Abstract
AarF domain containing kinase 4 (ADCK4) is identified as a candidate gene associated with hereditary nephrotic syndrome (NS). Kruppel-like factor 5 (KLF5) is reported to promote podocyte survival by blocking the ERK/p38 MAPK pathways. Both ADCK4 and KLF5 are involved in the occurrence and development of podocyte disease, but their interaction remains unclear. Firstly, we found that the mRNA levels of ADCK4 and KLF5 decreased in NS patients, and both levels showed an obvious linear relationship. Secondly, we cloned the ADCK4 promoter region and examined its promoter activity in Hela, A549, and HEK 293 cell lines. Deletion analysis showed that the region − 116/− 4 relative to the transcriptional start site (TSS) was the core region of ADCK4 promoter. Thirdly, mutation analysis showed that putative binding sites for KLF5 contributed to the ADCK4 promoter activity. In HEK293 cells, we found that KLF5 upregulated the mRNA and protein levels of ADCK4. Finally, our chromatin immunoprecipitation assay found that KLF5 could bind to the specific region of ADCK4 promoter. These results showed that KLF5 can positively regulate the transcriptional activity of ADCK4.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data availability
All data generated or analyzed in the current study are included either in this article or in the additional files.
References
Eddy AA, Symons JM (2003) Nephrotic syndrome in childhood. The Lancet 362(9384):629–639. https://doi.org/10.1016/s0140-6736(03)14184-0
Bensimhon AR, Williams AE, Gbadegesin RA (2018) Treatment of steroid-resistant nephrotic syndrome in the genomic era. Pediatr Nephrol. https://doi.org/10.1007/s00467-018-4093-1
Bierzynska A, Soderquest K, Koziell A (2014) Genes and podocytes—new insights into mechanisms of podocytopathy. Front Endocrinol (Lausanne) 5:226. https://doi.org/10.3389/fendo.2014.00226
Malaga-Dieguez L, Susztak K (2013) ADCK4 “reenergizes” nephrotic syndrome. J Clin Invest 123(12):4996–4999. https://doi.org/10.1172/jci73168
Zenker M, Machuca E, Antignac C (2009) Genetics of nephrotic syndrome: new insights into molecules acting at the glomerular filtration barrier. J Mol Med (Berl) 87(9):849–857. https://doi.org/10.1007/s00109-009-0505-9
Ashraf S, Gee H, Woerner S, Xie L, Vega-Warner V, Lovric S, Fang H, Song X, Cattran D, Avila-Casado C, Paterson A, Nitschké P, Bole-Feysot C, Cochat P, Esteve-Rudd J, Haberberger B, Allen S, Zhou W, Airik R, Otto E, Barua M, Al-Hamed M, Kari J, Evans J, Bierzynska A, Saleem M, Böckenhauer D, Kleta R, El Desoky S, Hacihamdioglu D, Gok F, Washburn J, Wiggins R, Choi M, Lifton R, Levy S, Han Z, Salviati L, Prokisch H, Williams D, Pollak M, Clarke C, Pei Y, Antignac C, Hildebrandt F (2013) ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J Clin Invest 123(12):5179–5189. https://doi.org/10.1172/jci69000
Korkmaz E, Lipska-Ziętkiewicz B, Boyer O, Gribouval O, Fourrage C, Tabatabaei M, Schnaidt S, Gucer S, Kaymaz F, Arici M, Dinckan A, Mir S, Bayazit A, Emre S, Balat A, Rees L, Shroff R, Bergmann C, Mourani C, Antignac C, Ozaltin F, Schaefer F (2016) ADCK4-associated glomerulopathy causes adolescence-onset FSGS. J Am Soc Nephrol 27(1):63–68. https://doi.org/10.1681/asn.2014121240
Montini G, Malaventura C, Salviati L (2008) Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. N Engl J Med 358(26):2849–2850. https://doi.org/10.1056/NEJMc0800582
Yang J, Yang Y, Hu Z (2018) A novel ADCK4 mutation in a Chinese family with ADCK4-associated glomerulopathy. Biochem Biophys Res Commun 506(3):444–449. https://doi.org/10.1016/j.bbrc.2018.10.102
Atmaca M, Gulhan B, Korkmaz E, Inozu M, Soylemezoglu O, Candan C, Bayazıt AK, Elmacı AM, Parmaksiz G, Duzova A, Besbas N, Topaloglu R, Ozaltin F (2017) Follow-up results of patients with ADCK4 mutations and the efficacy of CoQ10 treatment. Pediatr Nephrol 32(8):1369–1375. https://doi.org/10.1007/s00467-017-3634-3
Feng C, Wang Q, Wang J, Liu F, Shen H, Fu H, Mao J (2017) Coenzyme Q10 supplementation therapy for 2 children with proteinuria renal disease and ADCK4 mutation: case reports and literature review. Medicine (Baltimore) 96(47):e8880. https://doi.org/10.1097/MD.0000000000008880
Park E, Kang HG, Choi YH, Lee KB, Moon KC, Jeong HJ, Nagata M, Cheong HI (2017) Focal segmental glomerulosclerosis and medullary nephrocalcinosis in children with ADCK4 mutations. Pediatr Nephrol 32(9):1547–1554. https://doi.org/10.1007/s00467-017-3657-9
Rheinbay E, Parasuraman P, Grimsby J, Tiao G, Engreitz J, Kim J, Lawrence M, Taylor-Weiner A, Rodriguez-Cuevas S, Rosenberg M, Hess J, Stewart C, Maruvka Y, Stojanov P, Cortes M, Seepo S, Cibulskis C, Tracy A, Pugh T, Lee J, Zheng Z, Ellisen L, Iafrate A, Boehm J, Gabriel S, Meyerson M, Golub T, Baselga J, Hidalgo-Miranda A, Shioda T, Bernards A, Lander E, Getz G (2017) Recurrent and functional regulatory mutations in breast cancer. Nature 547(7661):55–60. https://doi.org/10.1038/nature22992
Hua J, Ahmed M, Guo H, Zhang Y, Chen S, Soares F, Lu J, Zhou S, Wang M, Li H, Larson N, McDonnell S, Patel P, Liang Y, Yao C, van der Kwast T, Lupien M, Feng F, Zoubeidi A, Tsao M, Thibodeau S, Boutros P, He H (2018) Risk SNP-mediated promoter-enhancer switching drives prostate cancer through lncRNA PCAT19. Cell 174(3):564–575.e518. https://doi.org/10.1016/j.cell.2018.06.014
Furuyama K, Chera S, van Gurp L, Oropeza D, Ghila L, Damond N, Vethe H, Paulo J, Joosten A, Berney T, Bosco D, Dorrell C, Grompe M, Ræder H, Roep B, Thorel F, Herrera P (2019) Diabetes relief in mice by glucose-sensing insulin-secreting human α-cells. Nature 567(7746):43–48. https://doi.org/10.1038/s41586-019-0942-8
Liu N, Hargreaves V, Zhu Q, Kurland J, Hong J, Kim W, Sher F, Macias-Trevino C, Rogers J, Kurita R, Nakamura Y, Yuan G, Bauer D, Xu J, Bulyk M, Orkin S (2018) Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch. Cell 173(2):430–442.e417. https://doi.org/10.1016/j.cell.2018.03.016
Marrero-Rodriguez D, Taniguchi-Ponciano K, Jimenez-Vega F, Romero-Morelos P, Mendoza-Rodriguez M, Mantilla A, Rodriguez-Esquivel M, Hernandez D, Hernandez A, Gomez-Gutierrez G, Munoz-Hernandez N, la Cruz HA, Vargas-Requena C, Diaz-Hernandez C, Serna-Reyna L, Meraz-Rios M, Bandala C, Ortiz-Leon J, Salcedo M (2014) Kruppel-like factor 5 as potential molecular marker in cervical cancer and the KLF family profile expression. Tumour Biol 35(11):11399–11407. https://doi.org/10.1007/s13277-014-2380-4
Rane MJ, Zhao Y, Cai L (2019) Krϋppel-like factors (KLFs) in renal physiology and disease. EBioMedicine 40:743–750. https://doi.org/10.1016/j.ebiom.2019.01.021
Dong JT, Chen C (2009) Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases. Cell Mol Life Sci 66(16):2691–2706. https://doi.org/10.1007/s00018-009-0045-z
Li Y, Sui X, Hu X, Hu Z (2018) Overexpression of KLF5 inhibits puromycininduced apoptosis of podocytes. Mol Med Rep 18(4):3843–3849. https://doi.org/10.3892/mmr.2018.9366
Fornes O, Castro-Mondragon J, Khan A, van der Lee R, Zhang X, Richmond P, Modi B, Correard S, Gheorghe M, Baranašić D, Santana-Garcia W, Tan G, Chèneby J, Ballester B, Parcy F, Sandelin A, Lenhard B, Wasserman W, Mathelier A (2020) JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 48:D87–D92. https://doi.org/10.1093/nar/gkz1001
Xie L, Hsieh E, Watanabe S, Allan C, Chen J, Tran U, Clarke C (2011) Expression of the human atypical kinase ADCK3 rescues coenzyme Q biosynthesis and phosphorylation of Coq polypeptides in yeast coq8 mutants. Biochim Biophys Acta 1811(5):348–360. https://doi.org/10.1016/j.bbalip.2011.01.009
Manning G, Whyte D, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science (New York, NY) 298(5600):1912–1934. https://doi.org/10.1126/science.1075762
Gonzalez-Mariscal I, Garcia-Teston E, Padilla S, Martin-Montalvo A, Pomares-Viciana T, Vazquez-Fonseca L, Gandolfo-Dominguez P, Santos-Ocana C (2014) Regulation of coenzyme Q biosynthesis in yeast: a new complex in the block. IUBMB Life 66(2):63–70. https://doi.org/10.1002/iub.1243
Acosta M, Vazquez Fonseca L, Desbats M, Cerqua C, Zordan R, Trevisson E, Salviati L (2016) Coenzyme Q biosynthesis in health and disease. Biochim Biophys Acta 1857(8):1079–1085. https://doi.org/10.1016/j.bbabio.2016.03.036
Dang DT, Pevsner J, Yang VW (2000) The biology of the mammalian Kruppel-like family of transcription factors. Int J Biochem Cell Biol 32(11–12):1103–1121. https://doi.org/10.1016/s1357-2725(00)00059-5
Zhong F, Mallipattu SK, Estrada C, Menon M, Salem F, Jain MK, Chen H, Wang Y, Lee K, He JC (2016) Reduced Kruppel-like factor 2 aggravates glomerular endothelial cell injury and kidney disease in mice with unilateral nephrectomy. Am J Pathol 186(8):2021–2031. https://doi.org/10.1016/j.ajpath.2016.03.018
Hayashi K, Sasamura H, Nakamura M, Azegami T, Oguchi H, Sakamaki Y, Itoh H (2014) KLF4-dependent epigenetic remodeling modulates podocyte phenotypes and attenuates proteinuria. J Clin Invest 124(6):2523–2537. https://doi.org/10.1172/JCI69557
Mallipattu SK, Horne SJ, D'Agati V, Narla G, Liu R, Frohman MA, Dickman K, Chen EY, Ma'ayan A, Bialkowska AB, Ghaleb AM, Nandan MO, Jain MK, Daehn I, Chuang PY, Yang VW, He JC (2015) Kruppel-like factor 6 regulates mitochondrial function in the kidney. J Clin Invest 125(3):1347–1361. https://doi.org/10.1172/JCI77084
Mallipattu SK, Liu R, Zheng F, Narla G, Ma'ayan A, Dikman S, Jain MK, Saleem M, D'Agati V, Klotman P, Chuang PY, He JC (2012) Kruppel-like factor 15 (KLF15) is a key regulator of podocyte differentiation. J Biol Chem 287(23):19122–19135. https://doi.org/10.1074/jbc.M112.345983
Acknowledgements
This work was supported by the National Natural Science Foundation of China grant (No. 81970579 and No. 81972954).
Funding
This work was supported by the National Natural Science Foundation of China grant (No. 81970579 and No. 81972954).
Author information
Authors and Affiliations
Contributions
GZ provided fund support and designed this experiment. XC and SL carried out this experiment and wrote the article. JC and XW provided assistance in conducting experiments, performing statistical analysis, and drawing the figures.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Consent to participate
Informed consent was obtained from legal guardians.
Consent to publish
Consent for publication was obtained from the guardians of the participants.
Ethical approval
The study was approved by the Institutional Research Ethics Committee of Wuxi Children's Hospital. The procedures used in this study adhere to the tenets of the Declaration of Helsinki.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Chen, X., Liu, S., Chen, J. et al. Transcription factor Kruppel-like factor 5 positively regulates the expression of AarF domain containing kinase 4. Mol Biol Rep 47, 8419–8427 (2020). https://doi.org/10.1007/s11033-020-05882-w
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11033-020-05882-w