Skip to main content

Advertisement

Log in

Mapping vineyard vigor using airborne remote sensing: relations with yield, berry composition and sanitary status under humid climate conditions

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

The aim of this study was to assess the spatial variability of plant vigor in a vineyard in a humid climate. Normalised Difference Vegetation Index (NDVI) was used for relating the vigor level to grapevine performance and, as a new area, with the anthocyanin and organic acid compositions of the berries. The study was performed in a rain-fed vineyard with the Tannat cultivar, vertically trellised, during three consecutive vintages (2015–2017). NDVI was estimated from high-resolution images acquired using airborne sensors, which allowed differentiation of three vigor levels within the vineyard: high, medium and low. Three plots per vigor level were installed for performing samplings and field measurements. High vigor zones were associated with less water-stressed vines, higher yields, incidence of bunch rot, larger berries, total acidities and total anthocyanins concentrations. Low vigor zones corresponded to higher pH, soluble solids and phenolic contents in the berries. Medium vigor zones were associated with higher leaf surface, pruning weights, cluster average weights and greater extractable anthocyanins concentrations. The effect of weather conditions of each growing season on grapevine water status was a major factor influencing the analysed variables. NDVI values allowed for delineating areas with homogeneous vigor within the vineyard, which corresponded with different plant performance, showing the usefulness of this tool for site-specific management under the studied conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Acevedo-Opazo, C., Tisseyre, B., Guillaume, S., & Ojeda, H. (2008). The potential of high spatial resolution information to define within-vineyard zones related to vine water status. Precision Agriculture,9, 285–302.

    Google Scholar 

  • Alliaume, F., González Barrios, P., Echeverría, G., Ferrer, M. (2017). Characterization of spatial variability of soils within a vineyard for management zones determination. In XXth GIESCO (Group of International Experts for Cooperation on Vitivinicultural Systems) international meeting proceedings, Mendoza, Argentina (pp. 787–791).

  • Arnó, J., Martínez-Casasnovas, J. A., Ribes-Dasi, M., & Rosell, J. R. (2009). Review. Precision viticulture: Research topics, challenges, and opportunities in site-specific vineyard management. Spanish Journal of Agricultural Research,7, 779–790.

    Google Scholar 

  • Baluja, J., Tardáguila, J., Ayestarán, B., & Diago, M. P. (2013). Spatial variability of grape composition in a Tempranillo (Vitis vinifera L.) vineyard over a 3-year survey. Precision Agriculture,14, 40–58.

    Google Scholar 

  • Bonilla, I., Martínez de Toda, F., & Martínez-Casasnovas, J. A. (2015). Vine vigor, yield and grape quality assessment by airborne remote sensing over three years: Analysis of unexpected relationships in cv. Tempranillo. Spanish Journal of Agricultural Research,13(2), e0903. https://doi.org/10.5424/sjar/2015132-7809.

    Article  Google Scholar 

  • Bramley, R. G. V. (2005). Understanding variability in winegrape production systems. 2. Within vineyard variation in quality over several vintages. Australian Journal of Grape and Wine Research,11, 33–42.

    Google Scholar 

  • Bramley, R. G. V. (2010). Precision viticulture: Managing vineyard variability for improved quality outcomes. In A. G. Reynolds (Ed.), Managing wine quality (Vol. 1, pp. 445–480). Cambridge, UK: Woodhead Publishing.

    Google Scholar 

  • Bramley, R. G. V., Ouzman, J., & Boss, P. K. (2011). Variation in vine vigor, grape yield and vineyard soils and topography as indicators of variation in the chemical composition of grapes, wine and wine sensory attributes. Australian Journal of Grape and Wine Research,17, 217–229.

    CAS  Google Scholar 

  • Calonnec, A., Burie, J.-B., & Langlais, M. (2013). Impacts of plant growth and architecture on pathogen processes and their consequences for epidemic behaviour. European Journal of Plant Pathology,135(3), 479–497.

    Google Scholar 

  • Carbonneau, A. (1995). La surface foliaire exposée. Guide pour sa mesure (Exposed leaf area. Guide for its measurement). Le Progrès Agricole et Viticole,112(2), 204–212.

    Google Scholar 

  • Chorti, E., Guidoni, S., Ferrandino, A., & Novello, V. (2010). Effect of different cluster sunlight exposure levels on ripening and anthocyanin accumulation in Nebbiolo grapes. American Journal of Enology and Viticulture,61, 23–30.

    CAS  Google Scholar 

  • Coombe, B. G. (1995). Adoption of a system for identifying grapevine growth stages. Australian Journal of Grape and Wine Research,1, 100–110.

    Google Scholar 

  • Cortell, J. M., Halbleib, M., Gallagher, A. V., Righetti, T. L., & Kennedy, J. A. (2007). Influence of vine vigor on grape (Vitis vinifera L. cv. Pinot Noir) anthocyanins. 1. Anthocyanin concentration and composition in fruit. Journal of Agricultural and Food Chemistry,55, 6575–6584.

    CAS  PubMed  Google Scholar 

  • Costa, E., Cosme, F., Jordão, A. M., & Mendes-Faia, A. (2014). Anthocyanin profile and antioxidant activty from 24 grape varieties cultivated in two Portuguese wine regions. Journal International des Sciences de la Vigne et du Vin,48(1), 51–62.

    CAS  Google Scholar 

  • Deloire, A., Carbonneau, A., Wang, Z., & Ojeda, H. (2004). Vine and water, a short review. Journal International des Sciences de la Vigne et du Vin,38(1), 1–13.

    CAS  Google Scholar 

  • Dobrowski, S. Z., Ustin, S. L., & Wolpert, J. A. (2003). Grapevine dormant pruning weight prediction using remotely sensed data. Australian Journal Grape and Wine Research,9, 177–182.

    Google Scholar 

  • Echeverría, G., Ferrer, M., & Mirás-Avalos, J. M. (2017). Quantifying the relative impact of physical and human factors on the viticultural expression of terroir. International Journal of Environmental & Agriculture Research,3(4), 12–25.

    Google Scholar 

  • Fermaud, M., Valdés-Gómez, H., Calonnec, A., Roudet, J., Gary, C. (2008). A multivariate analysis of combined effects of (micro) climate, vegetative and reproductive growth on grey mould incidence in grapevine. In G. C. Lozzia, A. Lucchi, S. R. Di Chiara, H. Tsolakis (Eds.), Integrated protection in viticulture, IOBC/wprs bulletin (Vol. 36, pp. 91–94). Retrieved May 10, 2018, from https://www.iobc-wprs.org/members/shop_en.cfm?mod_Shop_detail_produkte=81.

  • Ferrer, M., Echeverría, G., & Mirás-Avalos, J. M. (2017). Meteorological conditions: Influence on yield, sanitary status and grape composition. International Journal of Environmental & Agriculture Research,3(8), 16–27.

    Google Scholar 

  • Filippetti, I., Allegro, G., Valentín, G., Pastore, C. H., Colucci, E., & Intrieri, C. (2013). Influence of vigour on vine performance and berry composition of cv. Sangiovese (Vitis vinifera L.). Journal International des Sciences de la Vigne et du Vin,47(1), 21–33.

    CAS  Google Scholar 

  • Fiorillo, E., Crisci, A., De Filippis, T., Di Genaro, S. F., Di Blasi, S., Matese, A., et al. (2012). Airborne high-resolution images for grape classification, changes in correlation between technological and late maturity in a Sangiovese vineyard in Central Italy. Australian Journal of Grape and Wine Research,18, 80–90.

    CAS  Google Scholar 

  • Fischer, A. (1994). A simple model for the temporal variations of NDVI at regional scale over agricultural countries. Validation with ground radiometric measurement. International Journal of Remote Sensing,15, 1421–1446.

    Google Scholar 

  • García-Estévez, I., Quijada-Morín, N., Rivas-Gonzalo, J., Martínez-Fernández, J., Sánchez, N., Herrero-Jiménez, C., et al. (2017). Relationship between hyperspectral indices, agronomic parameters and phenolic composition of Vitis vinifera cv. Tempranillo grapes. Journal of the Science of Food and Agriculture,97, 4066–4074.

    PubMed  PubMed Central  Google Scholar 

  • Glories, Y., Augustin, M. (1993). Maturité phénolique du raisin, conséquences technologiques: application aux millésimes 1991 et 1992 (Phenolic maturity of grapes, technological consequences: Application to 1991 and 1992 vintages). In Proceedings of the journée technique. CIVB, Bordeaux, France (pp. 56–61).

  • González-Neves, G., Barreiro, L., Gil, G., Franco, J., Ferrer, M., Carbonneau, A., et al. (2004a). Anthocyanic composition of Tannat grapes from the South region of Uruguay. Analytica Chimica Acta,513(1), 197–202.

    Google Scholar 

  • González-Neves, G., Charamelo, D., Balado, J., Barreiro, L., Bochicchio, R., Gatto, G., et al. (2004b). Phenolic potential of Tannat, Cabernet-Sauvignon and Merlot grapes and their correspondence with wine composition. Analytica Chimica Acta,513(1), 191–196.

    Google Scholar 

  • González-Neves, G., Franco, J., Barreiro, L., Gil, G., Moutounet, M., & Carbonneau, A. (2007). Varietal differentiation of Tannat, Cabernet-Sauvignon and Merlot grapes and wines according to their anthocyanic composition. European Food Research and Technology,225(1), 111–117.

    Google Scholar 

  • Guilpart, N., Roux, S., Gary, C., & Metay, A. (2017). The trade-off between grape yield and grapevine susceptibility to powdery mildew and grey mould depends on inter-annual variations in water stress. Agricultural and Forest Meteorology,234–235, 203–211.

    Google Scholar 

  • Hall, A., Lamb, D. W., Holzapfel, B., & Louis, J. (2002). Optical remote sensing applications in viticulture-a review. Australian Journal of Grape and Wine Research,8, 36–47.

    Google Scholar 

  • Hall, A., Lamb, D., Holzapfel, B. P., & Louis, J. P. (2011). Within-season temporal variation in correlations between vineyard-canopy and winegrape composition and yield. Precision Agriculture,12, 103–117.

    Google Scholar 

  • Johnson, L. F., Roczen, D. E., Youkhana, S. K., Nemani, R. R., & Bosch, D. F. (2003). Mapping vineyard leaf area with multispectral satellite imagery. Computers and Electronics in Agriculture,38, 33–44.

    Google Scholar 

  • King, P. D., Smart, R. E., & McClellan, D. J. (2014). Within-vineyard variability in vine vegetative growth, yield, and fruit and wine composition of Cabernet Sauvignon in Hawke’s Bay, New Zealand. Australian Journal of Grape and Wine Research,20, 234–246.

    CAS  Google Scholar 

  • Kliewer, W. M., & Dokoozlian, N. K. (2005). Leaf area/crop weight ratios of grapevine: influence on fruit composition and wine quality. American Journal of Enology and Viticulture,56, 170–181.

    Google Scholar 

  • Lamb, D. W., Weedon, M. M., & Bramley, R. G. V. (2004). Using remote sensing to predict phenolics and colour at harvest in a Cabernet Sauvignon vineyard. Timing observations against vine phenology and optimising image resolution. Australian Journal of Grape and Wine Research,10, 46–54.

    CAS  Google Scholar 

  • Martínez-Casasnovas, J. A., Agelet-Fernandez, J., Arnó, J., & Ramos, M. C. (2012). Analysis of vineyard differential management zones and relation to vine development, grape maturity and quality. Spanish Journal of Agricultural Research,10(2), 326–337.

    Google Scholar 

  • Medrano, H., Escalona, J. M., Cifre, J., Bota, J., & Flexas, J. (2003). A ten year study on physiology of two Spanish grapevine cultivars under field conditions: effects of water availability for leaf photosynthesis to grape yield and quality. Functional Plant Biology,30, 607–619.

    CAS  Google Scholar 

  • OIV (Office International de la Vigne et du Vin). (2009). Recueil des méthodes internationales d’analyse des vins et des moûts (Compendium of international methods of analysis of wines and musts). Ed. Office International de la Vigne et du Vin. Paris, France.

  • Ojeda, H., Andary, C., Creaba, E., Carbonneau, A., & Deloire, A. (2002). Influence of pre- and postveraison water déficit on síntesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz. American Journal of Enology and Viticulture,53, 261–267.

    CAS  Google Scholar 

  • Pereira, G., Gaudillere, J. P., van Leeuwen, C., Hilbert, G., Maucourt, M., Deborde, C., et al. (2006). 1H NMR metabolite fingerprints of grape berry: Comparison of vintage and soil effects in Bordeaux grapevine growing areas. Analytica Chimica Acta,563, 346–352.

    CAS  Google Scholar 

  • Peterlunger, E., Sivilotti, P., Bonetto, C., & Paladin, M. (2002). Water stress induces changes in polyphenol concentration in Merlot grape and wines. Rivista di Viticoltura e di Enologia,55, 53–66.

    Google Scholar 

  • Poni, S., Matteo, G., Palliotti, A., Dai, Z., Duchêne, E., Truong, T., et al. (2018). Grapevine quality: A multiple choice issue. Scientia Horticulturae,234, 445–462.

    CAS  Google Scholar 

  • Primicerio, J., Gay, P., Aimonino, D. R., Comba, L., Matese, A., & Di Gennaro, S. F. (2015). NDVI-based vigour maps production using automatic detection of vine rows in ultra-high resolution aerial images. In J. V. Stafford (Ed.), Precision agriculture’15 proceedings of the 10th european conference on precision agriculture (pp. 465–470). Wageningen, The Netherlands: Wageningen Academic Publishers.

    Google Scholar 

  • Rey-Caramés, C., Diago, M. P., Martín, M. P., Lobo, A., & Tardáguila, J. (2015). Using RPAS multi-spectral imagery to characterise vigour, leaf development, yield components and berry composition variability within a vineyard. Remote Sensing,7, 14458–14481.

    Google Scholar 

  • Rousseau, J., Dupin, S., Acevedo-Opazo, C., Tisseyre, B., & Ojeda, H. (2008). L’imagerie aérienne: application à la caractérisation des potentiels viticoles et oenologiques (Aerial images: application to the characterization of viticulture and winemaking potentials). Bulletin OIV,81, 507–517.

    Google Scholar 

  • Santesteban, L. G., Guillaume, S., Royo, J. B., & Tisseyre, B. (2013). Are precision agriculture tools and methods relevant at the whole-vineyard scale? Precision Agriculture,14, 2–17.

    Google Scholar 

  • Schultz, H., & Matthews, M. (1988). Vegetative growth distribution during water deficit in Vitis vinifera L. Australian Journal of Plant Physiology,15, 641–656.

    Google Scholar 

  • Shellie, K. C., & Bowen, P. (2014). Isohydrodynamic behavior in deficit-irrigated Cabernet sauvignon and Malbec and its relationship between yield and berry composition. Irrigation Science,32, 87–97.

    Google Scholar 

  • Spayd, S. E., Tarara, J. M., Mee, D. L., & Ferguson, J. C. (2002). Separation of sunlight and temperature on the composition of Vitis vinifera cv. Merlot berries. American Journal of Enology and Viticulture,53, 171–182.

    CAS  Google Scholar 

  • Tardáguila, J., Baluja, J., Arpón, L., Balda, P., & Oliveira, M. (2011). Variations of soil properties affect the vegetative growth and yield components of “Tempranillo” grapevines. Precision Agriculture,12, 762–773.

    Google Scholar 

  • Tarpley, J., Schneider, S., & Money, R. (1984). Global vegetation indices from NOAA-7 meteorological satellite. Journal of Climatology and Applied Meteorology,23, 491–494.

    Google Scholar 

  • Tisseyre, B., & McBratney, A. B. (2008). A technical opportunity index based on mathematical morphology for site-specific management: An application to viticulture. Precision Agriculture,9, 101–113.

    Google Scholar 

  • Tonietto, J., & Carbonneau, A. (2004). A multicriteria climatic classification system for grape-growing regions worldwide. Agricultural and Forest Meteorology,124, 81–97.

    Google Scholar 

  • Turner, N. C. (1988). Measurement of plant water status by the pressure chamber technique. Irrigation Science,9, 289–308.

    Google Scholar 

  • Urretavizcaya, I., Santesteban, L. G., Tisseyre, B., Guillaume, S., Miranda, C., & Royo, J. B. (2014). Oenological significance of vineyard management zones using early grape sampling. Precision Agriculture,15, 111–129.

    Google Scholar 

  • Valdés-Gómez, H., Fermaud, M., Roudet, J., Calonnec, A., & Gary, C. (2008). Grey mould incidence is reduced on grapevines with lower vegetative and reproductive growth. Crop Protection,27, 1174–1186.

    Google Scholar 

  • van Leeuwen, C., Tregoat, O., Choné, X., Bois, B., Pernet, D., & Gaudillère, J. P. (2009). Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes. Journal International des Sciences de la Vigne et du Vin,43(3), 121–134.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milka Ferrer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrer, M., Echeverría, G., Pereyra, G. et al. Mapping vineyard vigor using airborne remote sensing: relations with yield, berry composition and sanitary status under humid climate conditions. Precision Agric 21, 178–197 (2020). https://doi.org/10.1007/s11119-019-09663-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-019-09663-9

Keywords