Skip to main content
Log in

Entropy and anisotropy

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We address the problem of defining the concept of entropy for anisotropic cosmological models. In particular, we analyze for the Bianchi I and V models the entropy which follows from postulating the validity of the laws of standard thermodynamics in cosmology. Moreover, we analyze the Cardy–Verlinde construction of entropy and show that it cannot be associated with the one following from relativistic thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Misner C.W., Thorne K.S. and Wheeler J.A. (1973). Gravitation. W. H. Freeman and Company, San Francisco

    Google Scholar 

  2. Kolb E. and Turner M. (1990). The Early Universe. Addison-Wesley, Redwood City

    MATH  Google Scholar 

  3. Quevedo H. and Sussman R.A. (1995). On the thermodynamics of simple nonisentropic perfect fluids in general relativity. Class. Quantum Grav. 12: 859

    Article  ADS  Google Scholar 

  4. Quevedo H. and Sussman R.A. (1995). Thermodynamics of the Stephani universes. J. Math. Phys. 36: 1365

    Article  MATH  ADS  Google Scholar 

  5. Krasinski A., Quevedo H. and Sussman R.A. (1997). On the thermodynamical interpretation of perfect fluid solutions of the Einstein equations with no symmetry. J. Math. Phys. 38: 2602

    Article  MATH  ADS  Google Scholar 

  6. Zarate R.D. and Quevedo H. (2004). Thermodynamic scheme of inhomogeneous perfect fluid mixtures. Class. Quantum Grav. 21: 197

    Article  MATH  ADS  Google Scholar 

  7. Verlinde, E.: On the holographic principle in a radiation dominated universe. hep-th/0008140

  8. t’ Hooft, G.: Dimensional reduction in quantum gravity. gr-qc/9310026

  9. Susskind L. (1995). The world as a hologram. J. Math. Phys. 36: 6377

    Article  MATH  ADS  Google Scholar 

  10. Youm D. (1999). Black holes and solitons in string theory. Phys. Rep. 316: 1

    Article  ADS  Google Scholar 

  11. Ashtekar A., Baez J., Corichi A. and Krasnov K. (1998). Quantum geometry and black hole entropy. Phys. Rev. Lett. 80: 904

    Article  MATH  ADS  Google Scholar 

  12. Cardy J.L. (1986). Operator content of two-dimensional conformally invariant theories. Nucl. Phys. B 270: 186

    Article  MATH  ADS  Google Scholar 

  13. Maldacena J. and Strominger A. (1997). Universal low-energy dynamics for rotating black holes. Phys. Rev. D 56: 4975

    Article  ADS  Google Scholar 

  14. Larsen F. (1997). String model of black hole microstates. Phys. Rev. D 56: 1005

    Article  ADS  Google Scholar 

  15. Carlip S. (1999). Black hole entropy from conformal field theory in any dimension. Phys. Rev. Lett. 82: 2828

    Article  MATH  ADS  Google Scholar 

  16. Obregon O., Patiño L. and Quevedo H. (2003). Towards the entropy of gravity time-dependent models via the Cardy-Verlinde formula. Phys. Rev. D 68: 026002

    Article  ADS  Google Scholar 

  17. Youm D. (2002). A note on the Cardy–Verlinde formula. Phys. Lett. B 531: 276

    Article  MATH  ADS  Google Scholar 

  18. Hermann R. (1973). Geometry, Physics and Systems. Marcel Dekker Inc., New York

    MATH  Google Scholar 

  19. Callen H.B. (1985). Thermodynamics and an Introduction to Thermostatics. Wiley, New York

    Google Scholar 

  20. Burke W.L. (1985). Applied Differential Geometry. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  21. Choquet-Bruhat Y., DeWitt-Morette D. and Dillard-Bleick M. (1982). Analysis, Manifolds and Physics. North Holland, Amsterdam

    MATH  Google Scholar 

  22. Quevedo H. (2007). Geometrothermodynamics. J. Math. Phys. 48: 013506

    Article  Google Scholar 

  23. Bekenstein J.D. (1972). Black holes and the second law. Lett. Nuovo Cim. 4: 737

    ADS  Google Scholar 

  24. Hawking S. (1975). Particle creation by black holes. Commun. Math. Phys. 43: 199

    Article  Google Scholar 

  25. Fischler, W., Susskind L.: Holography and cosmology. hep-th/9806039

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernando Quevedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández, F.J., Quevedo, H. Entropy and anisotropy. Gen Relativ Gravit 39, 1297–1309 (2007). https://doi.org/10.1007/s10714-007-0456-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-007-0456-9

Keywords