Abstract
We address the problem of defining the concept of entropy for anisotropic cosmological models. In particular, we analyze for the Bianchi I and V models the entropy which follows from postulating the validity of the laws of standard thermodynamics in cosmology. Moreover, we analyze the Cardy–Verlinde construction of entropy and show that it cannot be associated with the one following from relativistic thermodynamics.
Similar content being viewed by others
References
Misner C.W., Thorne K.S. and Wheeler J.A. (1973). Gravitation. W. H. Freeman and Company, San Francisco
Kolb E. and Turner M. (1990). The Early Universe. Addison-Wesley, Redwood City
Quevedo H. and Sussman R.A. (1995). On the thermodynamics of simple nonisentropic perfect fluids in general relativity. Class. Quantum Grav. 12: 859
Quevedo H. and Sussman R.A. (1995). Thermodynamics of the Stephani universes. J. Math. Phys. 36: 1365
Krasinski A., Quevedo H. and Sussman R.A. (1997). On the thermodynamical interpretation of perfect fluid solutions of the Einstein equations with no symmetry. J. Math. Phys. 38: 2602
Zarate R.D. and Quevedo H. (2004). Thermodynamic scheme of inhomogeneous perfect fluid mixtures. Class. Quantum Grav. 21: 197
Verlinde, E.: On the holographic principle in a radiation dominated universe. hep-th/0008140
t’ Hooft, G.: Dimensional reduction in quantum gravity. gr-qc/9310026
Susskind L. (1995). The world as a hologram. J. Math. Phys. 36: 6377
Youm D. (1999). Black holes and solitons in string theory. Phys. Rep. 316: 1
Ashtekar A., Baez J., Corichi A. and Krasnov K. (1998). Quantum geometry and black hole entropy. Phys. Rev. Lett. 80: 904
Cardy J.L. (1986). Operator content of two-dimensional conformally invariant theories. Nucl. Phys. B 270: 186
Maldacena J. and Strominger A. (1997). Universal low-energy dynamics for rotating black holes. Phys. Rev. D 56: 4975
Larsen F. (1997). String model of black hole microstates. Phys. Rev. D 56: 1005
Carlip S. (1999). Black hole entropy from conformal field theory in any dimension. Phys. Rev. Lett. 82: 2828
Obregon O., Patiño L. and Quevedo H. (2003). Towards the entropy of gravity time-dependent models via the Cardy-Verlinde formula. Phys. Rev. D 68: 026002
Youm D. (2002). A note on the Cardy–Verlinde formula. Phys. Lett. B 531: 276
Hermann R. (1973). Geometry, Physics and Systems. Marcel Dekker Inc., New York
Callen H.B. (1985). Thermodynamics and an Introduction to Thermostatics. Wiley, New York
Burke W.L. (1985). Applied Differential Geometry. Cambridge University Press, Cambridge
Choquet-Bruhat Y., DeWitt-Morette D. and Dillard-Bleick M. (1982). Analysis, Manifolds and Physics. North Holland, Amsterdam
Quevedo H. (2007). Geometrothermodynamics. J. Math. Phys. 48: 013506
Bekenstein J.D. (1972). Black holes and the second law. Lett. Nuovo Cim. 4: 737
Hawking S. (1975). Particle creation by black holes. Commun. Math. Phys. 43: 199
Fischler, W., Susskind L.: Holography and cosmology. hep-th/9806039
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hernández, F.J., Quevedo, H. Entropy and anisotropy. Gen Relativ Gravit 39, 1297–1309 (2007). https://doi.org/10.1007/s10714-007-0456-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10714-007-0456-9