Abstract
In patients with pulmonary hypertension (PH), the primary cause of death is right ventricular (RV) failure. Improvement in RV function is therefore one of the most important treatment goals. In order to be able to reverse RV dysfunction and also prevent RV failure, a detailed understanding of the pathobiology of RV failure and the underlying mechanisms concerning the transition from a pressure-overloaded adapted right ventricle to a dilated and failing right ventricle is required. Here, we propose that insufficient RV contractility, myocardial fibrosis, capillary rarefaction, and a disturbed metabolism are important features of a failing right ventricle. Furthermore, an overview is provided about the potential direct RV effects of PH-targeted therapies and the effects of RV-directed medical treatments.




Similar content being viewed by others
References
Mohammed SF, Hussain I, AbouEzzeddine OF et al (2014) Right ventricular function in heart failure with preserved ejection fraction: a community-based study. Circulation 130:2310–2320. doi:10.1161/CIRCULATIONAHA.113.008461
Meyer P, Filippatos GS, Ahmed MI et al (2010) Effects of right ventricular ejection fraction on outcomes in chronic systolic heart failure. Circulation 121:252–258. doi:10.1161/CIRCULATIONAHA.109.887570
Pasque MK, Trulock EP, Cooper JD et al (1995) Single lung transplantation for pulmonary hypertension. Single institution experience in 34 patients. Circulation 92:2252–2258
Reesink HJ, Marcus JT, Tulevski II et al (2007) Reverse right ventricular remodeling after pulmonary endarterectomy in patients with chronic thromboembolic pulmonary hypertension: utility of magnetic resonance imaging to demonstrate restoration of the right ventricle. J Thorac Cardiovasc Surg 133:58–64
Oakley C (1988) Importance of right ventricular function in congestive heart failure. Am J Cardiol 62:14A–19A
Sandoval J, Bauerle O, Palomar A et al (1994) Survival in primary pulmonary hypertension. Validation of a prognostic equation. Circulation 89:1733–1744
D’Alonzo GE, Barst RJ, Ayres SM et al (1991) Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med 115:343–349
Fuster V, Steele PM, Edwards WD et al (1984) Primary pulmonary hypertension: natural history and the importance of thrombosis. Circulation 70:580–587
Hopkins WE, Ochoa LL, Richardson GW, Trulock EP (1996) Comparison of the hemodynamics and survival of adults with severe primary pulmonary hypertension or Eisenmenger syndrome. J Heart Lung Transplant 15:100–105
Simonneau G, Gatzoulis MA, Adatia I et al (2013) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 62:D34–D41. doi:10.1016/j.jacc.2013.10.029
Galiè N, Corris PA, Frost A et al (2013) Updated treatment algorithm of pulmonary arterial hypertension. J Am Coll Cardiol 62:D60–D72. doi:10.1016/j.jacc.2013.10.031
Vonk-Noordegraaf A, Haddad F, Chin KM et al (2013) Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol 62:D22–D33. doi:10.1016/j.jacc.2013.10.027
van de Veerdonk MC, Marcus JT, Bogaard HJ, Vonk Noordegraaf A (2015) Cardiac MRI and PET scanning in right ventricular failure. In: Voelkel NF, Schranz D (eds) The right ventricle in health and disease, 1st edn. Springer, New York, pp 265–281
van de Veerdonk MC, Marcus JT, Westerhof N et al (2015) Signs of right ventricular deterioration in clinically stable patients with pulmonary arterial hypertension. Chest 147:1063–1071. doi:10.1378/chest.14-0701
Mauritz GJ, Vonk-Noordegraaf A, Kind T et al (2012) Pulmonary endarterectomy normalizes interventricular dyssynchrony and right ventricular systolic wall stress. J Cardiovasc Magn Reson 12(14):5. doi:10.1186/1532-429X-14-5
Greyson CR (2008) Pathophysiology of right ventricular failure. Crit Care Med 36:S57–S65. doi:10.1097/01.CCM.0000296265.52518.70
Hinderliter AL, Willis PW, Long WA et al (2003) Frequency and severity of tricuspid regurgitation determined by Doppler echocardiography in primary pulmonary hypertension. Am J Cardiol 91(1033–7):A9
Lyon RC, Zanella F, Omens JH, Sheikh F (2015) Mechanotransduction in cardiac hypertrophy and failure. Circ Res 116:1462–1476. doi:10.1161/CIRCRESAHA.116.304937
Swift AJ, Rajaram S, Campbell MJ et al (2014) Prognostic value of cardiovascular magnetic resonance imaging measurements corrected for age and sex in idiopathic pulmonary arterial hypertension. Circ Cardiovasc Imaging 7:100–106. doi:10.1161/CIRCIMAGING.113.000338
van Wolferen SA, Marcus JT, Boonstra A et al (2007) Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J 28:1250–1257
Hagger D, Condliffe R, Woodhouse N et al (2009) Ventricular mass index correlates with pulmonary artery pressure and predicts survival in suspected systemic sclerosis-associated pulmonary arterial hypertension. Rheumatology (Oxford) 48:1137–1142. doi:10.1093/rheumatology/kep187
Hopkins WE, Waggoner AD (2002) Severe pulmonary hypertension without right ventricular failure: the unique hearts of patients with Eisenmenger syndrome. Am J Cardiol 89:34–38
Kawut SM, Barr RG, Lima JA et al (2012) Right ventricular structure is associated with the risk of heart failure and cardiovascular death: the Multi-Ethnic Study of Atherosclerosis (MESA)–right ventricle study. Circulation 126:1681–1688. doi:10.1161/CIRCULATIONAHA.112.095216
Schranz D, Rupp S, Müller M et al (2013) Pulmonary artery banding in infants and young children with left ventricular dilated cardiomyopathy: a novel therapeutic strategy before heart transplantation. J Heart Lung Transplant 32:475–481. doi:10.1016/j.healun.2013.01.988
Brimouille S, Wauthy P, Ewalenko P et al (2003) Single-beat estimation of right ventricular end-systolic pressure–volume relationship. Am J Physiol Heart Circ Physiol 284:H1625–H1630
Suga H, Sagawa K, Shoukas AA (1973) Load independence of the instantaneous pressure–volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 32:314–322
Rain S, Handoko ML, Trip P et al (2013) Right ventricular diastolic impairment in patients with pulmonary arterial hypertension. Circulation 128(2016–25):1–10. doi:10.1161/CIRCULATIONAHA.113.001873
Tedford RJ, Mudd JO, Girgis RE et al (2013) Right ventricular dysfunction in systemic sclerosis-associated pulmonary arterial hypertension. Circ Heart Fail 6:953–963
Kuehne T, Yilmaz S, Steendijk P et al (2004) Magnetic resonance imaging analysis of right ventricular pressure–volume loops: in vivo validation and clinical application in patients with pulmonary hypertension. Circulation 110:2010–2016
Spruijt OA, de Man FS, Groepenhoff H et al (2015) The effects of exercise on right ventricular contractility and right ventricular–arterial coupling in pulmonary hypertension. Am J Respir Crit Care Med 191:1050–1057. doi:10.1164/rccm.201412-2271OC
Lau EM, Chemla D, Godinas L et al (2015) Loss of vascular distensibility during exercise is an early hemodynamic marker of pulmonary vascular disease. Chest. doi:10.1378/chest.15-0125
Gan CT, Holverda S, Marcus JT et al (2007) Right ventricular diastolic dysfunction and the acute effects of sildenafil in pulmonary hypertension patients. Chest 132:11–17
Trip P, Rain S, Handoko ML et al (2015) Clinical relevance of right ventricular diastolic stiffness in pulmonary hypertension. Eur Respir J 45:1603–1612. doi:10.1183/09031936.00156714
Murch SD, La Gerche A, Roberts TJ et al (2015) Abnormal right ventricular relaxation in pulmonary hypertension. Pulm Circ 5:370–375. doi:10.1086/681268
Gomez-Arroyo J, Santos-Martinez LE, Aranda A et al (2014) Differences in right ventricular remodeling secondary to pressure overload in patients with pulmonary hypertension. Am J Respir Crit Care Med 189:603–606. doi:10.1164/rccm.201309-1711LE
Karamitsos TD, Francis JM, Myerson S et al (2009) The role of cardiovascular magnetic resonance imaging in heart failure. J Am Coll Cardiol 54:1407–1424. doi:10.1016/j.jacc.2009.04.094
McCann GP, Gan CT, Beek AM et al (2007) Extent of MRI delayed enhancement of myocardial mass is related to right ventricular dysfunction in pulmonary artery hypertension. Am J Roentgenol 188:349–355
Broberg CS, Prasad SK, Carr C et al (2014) Myocardial fibrosis in Eisenmenger syndrome: a descriptive cohort study exploring associations of late gadolinium enhancement with clinical status and survival. J Cardiovasc Magn Reson 16:32. doi:10.1186/1532-429X-16-32
Swift AJ, Rajaram S, Capener D et al (2014) LGE patterns in pulmonary hypertension do not impact overall mortality. JACC Cardiovasc Imaging 7:1209–1217. doi:10.1016/j.jcmg.2014.08.014
Sanz J, Dellegrottaglie S, Kariisa M et al (2007) Prevalence and correlates of septal delayed contrast enhancement in patients with pulmonary hypertension. Am J Cardiol 100:731–735
Blyth KG, Syyed R, Chalmers J et al (2005) Pulmonary arterial pulse pressure and mortality in pulmonary arterial hypertension. Respir Med 101:2495–2501
Bandula S, White SK, Flett AS et al (2013) Measurement of myocardial extracellular volume fraction by using equilibrium contrast-enhanced CT: validation against histologic findings. Radiology 269:396–403. doi:10.1148/radiol.13130130
Guihaire J, Bogaard HJ, Flécher E et al (2013) Experimental models of right heart failure: a window for translational research in pulmonary hypertension. Semin Respir Crit Care Med 34:689–699. doi:10.1055/s-0033-1355444
Drake JI, Bogaard HJ, Mizuno S et al (2011) Molecular signature of a right heart failure program in chronic severe pulmonary hypertension. Am J Respir Cell Mol Biol 45:1239–1247. doi:10.1165/rcmb.2010-0412OC
Bogaard HJ, Natarajan R, Henderson SC et al (2009) Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation 120:1951–1960. doi:10.1161/CIRCULATIONAHA.109.883843
Bishop JE, Rhodes S, Laurent GJ et al (1994) Increased collagen synthesis and decreased collagen degradation in right ventricular hypertrophy induced by pressure overload. Cardiovasc Res 28:1581–1585
Leask A (2015) Getting to the heart of the matter: new insights into cardiac fibrosis. Circ Res 116:1269–1276. doi:10.1161/CIRCRESAHA.116.305381
Farahmand F, Hill MF, Singal PK (2004) Antioxidant and oxidative stress changes in experimental cor pulmonale. Mol Cell Biochem 260:21–29
Redout EM, Wagner MJ, Zuidwijk MJ et al (2007) Right-ventricular failure is associated with increased mitochondrial complex II activity and production of reactive oxygen species. Cardiovasc Res 75:770–781
Cucoranu I, Clempus R, Dikalova A et al (2005) NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97:900–907
Yet SF, Perrella MA, Layne MD et al (1999) Hypoxia induces severe right ventricular dilatation and infarction in heme oxygenase-1 null mice. J Clin Invest 103:R23–R29
Hinkel R, Lange P, Petersen B et al (2015) Heme oxygenase-1 gene therapy provides cardioprotection via control of post-ischemic inflammation: an experimental study in a pre-clinical pig model. J Am Coll Cardiol 66:154–165. doi:10.1016/j.jacc.2015.04.064
Wong YY, Westerhof N, Ruiter G et al (2011) Systolic pulmonary artery pressure and heart rate are main determinants of oxygen consumption in the right ventricular myocardium of patients with idiopathic pulmonary arterial hypertension. Eur J Heart Fail 13:1290–1295. doi:10.1093/eurjhf/hfr140
Wong YY, Ruiter G, Lubberink M et al (2011) Right ventricular failure in idiopathic pulmonary arterial hypertension is associated with inefficient myocardial oxygen utilization. Circ Heart Fail 4:700–706. doi:10.1161/CIRCHEARTFAILURE.111.962381
Vogel-Claussen J, Skrok J, Shehata ML et al (2011) Right and left ventricular myocardial perfusion reserves correlate with right ventricular function and pulmonary hemodynamics in patients with pulmonary arterial hypertension. Radiology 258:119–127. doi:10.1148/radiol.10100725
Wong YY, Raijmakers PG, Knaapen P et al (2011) Supine-exercise-induced oxygen supply to the right myocardium is attenuated in patients with severe idiopathic pulmonary arterial hypertension. Heart 97:2069–2074. doi:10.1136/heartjnl-2011-300237
van Wolferen SA, Marcus JT, Westerhof N et al (2008) Right coronary artery flow impairment in patients with pulmonary hypertension. Eur Heart J 29:120–127
Ruiter G, Ying Wong Y, de Man FS et al (2013) Right ventricular oxygen supply parameters are decreased in human and experimental pulmonary hypertension. J Heart Lung Transplant 32:231–240. doi:10.1016/j.healun.2012.09.025
Sutendra G, Dromparis P, Paulin R et al (2013) A metabolic remodeling in right ventricular hypertrophy is associated with decreased angiogenesis and a transition from a compensated to a decompensated state in pulmonary hypertension. J Mol Med (Berl) 91:1315–1327. doi:10.1007/s00109-013-1059-4
Bogaard HJ, Natarajan R, Mizuno S et al (2010) Adrenergic receptor blockade reverses right heart remodeling and dysfunction in pulmonary hypertensive rats. Am J Respir Crit Care Med 182:652–660. doi:10.1164/rccm.201003-0335OC
Handoko ML, de Man FS, Happé CM et al (2009) Opposite effects of training in rats with stable and progressive pulmonary hypertension. Circulation 120:42–49. doi:10.1161/CIRCULATIONAHA.108.829713
May D, Gilon D, Djonov V et al (2008) Transgenic system for conditional induction and rescue of chronic myocardial hibernation provides insights into genomic programs of hibernation. Proc Natl Acad Sci USA 105:282–287
Potus F, Ruffenach G, Dahou A et al (2015) Downregulation of miR-126 contributes to the failing right ventricle in pulmonary arterial hypertension. Circulation 132:932–943. doi:10.1161/CIRCULATIONAHA.115.016382
Al-Husseini A, Kraskauskas D, Mezzaroma E et al (2015) Vascular endothelial growth factor receptor 3 signaling contributes to angioobliterative pulmonary hypertension. Pulm Circ 5:101–116. doi:10.1086/679704
Kivelä R, Bry M, Robciuc MR et al (2014) VEGF-B-induced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart. EMBO Mol Med 6:307–321. doi:10.1002/emmm.201303147
Dávila-Román VG, Vedala G, Herrero P et al (2002) Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 40:271–277
Nagaya N, Goto Y, Satoh T, Uematsu M et al (1998) Impaired regional fatty acid uptake and systolic dysfunction in hypertrophied right ventricle. J Nucl Med 39:1676–1680
Lundgrin EL, Park MM, Sharp J et al (2013) Fasting 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography to detect metabolic changes in pulmonary arterial hypertension hearts over 1 year. Ann Am Thorac Soc 10:1–9. doi:10.1513/AnnalsATS.201206-029OC
Oikawa M, Kagaya Y, Otani H et al (2005) Increased [18F]fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol. J Am Coll Cardiol 45:1849–1855
Graham BB, Kumar R, Mickael C et al (2015) Severe pulmonary hypertension is associated with altered right ventricle metabolic substrate uptake. Am J Physiol Lung Cell Mol Physiol. doi:10.1152/ajplung.00169.2015
Fang YH, Piao L, Hong Z et al (2012) Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy: exploiting Randle’s cycle. J Mol Med (Berl) 90:31–43. doi:10.1007/s00109-011-0804-9
Piao L, Fang YH, Cadete VJ et al (2010) The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle. J Mol Med (Berl) 88:47–60. doi:10.1007/s00109-009-0524-6
Ventetuolo CE, Baird GL, Barr RG et al (2015) Higher estradiol and lower dehydroepiandrosterone-sulfate levels are associated with pulmonary arterial hypertension in men. Am J Respir Crit Care Med. doi:10.1164/rccm.201509-1785OC
Ventetuolo CE, Ouyang P, Bluemke DA et al (2011) Sex hormones are associated with right ventricular structure and function: the MESA-right ventricle study. Am J Respir Crit Care Med 183:659–667. doi:10.1164/rccm.201007-1027O
Jacobs W, van de Veerdonk MC, Trip P et al (2014) The right ventricle explains sex differences in survival in idiopathic pulmonary arterial hypertension. Chest 145:1230–1236. doi:10.1378/chest.13-1291
Rafikova O, Rafikov R, Meadows ML et al (2015) The sexual dimorphism associated with pulmonary hypertension corresponds to a fibrotic phenotype. Pulm Circ 5:184–197. doi:10.1086/679724
Hemnes AR, Maynard KB, Champion HC et al (2012) Testosterone negatively regulates right ventricular load stress responses in mice. Pulm Circ 2:352–358. doi:10.4103/2045-8932.101647
Lahm T, Albrecht M, Fisher AJ et al (2012) 17β-Estradiol attenuates hypoxic pulmonary hypertension via estrogen receptor-mediated effects. Am J Respir Crit Care Med 185:965–980. doi:10.1164/rccm.201107-1293OC
Liu A, Schreier D, Tian L et al (2014) Direct and indirect protection of right ventricular function by estrogen in an experimental model of pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 307:H273–H283. doi:10.1152/ajpheart.00758.2013
Nadadur RD, Umar S, Wong G et al (2012) Reverse right ventricular structural and extracellular matrix remodeling by estrogen in severe pulmonary hypertension. J Appl Physiol 113:149–158. doi:10.1152/japplphysiol.01349.2011
Umar S, Iorga A, Matori H, Nadadur RD et al (2011) Estrogen rescues preexisting severe pulmonary hypertension in rats. Am J Respir Crit Care Med 184:715–723. doi:10.1164/rccm.201101-0078OC
Wood J, Albrecht M, Fisher A et al (2013) 17Beta-estradiol (E2) improves right ventricular (RV) function and exercise capacity in Su5416/Hypoxia (SuHx)-induced pulmonary hypertension (thoracic). Am J Respir Crit Care Med 187:A1028
Witt H, Schubert C, Jaekel J et al (2008) Sex-specific pathways in early cardiac response to pressure overload in mice. J Mol Med (Berl) 86:1013–1024. doi:10.1007/s00109-008-0385-4
Galiè N, Manes A, Negro L et al (2009) A meta-analysis of randomized controlled trials in pulmonary arterial hypertension. Eur Heart J 30:394–403. doi:10.1093/eurheartj/ehp022
Peacock AJ, Crawley S, McLure L et al (2014) Changes in right ventricular function measured by cardiac magnetic resonance imaging in patients receiving pulmonary arterial hypertension-targeted therapy: the EURO-MR study. Circ Cardiovasc Imaging. 7:107–114. doi:10.1161/CIRCIMAGING.113.000629
Nagendran J, Sutendra G, Paterson I et al (2013) Endothelin axis is upregulated in human and rat right ventricular hypertrophy. Circ Res 112:347–354. doi:10.1161/CIRCRESAHA.111.300448
Jasmin JF, Cernacek P, Dupuis J (2003) Activation of the right ventricular endothelin (ET) system in the monocrotaline model of pulmonary hypertension: response to chronic ETA receptor blockade. Clin Sci (Lond) 105:647–653
Nagendran J, Archer SL, Soliman D et al (2007) Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation 116:238–248
Borgdorff MA, Bartelds B, Dickinson MG et al (2012) Sildenafil enhances systolic adaptation, but does not prevent diastolic dysfunction, in the pressure-loaded right ventricle. Eur J Heart Fail 14:1067–1074. doi:10.1093/eurjhf/hfs094
Borgdorff MA, Bartelds B, Dickinson MG et al (2014) Sildenafil treatment in established right ventricular dysfunction improves diastolic function and attenuates interstitial fibrosis independent from afterload. Am J Physiol Heart Circ Physiol 307:H361–H369. doi:10.1152/ajpheart.00843.2013
Gomez-Arroyo J, Sakagami M, Syed AA et al (2015) Iloprost reverses established fibrosis in experimental right ventricular failure. Eur Respir J 45:449–462. doi:10.1183/09031936.00188013
Wensel R, Jilek C, Dörr M et al (2009) Impaired cardiac autonomic control relates to disease severity in pulmonary hypertension. Eur Respir J 34:895–901. doi:10.1183/09031936.00145708
Velez-Roa S, Ciarka A, Najem B et al (2004) Increased sympathetic nerve activity in pulmonary artery hypertension. Circulation 110:1308–1312
Holverda S, Gan CT, Marcus JT et al (2006) Impaired stroke volume response to exercise in pulmonary arterial hypertension. J Am Coll Cardiol 47:1732–1733
Okumura K, Kato H, Honjo O et al (2015) Carvedilol improves biventricular fibrosis and function in experimental pulmonary hypertension. J Mol Med (Berl). 93:663–674. doi:10.1007/s00109-015-1251-9
Perros F, Ranchoux B, Izikki M et al (2015) Nebivolol for improving endothelial dysfunction, pulmonary vascular remodeling, and right heart function in pulmonary hypertension. J Am Coll Cardiol 65:668–680. doi:10.1016/j.jacc.2014.11.050
de Man FS, Handoko ML, van Ballegoij JJ et al (2012) Bisoprolol delays progression towards right heart failure in experimental pulmonary hypertension. Circ Heart Fail 5:97–105. doi:10.1161/CIRCHEARTFAILURE.111.964494
Andersen S, Schultz JG, Andersen A et al (2014) Effects of bisoprolol and losartan treatment in the hypertrophic and failing right heart. J Card Fail 20:864–873. doi:10.1016/j.cardfail.2014.08.003
So PP, Davies RA, Chandy G et al (2012) Usefulness of beta-blocker therapy and outcomes in patients with pulmonary arterial hypertension. Am J Cardiol 109:1504–1509. doi:10.1016/j.amjcard.2012.01.368
Bandyopadhyay D, Bajaj NS, Zein J et al (2015) Outcomes of β-blocker use in pulmonary arterial hypertension: a propensity-matched analysis. Eur Respir J. doi:10.1183/09031936.00215514
Grinnan D, Bogaard HJ, Grizzard J et al (2014) Treatment of group I pulmonary arterial hypertension with carvedilol is safe. Am J Respir Crit Care Med 189:1562–1564. doi:10.1164/rccm.201311-2025LE
Wang L, Li W, Yang Y et al (2015) Quantitative assessment of right ventricular glucose metabolism in idiopathic pulmonary arterial hypertension patients: a longitudinal study. Eur Heart J Cardiovasc Imaging. doi:10.1093/ehjci/jev297
Cucci AR, Kline JA, Lahm T (2015) Acute right ventricular failure. In: Voelkel NF, Schranz D (eds) The right ventricle in health and disease. Springer, New York, pp 161–205
Swaminathan AC, Dusek AC, McMahon TJ (2015) Treatment-related biomarkers in pulmonary hypertension. Am J Respir Cell Mol Biol 52:663–673. doi:10.1165/rcmb.2014-0438TR
Bensley JG, Stacy VK, De Matteo R et al (2010) Cardiac remodelling as a result of pre-term birth: implications for future cardiovascular disease. Eur Heart J 31:2058–2066. doi:10.1093/eurheartj/ehq104
Ruiter G, van de Veerdonk MC, Bogaard HJ et al (2014) The interventricular septum in pulmonary hypertension does not show features of right ventricular failure. Int J Cardiol 173:509–512. doi:10.1016/j.ijcard.2014.03.064
Voelkel NF, Quaife RA, Leinwand LA et al (2006) Right ventricular function and failure: report of a national heart, lung, and blood institute working group on cellular and molecular mechanisms of right heart failure. Circulation 114:1883–1891
Voelkel NF, Bogaard HJ, Gomez-Arroyo J (2015) The need to recognize the pulmonary circulation and the right ventricle as an integrated functional unit: facts and hypotheses (2013 Grover Conference series). Pulm Circ 5:81–89. doi:10.1086/679702
Voelkel NF, Gomez-Arroyo J, Abbate A et al (2012) Pathobiology of pulmonary arterial hypertension and right ventricular failure. Eur Respir J 40:1555–1565. doi:10.1183/09031936.00046612
Lahm T, Tuder RM, Petrache I (2014) Progress in solving the sex hormone paradox in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 307:L7–L26. doi:10.1152/ajplung.00337.2013
Thum T, Borlak J (2000) Gene expression in distinct regions of the heart. Lancet 355:979–983
Gomez-Arroyo J, Mizuno S, Szczepanek K et al (2013) Metabolic gene remodeling and mitochondrial dysfunction in failing right ventricular hypertrophy secondary to pulmonary arterial hypertension. Circ Heart Fail 6:136–144. doi:10.1161/CIRCHEARTFAILURE.111.966127
Berman M, Tsui S, Vuylsteke A et al (2008) Successful extracorporeal membrane oxygenation support after pulmonary thromboendarterectomy. Ann Thorac Surg 86:1261–1267. doi:10.1016/j.athoracsur.2008.06.037
Hoopes CW, Kukreja J, Golden J et al (2013) Extracorporeal membrane oxygenation as a bridge to pulmonary transplantation. J Thorac Cardiovasc Surg. 145:862–867. doi:10.1016/j.jtcvs.2012.12.022 (discussion 867–8)
Toyoda Y, Bhama JK, Shigemura N et al (2013) Efficacy of extracorporeal membrane oxygenation as a bridge to lung transplantation. J Thorac Cardiovasc Surg. 145:1065–1070. doi:10.1016/j.jtcvs.2012.12.067 (discussion 1070–1)
Acknowledgments
We acknowledge the support from the Netherlands CardioVascular Research Initiative, the Dutch Heart Foundation, Dutch Federation of University Medical Centres, the Netherlands Organisation for Health Research and Development, and the Royal Netherlands Academy of Sciences.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
Dr. M.C. van de Veerdonk declares that she has no conflicts of interest or financial ties to disclose. Dr. H.J. Bogaard receives speaker fees form Actelion, Pfizer, Bayer and is part of the advisory board of United Therapeutics and has received grant support from Boehringer Ingelheim and the Lung Foundation. Dr. N.F. Voelkel is part of the advisory board of Actelion and is a consultant at Insmed.
Rights and permissions
About this article
Cite this article
van de Veerdonk, M.C., Bogaard, H.J. & Voelkel, N.F. The right ventricle and pulmonary hypertension. Heart Fail Rev 21, 259–271 (2016). https://doi.org/10.1007/s10741-016-9526-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10741-016-9526-y