Skip to main content

Advertisement

Log in

Transcription factor Kruppel-like factor 5 positively regulates the expression of AarF domain containing kinase 4

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

AarF domain containing kinase 4 (ADCK4) is identified as a candidate gene associated with hereditary nephrotic syndrome (NS). Kruppel-like factor 5 (KLF5) is reported to promote podocyte survival by blocking the ERK/p38 MAPK pathways. Both ADCK4 and KLF5 are involved in the occurrence and development of podocyte disease, but their interaction remains unclear. Firstly, we found that the mRNA levels of ADCK4 and KLF5 decreased in NS patients, and both levels showed an obvious linear relationship. Secondly, we cloned the ADCK4 promoter region and examined its promoter activity in Hela, A549, and HEK 293 cell lines. Deletion analysis showed that the region − 116/− 4 relative to the transcriptional start site (TSS) was the core region of ADCK4 promoter. Thirdly, mutation analysis showed that putative binding sites for KLF5 contributed to the ADCK4 promoter activity. In HEK293 cells, we found that KLF5 upregulated the mRNA and protein levels of ADCK4. Finally, our chromatin immunoprecipitation assay found that KLF5 could bind to the specific region of ADCK4 promoter. These results showed that KLF5 can positively regulate the transcriptional activity of ADCK4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

All data generated or analyzed in the current study are included either in this article or in the additional files.

References

  1. Eddy AA, Symons JM (2003) Nephrotic syndrome in childhood. The Lancet 362(9384):629–639. https://doi.org/10.1016/s0140-6736(03)14184-0

    Article  Google Scholar 

  2. Bensimhon AR, Williams AE, Gbadegesin RA (2018) Treatment of steroid-resistant nephrotic syndrome in the genomic era. Pediatr Nephrol. https://doi.org/10.1007/s00467-018-4093-1

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bierzynska A, Soderquest K, Koziell A (2014) Genes and podocytes—new insights into mechanisms of podocytopathy. Front Endocrinol (Lausanne) 5:226. https://doi.org/10.3389/fendo.2014.00226

    Article  Google Scholar 

  4. Malaga-Dieguez L, Susztak K (2013) ADCK4 “reenergizes” nephrotic syndrome. J Clin Invest 123(12):4996–4999. https://doi.org/10.1172/jci73168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zenker M, Machuca E, Antignac C (2009) Genetics of nephrotic syndrome: new insights into molecules acting at the glomerular filtration barrier. J Mol Med (Berl) 87(9):849–857. https://doi.org/10.1007/s00109-009-0505-9

    Article  CAS  Google Scholar 

  6. Ashraf S, Gee H, Woerner S, Xie L, Vega-Warner V, Lovric S, Fang H, Song X, Cattran D, Avila-Casado C, Paterson A, Nitschké P, Bole-Feysot C, Cochat P, Esteve-Rudd J, Haberberger B, Allen S, Zhou W, Airik R, Otto E, Barua M, Al-Hamed M, Kari J, Evans J, Bierzynska A, Saleem M, Böckenhauer D, Kleta R, El Desoky S, Hacihamdioglu D, Gok F, Washburn J, Wiggins R, Choi M, Lifton R, Levy S, Han Z, Salviati L, Prokisch H, Williams D, Pollak M, Clarke C, Pei Y, Antignac C, Hildebrandt F (2013) ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J Clin Invest 123(12):5179–5189. https://doi.org/10.1172/jci69000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Korkmaz E, Lipska-Ziętkiewicz B, Boyer O, Gribouval O, Fourrage C, Tabatabaei M, Schnaidt S, Gucer S, Kaymaz F, Arici M, Dinckan A, Mir S, Bayazit A, Emre S, Balat A, Rees L, Shroff R, Bergmann C, Mourani C, Antignac C, Ozaltin F, Schaefer F (2016) ADCK4-associated glomerulopathy causes adolescence-onset FSGS. J Am Soc Nephrol 27(1):63–68. https://doi.org/10.1681/asn.2014121240

    Article  CAS  PubMed  Google Scholar 

  8. Montini G, Malaventura C, Salviati L (2008) Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. N Engl J Med 358(26):2849–2850. https://doi.org/10.1056/NEJMc0800582

    Article  CAS  PubMed  Google Scholar 

  9. Yang J, Yang Y, Hu Z (2018) A novel ADCK4 mutation in a Chinese family with ADCK4-associated glomerulopathy. Biochem Biophys Res Commun 506(3):444–449. https://doi.org/10.1016/j.bbrc.2018.10.102

    Article  CAS  PubMed  Google Scholar 

  10. Atmaca M, Gulhan B, Korkmaz E, Inozu M, Soylemezoglu O, Candan C, Bayazıt AK, Elmacı AM, Parmaksiz G, Duzova A, Besbas N, Topaloglu R, Ozaltin F (2017) Follow-up results of patients with ADCK4 mutations and the efficacy of CoQ10 treatment. Pediatr Nephrol 32(8):1369–1375. https://doi.org/10.1007/s00467-017-3634-3

    Article  PubMed  Google Scholar 

  11. Feng C, Wang Q, Wang J, Liu F, Shen H, Fu H, Mao J (2017) Coenzyme Q10 supplementation therapy for 2 children with proteinuria renal disease and ADCK4 mutation: case reports and literature review. Medicine (Baltimore) 96(47):e8880. https://doi.org/10.1097/MD.0000000000008880

    Article  CAS  Google Scholar 

  12. Park E, Kang HG, Choi YH, Lee KB, Moon KC, Jeong HJ, Nagata M, Cheong HI (2017) Focal segmental glomerulosclerosis and medullary nephrocalcinosis in children with ADCK4 mutations. Pediatr Nephrol 32(9):1547–1554. https://doi.org/10.1007/s00467-017-3657-9

    Article  PubMed  Google Scholar 

  13. Rheinbay E, Parasuraman P, Grimsby J, Tiao G, Engreitz J, Kim J, Lawrence M, Taylor-Weiner A, Rodriguez-Cuevas S, Rosenberg M, Hess J, Stewart C, Maruvka Y, Stojanov P, Cortes M, Seepo S, Cibulskis C, Tracy A, Pugh T, Lee J, Zheng Z, Ellisen L, Iafrate A, Boehm J, Gabriel S, Meyerson M, Golub T, Baselga J, Hidalgo-Miranda A, Shioda T, Bernards A, Lander E, Getz G (2017) Recurrent and functional regulatory mutations in breast cancer. Nature 547(7661):55–60. https://doi.org/10.1038/nature22992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hua J, Ahmed M, Guo H, Zhang Y, Chen S, Soares F, Lu J, Zhou S, Wang M, Li H, Larson N, McDonnell S, Patel P, Liang Y, Yao C, van der Kwast T, Lupien M, Feng F, Zoubeidi A, Tsao M, Thibodeau S, Boutros P, He H (2018) Risk SNP-mediated promoter-enhancer switching drives prostate cancer through lncRNA PCAT19. Cell 174(3):564–575.e518. https://doi.org/10.1016/j.cell.2018.06.014

    Article  CAS  PubMed  Google Scholar 

  15. Furuyama K, Chera S, van Gurp L, Oropeza D, Ghila L, Damond N, Vethe H, Paulo J, Joosten A, Berney T, Bosco D, Dorrell C, Grompe M, Ræder H, Roep B, Thorel F, Herrera P (2019) Diabetes relief in mice by glucose-sensing insulin-secreting human α-cells. Nature 567(7746):43–48. https://doi.org/10.1038/s41586-019-0942-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu N, Hargreaves V, Zhu Q, Kurland J, Hong J, Kim W, Sher F, Macias-Trevino C, Rogers J, Kurita R, Nakamura Y, Yuan G, Bauer D, Xu J, Bulyk M, Orkin S (2018) Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch. Cell 173(2):430–442.e417. https://doi.org/10.1016/j.cell.2018.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marrero-Rodriguez D, Taniguchi-Ponciano K, Jimenez-Vega F, Romero-Morelos P, Mendoza-Rodriguez M, Mantilla A, Rodriguez-Esquivel M, Hernandez D, Hernandez A, Gomez-Gutierrez G, Munoz-Hernandez N, la Cruz HA, Vargas-Requena C, Diaz-Hernandez C, Serna-Reyna L, Meraz-Rios M, Bandala C, Ortiz-Leon J, Salcedo M (2014) Kruppel-like factor 5 as potential molecular marker in cervical cancer and the KLF family profile expression. Tumour Biol 35(11):11399–11407. https://doi.org/10.1007/s13277-014-2380-4

    Article  CAS  PubMed  Google Scholar 

  18. Rane MJ, Zhao Y, Cai L (2019) Krϋppel-like factors (KLFs) in renal physiology and disease. EBioMedicine 40:743–750. https://doi.org/10.1016/j.ebiom.2019.01.021

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dong JT, Chen C (2009) Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases. Cell Mol Life Sci 66(16):2691–2706. https://doi.org/10.1007/s00018-009-0045-z

    Article  CAS  PubMed  Google Scholar 

  20. Li Y, Sui X, Hu X, Hu Z (2018) Overexpression of KLF5 inhibits puromycininduced apoptosis of podocytes. Mol Med Rep 18(4):3843–3849. https://doi.org/10.3892/mmr.2018.9366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fornes O, Castro-Mondragon J, Khan A, van der Lee R, Zhang X, Richmond P, Modi B, Correard S, Gheorghe M, Baranašić D, Santana-Garcia W, Tan G, Chèneby J, Ballester B, Parcy F, Sandelin A, Lenhard B, Wasserman W, Mathelier A (2020) JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 48:D87–D92. https://doi.org/10.1093/nar/gkz1001

    Article  CAS  PubMed  Google Scholar 

  22. Xie L, Hsieh E, Watanabe S, Allan C, Chen J, Tran U, Clarke C (2011) Expression of the human atypical kinase ADCK3 rescues coenzyme Q biosynthesis and phosphorylation of Coq polypeptides in yeast coq8 mutants. Biochim Biophys Acta 1811(5):348–360. https://doi.org/10.1016/j.bbalip.2011.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Manning G, Whyte D, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science (New York, NY) 298(5600):1912–1934. https://doi.org/10.1126/science.1075762

    Article  CAS  Google Scholar 

  24. Gonzalez-Mariscal I, Garcia-Teston E, Padilla S, Martin-Montalvo A, Pomares-Viciana T, Vazquez-Fonseca L, Gandolfo-Dominguez P, Santos-Ocana C (2014) Regulation of coenzyme Q biosynthesis in yeast: a new complex in the block. IUBMB Life 66(2):63–70. https://doi.org/10.1002/iub.1243

    Article  CAS  PubMed  Google Scholar 

  25. Acosta M, Vazquez Fonseca L, Desbats M, Cerqua C, Zordan R, Trevisson E, Salviati L (2016) Coenzyme Q biosynthesis in health and disease. Biochim Biophys Acta 1857(8):1079–1085. https://doi.org/10.1016/j.bbabio.2016.03.036

    Article  CAS  PubMed  Google Scholar 

  26. Dang DT, Pevsner J, Yang VW (2000) The biology of the mammalian Kruppel-like family of transcription factors. Int J Biochem Cell Biol 32(11–12):1103–1121. https://doi.org/10.1016/s1357-2725(00)00059-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhong F, Mallipattu SK, Estrada C, Menon M, Salem F, Jain MK, Chen H, Wang Y, Lee K, He JC (2016) Reduced Kruppel-like factor 2 aggravates glomerular endothelial cell injury and kidney disease in mice with unilateral nephrectomy. Am J Pathol 186(8):2021–2031. https://doi.org/10.1016/j.ajpath.2016.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hayashi K, Sasamura H, Nakamura M, Azegami T, Oguchi H, Sakamaki Y, Itoh H (2014) KLF4-dependent epigenetic remodeling modulates podocyte phenotypes and attenuates proteinuria. J Clin Invest 124(6):2523–2537. https://doi.org/10.1172/JCI69557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mallipattu SK, Horne SJ, D'Agati V, Narla G, Liu R, Frohman MA, Dickman K, Chen EY, Ma'ayan A, Bialkowska AB, Ghaleb AM, Nandan MO, Jain MK, Daehn I, Chuang PY, Yang VW, He JC (2015) Kruppel-like factor 6 regulates mitochondrial function in the kidney. J Clin Invest 125(3):1347–1361. https://doi.org/10.1172/JCI77084

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mallipattu SK, Liu R, Zheng F, Narla G, Ma'ayan A, Dikman S, Jain MK, Saleem M, D'Agati V, Klotman P, Chuang PY, He JC (2012) Kruppel-like factor 15 (KLF15) is a key regulator of podocyte differentiation. J Biol Chem 287(23):19122–19135. https://doi.org/10.1074/jbc.M112.345983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China grant (No. 81970579 and No. 81972954).

Funding

This work was supported by the National Natural Science Foundation of China grant (No. 81970579 and No. 81972954).

Author information

Authors and Affiliations

Authors

Contributions

GZ provided fund support and designed this experiment. XC and SL carried out this experiment and wrote the article. JC and XW provided assistance in conducting experiments, performing statistical analysis, and drawing the figures.

Corresponding author

Correspondence to Guoping Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to participate

Informed consent was obtained from legal guardians.

Consent to publish

Consent for publication was obtained from the guardians of the participants.

Ethical approval

The study was approved by the Institutional Research Ethics Committee of Wuxi Children's Hospital. The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Liu, S., Chen, J. et al. Transcription factor Kruppel-like factor 5 positively regulates the expression of AarF domain containing kinase 4. Mol Biol Rep 47, 8419–8427 (2020). https://doi.org/10.1007/s11033-020-05882-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05882-w

Keywords