramilowski, J. A., Harshbarger, J., Bertin, N., Rackham, O. J., Gough, J., et al. (2017). An atlas of human long non-coding RNAs with accurate 5′ ends. Nature, 543, 199–204.

    Article  CAS  PubMed  Google Scholar 

  4. Harrow, J., Frankish, A., Gonzales, J. M., Tapanari, E., Diekhans, M., Kokocinski, F., et al. (2012). GENCODE: the reference human genome annotation for the ENCODE project. Genome Research, 22, 1760–1774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Plath, K., Fang, J., Mlynarczyk-Evans, S. K., Cao, R., Worringer, K. A., Wang, H., et al. (2003). Role of histone H3 lysine 27 methylation in X inactivation. Science, 300, 131–135.

    Article  CAS  PubMed  Google Scholar 

  6. Pasmant, E., Laurendeau, I., Heron, D., Vidaud, M., Vidaud, D., & Bieche, I. (2007). Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Research, 67, 3963–3969.

    Article  CAS  PubMed  Google Scholar 

  7. Yap, K. L., Li, S., Munoz-Cabello, A. M., Raguz, Z., & Zeng, L. (2010). Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Molecular Cell, 38, 662–674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hu, X., Feng, Y., Zhang, D., Zhao, S. D., Hu, Z., Greshock, J., et al. (2014). A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer Cell, 26, 344–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gumireddy, K., Li, A., Yan, J., Setoyama, T., Johannes, G. J., Orom, U. A., et al. (2013). Identification of a long non-coding RNA-associated RNP complex regulating metastasis at the translational step. The EMBO Journal, 32, 2672–2684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yoon, J., Abdelmohsen, K., Srikantan, S., Yang, X., Martindale, J. L., De, S., et al. (2012). LincRNA-p21 suppresses target mRNA translation. Molecular Cell, 47, 648–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W. J., & Pandolfi, P. P. (2010). A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 465, 1033–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kino, T., Hurt, D. E., Ichijo, T., Nader, N., & Chrousos, G. P. (2010). Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Science Signaling, 3, ra8.

    PubMed  PubMed Central  Google Scholar 

  13. Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nature Reviews. Cancer, 3, 453–458.

    Article  CAS  PubMed  Google Scholar 

  14. Yan, J., & Huang, Q. (2012). Genomic screens for metastasis genes. Cancer Metastasis Reviews, 31, 419–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yan, J., Yang, Q., & Huang, Q. (2012). Metastasis suppressor genes. Histology and Histopathology, 28, 285–292.

    Google Scholar 

  16. Chrisholm, K. M., Wan, Y., Li, R., Montgomery, K. D., Chang, H. Y., & West, R. B. (2012). Detection of long non-coding RNA in archival tissue: correlation with polycomb protein expression in primary and metastatic breast carcinoma. PLoS One, 7, e47998.

    Article  Google Scholar 

  17. Kogo, R., Shimamura, T., Mimori, K., Kawahara, K., Imoto, S., Sudo, T., et al. (2011). Long noncoding RNA HOTAIR regulates polycomb dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Research, 71, 6320–6326.

    Article  CAS  PubMed  Google Scholar 

  18. Loewen, G., Jayawickramarajah, J., Zhuo, Y., & Shan, B. (2014). Function of lncRNA HOTAIR in lung cancer. Journal of Hematology & Oncology, 7, 90.

    Article  Google Scholar 

  19. Tsai, M. C., Manor, O., Wan, Y., Mosammaparast, N., Wang, J. K., Lan, F., et al. (2010). Long noncoding RNA as modular scaffold of histone modification complexes. Science, 329, 689–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gupta, R. A., Shah, N., Wang, K. C., Kim, J., Horlings, H. M., Wong, D. J., et al. (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464, 1071–1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ayesh, S., Matouk, I., Schneider, T., Ohana, P., Laster, M., Al-Sharef, W., et al. (2002). Possible physiological role of H19 RNA. Molecular Carcinogenesis, 35, 63–74.

    Article  CAS  PubMed  Google Scholar 

  22. Raveh, E., Matouk, U., Gilon, M., & Hochberg, A. (2015). The H19 long non-coding RNA in cancer initiation, progression and metastasis—a proposed unifying theory. Molecular Cancer, 14, 184.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liang, W. C., Fu, W. M., Wong, C. W., Wang, Y., Wang, W. M., Hu, G. X., et al. (2015). The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer. Oncotarget, 6, 22513–22525.

    PubMed  PubMed Central  Google Scholar 

  24. Luo, M., Li, Z., Wang, W., Zeng, Y., & Liu, Z. (2013). Long noncoding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Letters, 333, 213–221.

    Article  CAS  PubMed  Google Scholar 

  25. Ling, H., Spizzo, R., Atlasi, Y., Nicoloso, M., Shimizu, M., Redis, R. S., et al. (2013). CCAT2, a novel noncoding RNA mapping to 8q24 underlies metastatic progression and chromosomal instability in colon cancer. Genome Research, 23, 1446–1461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Redis, R. S., Sieuwerts, A. M., Look, M. P., Tudoran, O., Ivan, C., Spizzo, R., et al. (2013). CCAT2, a novel long noncoding RNA in breast cancer: expression study and clinical correlations. Oncotarget, 4, 1748–1762.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yang, F., Zhang, L., Huo, X. S., Yuan, J. H., Xu, D., Yuan, S. X., et al. (2011). Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of zeste homolog 2 in humans. Hepatology, 54, 1679–1689.

    Article  CAS  PubMed  Google Scholar 

  28. Yang, F., Huo, X. S., Yuan, S. X., Zhang, L., Zhou, W. P., Wang, F., et al. (2013). Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Molecular Cell, 49, 1083–1097.

    Article  CAS  PubMed  Google Scholar 

  29. Hu, Q., Lu, Y. Y., Noh, H., Hong, S., Dong, Z., Ding, H. F., et al. (2013). Interleukin enhancer-binding factor 3 promotes breast tumor progression by regulating sustained urokinase-type plasminogen activator expression. Oncogene, 32, 3933–3943.

    Article  CAS  PubMed  Google Scholar 

  30. Liu, B., Sun, L., Liu, Q., Gong, C., Yao, Y., Lv, X., et al. (2015). A cytoplasmic NF-ĸB interacting long noncoding RNA blocks IĸB phosphorylation and suppresses breast cancer metastasis. Cancer Cell, 27, 370–381.

    Article  CAS  PubMed  Google Scholar 

  31. Huang, J. F., Guo, Y. J., Zhao, C. X., Yuan, S. X., Wang, Y., Tang, G. N., et al. (2013). Hepatitis B virus X protein (HBx)-related long noncoding RNA (lncRNA) down-regulated expression of HBx (Dreh) inhibits hepatocellular carcinoma metastasis by targeting the intermediate filament protein vimentin. Hepatology, 57, 1882–1892.

    Article  CAS  PubMed  Google Scholar 

  32. Ji, P., Diederichs, S., Wang, W., Böing, S., Metzger, R., Schneider, P. M., et al. (2003). MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 22, 8031–8041.

    Article  PubMed  Google Scholar 

  33. Ying, L., Chen, Q., Wang, Y., Zhou, Z., Huang, Y., & Qiu, F. (2012). Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition. Molecular Biosystems, 8, 2289–2294.

    Article  CAS  PubMed  Google Scholar 

  34. Li, Y., Yang, Z., Wan, X., Zhou, J., Zhang, Y., Ma, H., et al. (2016). Clinical prognostic value of metastasis-associated adenocarcinoma transcript 1 in various human cancers: an updated meta-analysis. The International Journal of Biological Markers, 31, e173–e182.

    Article  PubMed  Google Scholar 

  35. Tripathi, V., Ellis, J. D., Shen, Z., Song, D. Y., Pan, Q., Watt, A. T., et al. (2010). The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Molecular Cell, 39, 925–938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wilusz, J. E. (2016). Long noncoding RNAs: Re-writing dogmas of RNA processing and stability. Biochimica et Biophysica Acta, 1859, 128–138.

    Article  CAS  PubMed  Google Scholar 

  37. Gutschner, T., Hämmerle, M., Eissmann, M., Hsu, J., Kim, Y., Hung, G., et al. (2013). The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Research, 73, 1180–1189.

    Article  CAS  PubMed  Google Scholar 

  38. Khalil, A. M., Guttman, M., Harte, M., Garber, M., Raj, A., Rivea-Morales, D., et al. (2009). Decreased expression of large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proceedings of the National Academy of Sciences of the United States of America, 106, 11667–11672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu, T. P., Huang, M. D., Xia, R., Liu, X. X., Sun, M., Yin, L., et al. (2014). Decreased expression of the long non-coding RNA FENDRR is associated with poor prognosis in gastric cancer and FENDRR regulates gastric cancer cell metastasis by affecting fibronectin1 expression. Journal of Hematology & Oncology, 7, 63.

    Article  Google Scholar 

  40. Hou, P., Zhao, Y., Li, Z., Ma, M., Gao, Y., Zhao, L., et al. (2014). LincRNA ROR induces epithelial-to-mesenchymal transition and contributes to breast cancer tumorigenesis and metastasis. Cell Death & Disease, 5, e1287.

    Article  CAS  Google Scholar 

  41. Eades, G., Wolfson, B., Zhang, Y., Li, Q., Yao, Y., & Zhou, Q. (2015). LincRNA ROR and miR-145 regulate invasion in triple-negative breast cancer via targeting ARF6. Molecular Cancer Research, 13, 330–338.

    Article  CAS  PubMed  Google Scholar 

  42. Sun, T. T., He, J., Liang, Q., Ren, L. L., Yan, T. T., Yu, T. C., et al. (2016). LncRNA GClnc1 promotes gastric carcinogenesis and may act as a molecular scaffold of WDR5 and KAT2A complexes to specify the histone modification pattern. Cancer Discovery, 6, 784–801.

    Article  CAS  PubMed  Google Scholar 

  43. Chang, B., Yang, H., Jiao, Y., Wang, K., Liu, Z., Wu, P., et al. (2016). SOD2 deregulation enhances migration, invasion and has poor prognosis in salivary adenoid cystic carcinoma. Scientific Reports, 6, 25918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yuan, J. H., Yang, F., Wang, F., Ma, J. Z., Guo, Y. J., Tao, Q. F., et al. (2014). A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell, 25, 666–681.

    Article  CAS  PubMed  Google Scholar 

  45. Prensner, J. R., Zhao, S., Erho, N., Schipper, M., Iyer, M. K., Dhanasekaran, S. M., et al. (2014). RNA biomarkers associated with metastatic progression in prostate cancer: a multi-institutional high-throughput analysis of SCHLAP1. The Lancet Oncology, 15, 1469–1480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mehra, R., Udager, A. M., Ahearn, T. U., Cao, X., Feng, F. Y., Loda, M., et al. (2016). Overexpression of the long non-coding RNA SCHLAP1 independently predicts lethal prostate cancer. European Urology, 70, 549–552.

    Article  CAS  PubMed  Google Scholar 

  47. Prensner, J. R., Iyer, M. K., Sahu, A., Asangani, I. A., Cao, Q., Patel, L., et al. (2013). The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nature Genetics, 45, 1392–1398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Meijer, D., van Agthoven, T., Bosma, P. T., Nooter, K., & Dorssers, L. C. (2006). Functional screen for genes responsible for tamoxifen resistance in human breast cancer cells. Molecular Cancer Research, 4, 379–386.

    Article  CAS  PubMed  Google Scholar 

  49. Godinho, M. F., Sieuwerts, A. M., Look, M. P., Meijer, D., Foekens, J. A., Dorssers, L. C., et al. (2010). Relevance of BCAR4, a novel oncogene causing endocrine resistance in human breast cancer cells. British Journal of Cancer, 103, 1284–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xing, Z., Lin, A., Li, C., Liang, K., Wang, S., Liu, Y., et al. (2014). LncRNA directs cooperative epigenetic regulation downstream of chemokine signals. Cell, 159, 1110–1125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Washington, K., Ammosova, T., Beullens, M., Jerebtsova, M., Kumar, A., Bollen, M., et al. (2002). Protein phosphatase-1 dephosphorylates the C-terminal domain of RNA polymerase II. The Journal of Biological Chemistry, 277, 40442–40448.

    Article  CAS  PubMed  Google Scholar 

  52. Sun, N. X., Ye, C., Zhao, Q., Zhang, Q., Xu, C., Wang, S. B., et al. (2014). Long noncoding RNA-EBIC promotes tumor cell invasion by binding to EZH2 and repressing E-cadherin in cervical cancer. PLoS One, 9, e100340.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yan, Y., Shen, Z., Gao, Z., Cao, J., Yang, Y., Wang, B., et al. (2015). Long noncoding ribonucleic acid specific for distant metastasis of gastric cancer is associated with TRIM16 expression and facilitates tumor cell invasion in vitro. Journal of Gastroenterology and Hepatology, 30, 1367–1375.

    Article  CAS  PubMed  Google Scholar 

  54. Fang, Z., Wu, L., Wang, L., Yang, Y., Meng, Y., & Yang, H. (2014). Increased expression of the long non-coding RNA UCA1 in tongue squamous cell carcinomas: a possible correlation with cancer metastasis. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, 117, 89–95.

    Article  Google Scholar 

  55. Li, J. Y., Ma, X., & Zhang, C. B. (2014). Overexpression of long non-coding RNA UCA1 predicts a poor prognosis in patients with esophageal squamous cell carcinoma. International Journal of Clinical and Experimental Pathology, 7, 7938–7944.

    PubMed  PubMed Central  Google Scholar 

  56. Han, Y., Yang, Y. N., Yuan, H. H., Zhang, T. T., Sui, H., Wei, X. L., et al. (2014). UCA1, a long non-coding RNA up-regulated in colorectal cancer influences cell proliferation, apoptosis and cell cycle distribution. Pathology, 46, 396–401.

    Article  CAS  PubMed  Google Scholar 

  57. Xue, M., Li, X., Li, Z., & Chen, W. (2014). Urothelial carcinoma associated 1 is a hypoxia inducible factor-1alpha-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion. Tumour Biology, 35, 6901–6912.

    Article  CAS  PubMed  Google Scholar 

  58. Wang, Z., He, C., Hu, L., Shi, H., Li, J., Gu, Q., et al. (2017). Long noncoding RNA UCA1 promotes tumor metastasis by inducing GRK2 degradation in gastric cancer. Cancer Letters, 408, 10–21.

    Article  CAS  PubMed  Google Scholar 

  59. Zhou, Y., Wang, X., Zhang, J., He, A., Wang, Y., Han, K., et al. (2017). Artesunate suppresses the viability and mobility of prostate cancer cells through UCA1, the sponge of miR-184. Oncotarget, 8, 18260–18270.

    PubMed  PubMed Central  Google Scholar 

  60. Cai, Q., Jin, L., Wang, S., Zhou, D., Wang, J., Tang, Z., et al. (2017). Long non-coding RNA UCA1 promotes gallbladder cancer progression by epigenetically repressing p21 and E-cadherin expression. Oncotarget, 8, 47957–47968.

    PubMed  PubMed Central  Google Scholar 

  61. Li, D., Li, H., Yang, Y., & Kang, L. (2017). Long noncoding RNA urothelial carcinoma associated 1 promotes the proliferation and metastasis of human lung tumor cells by regulating microRNA-144. Oncology Research. https://doi.org/10.3727/096504017X15009792179602.

  62. Shalem, O., Sanjana, N. E., & Zhang, F. (2015). High-throughput functional genomics using CRISPR-Cas9. Nature Reviews. Genetics, 16, 299–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Korkmaz, G., Lopes, R., Ugalde, A. P., Nevedomskaya, E., Han, R., Myacheva, K., et al. (2016). Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nature Biotechnology, 34, 192–198.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by NIH/NCI R01CA148759, NIH/NCI R21 CA198558-01A1, NIH/NCI U01 CA200495-01, Pardee Foundation, PA Breast and Cervical Cancer Research Initiative, and National Natural Science Funds (81372328, 81572834).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qihong Huang or Reuven Agami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Yan, J. & Agami, R. Long non-coding RNAs in metastasis. Cancer Metastasis Rev 37, 75–81 (2018). https://doi.org/10.1007/s10555-017-9713-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-017-9713-x

Keywords