Skip to main content

Advertisement

Log in

Current Implementation Status of Cold Spray Technology: A Short Review

  • Review
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In recent years, cold spray technology has attracted more and more attentions. After more than 30 years of rapid development, research focus of cold spray technology is gradually shifting from fundamental and theoretical studies to application developments, some of which have been industrialized and mass-produced. In this paper, the characteristics of cold spray technology, cold spray materials perspectives and cold spray system developments were briefly introduced. Besides, the recent developments of cold spray applications in different fields including aerospace, biomedical, energy, electronics, semiconductor fields were discussed. Although cold spray technology is in the early stages of implementation, it has demonstrated a great potential to reduce costs and improve performance. World-wide awareness of ongoing and planned cold spray programs is critical to expand its applications and benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. A. Papyrin, Cold Spray Technology, Adv. Mater. Process., 2001, 159(9), p 49-49.

    CAS  Google Scholar 

  2. J. Villafuerte, Modern cold spray: materials, process, and applications, Springer, (2015)

  3. R. Huang and H. Fukanuma, Future trends in cold spray techniques, Elsevier, Future Development of Thermal Spray Coatingsed., 2015, p 143–162

    Google Scholar 

  4. H. Assadi, H. Kreye, F. Gärtner and T. Klassen, Cold Spraying – A Materials Perspective, Acta Mater., 2016, 116, p 382–407.

    Article  CAS  Google Scholar 

  5. A. Moridi, S.M. Hassani-Gangaraj, M. Guagliano and M. Dao, Cold Spray Coating: Review of Material Systems and Future Perspectives, Surf. Eng., 2014, 30(6), p 369–395.

    Article  CAS  Google Scholar 

  6. S. Yin, P. Cavaliere, B. Aldwell, R. Jenkins, H. Liao, W. Li and R. Lupoi, Cold Spray Additive Manufacturing and Repair: Fundamentals and Applications, Addit. Manuf., 2018, 21, p 628–650.

    CAS  Google Scholar 

  7. X. Chu, H. Che, C. Teng, P. Vo and S. Yue, A Multiple Particle Arrangement Model to Understand Cold Spray Characteristics of Bimodal Size 316L/Fe Powder Mixtures, Surf. Coat. Technol., 2020, 381, p 125137.

    Article  CAS  Google Scholar 

  8. X.-T. Luo, S.-P. Li, G.-C. Li, Y.-C. Xie, H. Zhang, R.-Z. Huang and C.-J. Li, Cold spray (CS) Deposition of a Durable Silver Coating with High Infrared Reflectivity for Radiation Energy Saving in the Polysilicon CVD Reactor, Surf. Coat. Technol., 2021, 409, p 126841.

    Article  CAS  Google Scholar 

  9. R. Huang, M. Sone, W. Ma and H. Fukanuma, The Effects of Heat Treatment on the Mechanical Properties of Cold-Sprayed Coatings, Surf. Coat. Technol., 2015, 261, p 278–288.

    Article  CAS  Google Scholar 

  10. W.-Y. Li, C. Zhang, X. Guo, G. Zhang, H. Liao and C. Coddet, Deposition Characteristics of Al–12Si Alloy Coating Fabricated by Cold Spraying with Relatively Large Powder Particles, Appl. Surf. Sci., 2007, 253(17), p 7124–7130.

    Article  CAS  Google Scholar 

  11. X.-J. Ning, J.-H. Jang, H.-J. Kim, C.-J. Li and C. Lee, Cold Spraying of Al–Sn Binary Alloy: Coating Characteristics and Particle Bonding Features, Surf. Coat. Technol., 2008, 202(9), p 1681–1687.

    Article  CAS  Google Scholar 

  12. L. Ajdelsztajn, A. Zuniga, B. Jodoin and E. Lavernia, Cold-Spray Processing of a Nanocrystalline Al−Cu−Mg−Fe−Ni Alloy with Sc, J. Therm. Spray Technol., 2006, 15(2), p 184–190.

    Article  CAS  Google Scholar 

  13. J. Huang, X. Yan, C. Chang, Y. Xie, W. Ma, R. Huang, R. Zhao, S. Li, M. Liu and H. Liao, Pure Copper Components Fabricated by Cold Spray (CS) and Selective Laser Melting (SLM) Technology, Surf. Coat. Technol., 2020, 395, p 125936.

    Article  CAS  Google Scholar 

  14. C. Borchers, F. Gärtner, T. Stoltenhoff and H. Kreye, Microstructural Bonding Features of Cold Sprayed Face Centered Cubic Metals, J. Appl. Phys., 2004, 96(8), p 4288–4292.

    Article  CAS  Google Scholar 

  15. Y. Feng, W. Li, C. Guo, M. Gong and K. Yang, Mechanical Property Improvement Induced by Nanoscaled Deformation Twins in Cold-Sprayed Cu Coatings, Mater. Sci. Eng., A, 2018, 727, p 119–122.

    Article  CAS  Google Scholar 

  16. W. Sun, A.W.Y. Tan, I. Marinescu, W.Q. Toh and E. Liu, Adhesion, Tribological and Corrosion Properties of Cold-Sprayed CoCrMo and Ti6Al4V Coatings on 6061–T651 Al alloy, Surf. Coat. Technol., 2017, 326, p 291–298.

    Article  CAS  Google Scholar 

  17. A.W.-Y. Tan, W. Sun, A. Bhowmik, J.Y. Lek, I. Marinescu, F. Li, N.W. Khun, Z. Dong and E. Liu, Effect of Coating Thickness on Microstructure, Mechanical Properties and Fracture Behaviour of Cold Sprayed Ti6Al4V Coatings on Ti6Al4V Substrates, Surf. Coat. Technol., 2018, 349, p 303–317.

    Article  CAS  Google Scholar 

  18. A.W.-Y. Tan, W. Sun, Y.P. Phang, M. Dai, I. Marinescu, Z. Dong and E. Liu, Effects of Traverse Scanning Speed of Spray Nozzle on the Microstructure and Mechanical Properties of Cold-Sprayed Ti6Al4V Coatings, J. Therm. Spray Technol., 2017, 26(7), p 1484–1497.

    Article  CAS  Google Scholar 

  19. H. Aydin, M. Alomair, W. Wong, P. Vo and S. Yue, Cold Sprayability of Mixed Commercial Purity Ti Plus Ti6Al4V Metal Powders, J. Therm. Spray Technol., 2017, 26(3), p 360–370.

    Article  CAS  Google Scholar 

  20. A.W.-Y. Tan, W. Sun, A. Bhowmik, J.Y. Lek, X. Song, W. Zhai, H. Zheng, F. Li, I. Marinescu and Z. Dong, Effect of Substrate Surface Roughness on Microstructure and Mechanical Properties of Cold-Sprayed Ti6Al4V Coatings on Ti6Al4V Substrates, J. Therm. Spray Technol., 2019, 28(8), p 1959–1973.

    Article  CAS  Google Scholar 

  21. D. Boruah, B. Ahmad, T.L. Lee, S. Kabra, A.K. Syed, P. McNutt, M. Doré and X. Zhang, Evaluation of Residual Stresses Induced by Cold Spraying of Ti-6Al-4V on Ti-6Al-4V Substrates, Surf. Coat. Technol., 2019, 374, p 591–602.

    Article  CAS  Google Scholar 

  22. W. Ma, Y. Xie, C. Chen, H. Fukanuma, J. Wang, Z. Ren and R. Huang, Microstructural and Mechanical Properties of High-Performance Inconel 718 Alloy by Cold Spraying, J. Alloy. Compd., 2019, 792, p 456–467.

    Article  CAS  Google Scholar 

  23. W. Sun, A.W.-Y. Tan, D.J.Y. King, N.W. Khun, A. Bhowmik, I. Marinescu and E. Liu, Tribological Behavior of Cold Sprayed Inconel 718 Coatings at Room and Elevated Temperatures, Surf. Coat. Technol., 2020, 385, p 125386.

    Article  CAS  Google Scholar 

  24. S. Yin, W. Li, B. Song, X. Yan, M. Kuang, Y. Xu, K. Wen and R. Lupoi, Deposition of FeCoNiCrMn High Entropy Alloy (HEA) Coating Via Cold Spraying, J. Mater. Sci. Technol., 2019, 35(6), p 1003–1007.

    Article  CAS  Google Scholar 

  25. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau and S.-Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303.

    Article  CAS  Google Scholar 

  26. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu and Y. Yang, High-Entropy Alloy: Challenges and Prospects, Mater. Today, 2016, 19(6), p 349–362.

    Article  CAS  Google Scholar 

  27. C. Chen, Y. Xie, L. Liu, R. Zhao, X. Jin, S. Li, R. Huang, J. Wang, H. Liao and Z. Ren, Cold Spray Additive Manufacturing of Invar 36 alloy: Microstructure, Thermal Expansion and Mechanical Properties, J. Mater. Sci. Technol., 2021, 72, p 39–51.

    Article  CAS  Google Scholar 

  28. X. Xie, C. Chen, Z. Chen, W. Wang, S. Yin, G. Ji and H. Liao, Achieving Simultaneously Improved Tensile Strength and Ductility of a Nano-TiB2/AlSi10Mg Composite Produced by Cold Spray Additive Manufacturing, Compos. Part B Eng., 2020, 202, p 108404.

    Article  CAS  Google Scholar 

  29. C. Chen, Y. Xie, X. Yan, M. Ahmed, R. Lupoi, J. Wang, Z. Ren, H. Liao and S. Yin, Tribological Properties of Al/Diamond Composites Produced by Cold Spray Additive Manufacturing, Addit. Manuf., 2020, 36, p 101434.

    CAS  Google Scholar 

  30. J. Karthikeyan, Cold Spray Technology: The Cold Spray Process has the Potential to Reduce Costs and Improve Quality in Both Coatings and Freeform Fabrication of Near-Net-Shape Parts, Adv. Mater. Process., 2005, 163(3), p 33–36.

    CAS  Google Scholar 

  31. G. Huang, D. Gu, X. Li, L. Xing and H. Wang, Numerical Simulation on Syphonage Effect of Laval Nozzle for Low Pressure Cold Spray System, J. Mater. Process. Technol., 2014, 214(11), p 2497–2504.

    Article  Google Scholar 

  32. Z.H. Chen, X.F. Sun, Y.L. Huang, A brief discussion about nickel aluminum bronze propeller failure modes and its repair methods. Key Engineering Materials, Trans Tech Publ, pp 125-129 (2017)

  33. W. Tillmann, L. Hagen, M. Kensy, M. Abdulgader and M. Paulus, Microstructural and Tribological Characteristics of Sn-Sb-Cu-Based Composite Coatings Deposited by Cold Spraying, J. Therm. Spray Technol., 2020, 29, p 1027–1039.

    Article  CAS  Google Scholar 

  34. M.J. Azizpour and S.N.H.M. Majd, Babbitt Casting and Babbitt Spraying Processes Case Study, Int. J. Mech. Mechatron. Eng., 2011, 5(8), p 1628–1630.

    Google Scholar 

  35. B.S. DeForce, T.J. Eden and J.K. Potter, Cold Spray Al-5% Mg Coatings for the Corrosion Protection of Magnesium Alloys, J. Therm. Spray Technol., 2011, 20(6), p 1352–1358.

    Article  CAS  Google Scholar 

  36. A. Sova, S. Grigoriev, A. Kochetkova and I. Smurov, Influence of Powder Injection Point Position on Efficiency of Powder Preheating in Cold Spray: Numerical Study, Surf. Coat. Technol., 2014, 242, p 226–231.

    Article  CAS  Google Scholar 

  37. M. Rokni, S. Nutt, C. Widener, V. Champagne and R. Hrabe, Review of Relationship Between Particle Deformation, Coating Microstructure, and Properties in High-Pressure Cold Spray, J. Therm. Spray Technol., 2017, 26(6), p 1308–1355.

    Article  Google Scholar 

  38. S. Glass, J. Lareau, K. Ross, S. Ali, F. Hernandez, B. Lopez, Magnetostrictive cold spray sensor for harsh environment and long-term condition monitoring, AIP Conference Proceedings, AIP Publishing LLC, p 020018 (2019)

  39. T.J. Eden, K.G. Judd, R. Girrior, Properties for AA7050 deposits produced by the cold spray process, SAMPE 2019 Conference and Exhibition, p 11 (2019)

  40. H. Wu, X. Xie, M. Liu, C. Verdy, Y. Zhang, H. Liao and S. Deng, Stable Layer-Building Strategy to Enhance Cold-Spray-Based Additive Manufacturing, Addit. Manuf., 2020, 35, p 101356.

    Google Scholar 

  41. H. Wu, X. Xie, M. Liu, C. Chen, H. Liao, Y. Zhang and S. Deng, A new approach to simulate coating thickness in cold spray, Surf. Coat. Technol., 2020, 382, p 125151.

    Article  CAS  Google Scholar 

  42. A.A. Filippov, V.M. Fomin, A.M. Orishich, A.G. Malikov, N.S. Ryashin, A.A. Golyshev, Investigation of the microstructure of Ni and B4C ceramic-metal mixtures obtained by cold spray coating and followed by laser cladding, AIP Conference Proceedings, p 030019 (2017)

  43. D. Wilmot, C.D. Howe, R. Todorovic, B. Hoiland, Case Study of Low-Pressure Cold Spray Conductive Coating, Adv. Mater. Process., 168, S12+ (2010) (in English)

  44. Z. Zhang, F. Liu, E.-H. Han, L. Xu and P.C. Uzoma, Effects of Al2O3 on the Microstructures and Corrosion Behavior of Low-Pressure Cold Gas Sprayed Al 2024-Al2O3 Composite Coatings on AA 2024–T3 Substrate, Surf. Coat. Technol., 2019, 370, p 53–68.

    Article  CAS  Google Scholar 

  45. V. Champagne and D. Helfritch, Critical Assessment 11: Structural Repairs by Cold Spray, Mater. Sci. Technol., 2015, 31(6), p 627–634.

    Article  CAS  Google Scholar 

  46. O.C. Ozdemir and C.A. Widener, Influence of Powder Injection Parameters in High-Pressure Cold Spray, J. Therm. Spray Technol., 2017, 26(7), p 1411–1422.

    Article  Google Scholar 

  47. A. Moridi, S.M.H. Gangaraj, S. Vezzu and M. Guagliano, Number of Passes and Thickness Effect on Mechanical Characteristics of Cold Spray Coating, Procedia Eng., 2014, 74, p 449–459.

    Article  CAS  Google Scholar 

  48. D. MacDonald, S. Leblanc-Robert, R. Fernández, A. Farjam and B. Jodoin, Effect of Nozzle Material on Downstream Lateral Injection Cold Spray Performance, J. Therm. Spray Technol., 2016, 25(6), p 1149–1157.

    Article  CAS  Google Scholar 

  49. C. Massar, K. Tsaknopoulos, B.C. Sousa, J. Grubbs and D.L. Cote, Heat Treatment of Recycled Battlefield Stainless-Steel Scrap for Cold Spray Applications, JOM, 2020, 72(9), p 3080–3089.

    Article  CAS  Google Scholar 

  50. GEN III™ portable high-pressure cold spray system, https://vrcmetalsystems.com/gen-iii-portable-high-pressure-cold-spray-system/

  51. C. Widener, M. Carter, O. Ozdemir, R. Hrabe, B. Hoiland, T. Stamey, V. Champagne and T. Eden, Application of High-Pressure Cold Spray for an Internal Bore Repair of a Navy Valve Actuator, J. Therm. Spray Technol., 2016, 25(1–2), p 193–201.

    Article  CAS  Google Scholar 

  52. Impact cold spray system EvoCSII, https://impact-innovations.com/en/portfolio-item/impact-cold-spray-system/

  53. Cold spray equipment, http://plasma.co.jp/en/products/coldspray.html

  54. W. Wong, E. Irissou, P. Vo, M. Sone, F. Bernier, J.-G. Legoux, H. Fukanuma and S. Yue, Cold Spray Forming of Inconel 718, J. Therm. Spray Technol., 2013, 22(2–3), p 413–421.

    Article  CAS  Google Scholar 

  55. Spraying equipment DYMET®, http://en.dymet.net/spraying-equipment-dymet.html

  56. Cold spray - SST™ equipment & supplies, https://www.cntrline.com/products/cold-spray-sst-equipment-supplies

  57. W.-Y. Li, H. Liao, H.-T. Wang, C.-J. Li, G. Zhang and C. Coddet, Optimal Design of a Convergent-Barrel Cold Spray Nozzle by Numerical Method, Appl. Surf. Sci., 2006, 253(2), p 708–713.

    Article  CAS  Google Scholar 

  58. S. Kumar, M. Ramakrishna, N.M. Chavan and S.V. Joshi, Correlation of Splat State with Deposition Characteristics of Cold Sprayed Niobium Coatings, Acta Mater., 2017, 130, p 177–195.

    Article  CAS  Google Scholar 

  59. V. Varadaraajan and P. Mohanty, Design and Optimization of Rectangular Cold Spray Nozzle: Radial Injection Angle, Expansion Ratio and Traverse Speed, Surf. Coat. Technol., 2017, 316, p 246–254.

    Article  CAS  Google Scholar 

  60. S. Yin, X.-F. Wang and W.-Y. Li, Computational Analysis of the Effect of Nozzle Cross-Section Shape on Gas Flow and Particle Acceleration in Cold Spraying, Surf. Coat. Technol., 2011, 205(8), p 2970–2977.

    Article  CAS  Google Scholar 

  61. X.K. Suo, T.K. Liu, W.Y. Li, Q.L. Suo, M.P. Planche and H.L. Liao, Numerical Study on the Effect of Nozzle Dimension on Particle Distribution in Cold Spraying, Surf. Coat. Technol., 2013, 220, p 107–111.

    Article  CAS  Google Scholar 

  62. A. Sova, I. Smurov, M. Doubenskaia and P. Petrovskiy, Deposition of Aluminum Powder by Cold Spray Micronozzle, The Int. J. Adv. Manuf. Technol., 2018, 95(9), p 3745–3752.

    Article  Google Scholar 

  63. T. Schmidt, F. Gaertner and H. Kreye, New Developments in Cold Spray Based on Higher Gas and Particle Temperatures, J. Therm. Spray Technol., 2006, 15(4), p 488–494.

    Article  CAS  Google Scholar 

  64. Y.Y. Wang, Y. Liu, C.J. Li, G.J. Yang and K. Kusumoto, Electrical and Mechanical Properties of Nano-Structured TiN Coatings Deposited by Vacuum Cold Spray, Vacuum, 2012, 86(7), p 953–959.

    Article  CAS  Google Scholar 

  65. V.K. Champagne Jr, O.C. Ozdemir, A. Nardi, Practical Cold Spray, Springer, (2021)

  66. T. Stamey, Main circulating water pump: case study, Cold Spray Action Team (CSAT) Conference, (2016)

  67. A. Moridi, E.J. Stewart, A. Wakai, H. Assadi, F. Gartner, M. Guagliano, T. Klassen and M. Dao, Solid-State Additive Manufacturing of Porous Ti-6Al-4V by Supersonic Impact, Appl. Mater. Today, 2020, 21, p 100865.

    Article  Google Scholar 

  68. H. Koivuluoto, J. Näkki and P. Vuoristo, Corrosion Properties of Cold-Sprayed Tantalum Coatings, J. Therm. Spray Technol., 2008, 18(1), p 75–82.

    Article  CAS  Google Scholar 

  69. X. Chu, R. Chakrabarty, H. Che, L. Shang, P. Vo, J. Song and S. Yue, Investigation of the Feedstock Deposition Behavior in a Cold Sprayed 316L/Fe Composite Coating, Surf. Coat. Technol., 2018, 337, p 53–62.

    Article  CAS  Google Scholar 

  70. R. Ma and T. Tang, Current Strategies to Improve the Bioactivity of PEEK, Int. J. Mol. Sci., 2014, 15(4), p 5426–5445.

    Article  CAS  Google Scholar 

  71. K. Ravi, Y. Ichikawa, T. Deplancke, K. Ogawa, O. Lame and J.-Y. Cavaille, Development of Ultra-High Molecular Weight Polyethylene (UHMWPE) Coating by Cold Spray Technique, J. Therm. Spray Technol., 2015, 24(6), p 1015–1025.

    Article  CAS  Google Scholar 

  72. K. Ravi, Y. Ichikawa, K. Ogawa, T. Deplancke, O. Lame and J.-Y. Cavaille, Mechanistic Study and Characterization of Cold-Sprayed Ultra-High Molecular Weight Polyethylene-Nano-Ceramic Composite Coating, J. Therm. Spray Technol., 2016, 25(1–2), p 160–169.

    Article  CAS  Google Scholar 

  73. P.C. King, A.J. Poole, S. Horne, R. de Nys, S. Gulizia and M.Z. Jahedi, Embedment of Copper Particles into Polymers by Cold Spray, Surf. Coat. Technol., 2013, 216, p 60–67.

    Article  CAS  Google Scholar 

  74. A.C. Noorakma, H. Zuhailawati, V. Aishvarya and B. Dhindaw, Hydroxyapatite-Coated Magnesium-Based Biodegradable Alloy: Cold Spray Deposition and Simulated Body Fluid Studies, J. Mater. Eng. Perform., 2013, 22(10), p 2997–3004.

    Article  CAS  Google Scholar 

  75. Y. Liu, Z. Dang, Y. Wang, J. Huang and H. Li, Hydroxyapatite/Graphene-Nanosheet Composite Coatings Deposited by Vacuum Cold Spraying for Biomedical Applications: Inherited Nanostructures and Enhanced Properties, Carbon, 2014, 67, p 250–259.

    Article  CAS  Google Scholar 

  76. N. Sanpo, M.L. Tan, P. Cheang and K.A. Khor, Antibacterial Property of Cold-Sprayed HA-Ag/PEEK Coating, J. Therm. Spray Technol., 2009, 18(1), p 10–15.

    Article  CAS  Google Scholar 

  77. McGill researchers’ cold-spray coating deactivates COVID-19 virus, https://www.design-engineering.com/mcgill-researchers-cold-spray-coating-deactivates-covid-19-virus-1004035583/

  78. A. Vardelle, C. Moreau, J. Akedo, H. Ashrafizadeh, C.C. Berndt, J.O. Berghaus, M. Boulos, J. Brogan, A.C. Bourtsalas and A. Dolatabadi, The 2016 Thermal Spray Roadmap, J. Therm. Spray Technol., 2016, 25(8), p 1376–1440.

    Article  CAS  Google Scholar 

  79. V. Kosarev, S. Klinkov, B. Melamed, Y.K. Nepochatov, N. Ryashin, V. Shikalov, Cold spraying for power electronics: Deposition of thick topologically patterned copper layers on ceramics, AIP Conference Proceedings, AIP Publishing LLC, p 030047 (2018)

  80. H. Yeom and K. Sridharan, Recent Advances of Cold Spray Technology in Nuclear Energy Applications, J. Adv. Mater. Process., 2020, 178(5), p 61–63.

    Google Scholar 

  81. B. Maier, H. Yeom, G. Johnson, T. Dabney, J. Walters, P. Xu, J. Romero, H. Shah and K. Sridharan, Development of Cold Spray Chromium Coatings for Improved Accident Tolerant Zirconium-Alloy Cladding, J. Nucl. Mater., 2019, 519, p 247–254.

    Article  CAS  Google Scholar 

  82. H. Yeom, B. Maier, G. Johnson, T. Dabney, M. Lenling and K. Sridharan, High Temperature Oxidation and Microstructural Evolution of Cold Spray Chromium Coatings on Zircaloy-4 in Steam Environments, J. Nucl. Mater., 2019, 526, p 151737.

    Article  CAS  Google Scholar 

  83. M. Ševeček, A. Gurgen, A. Seshadri, Y. Che, M. Wagih, B. Phillips, V. Champagne and K. Shirvan, Development of Cr Cold Spray–Coated Fuel Cladding with Enhanced Accident Tolerance, Nucl. Eng. Technol., 2018, 50(2), p 229–236.

    Article  CAS  Google Scholar 

  84. H. Yeom, T. Dabney, G. Johnson, B. Maier, M. Lenling and K. Sridharan, Improving Deposition Efficiency in Cold Spraying Chromium Coatings by Powder Annealing, The Int. J. Adv. Manuf. Technol., 2019, 100(5), p 1373–1382.

    Article  Google Scholar 

  85. J. Tam, W. Li, B. Yu, D. Poirier, J.-G. Legoux, P. Lin, G. Palumbo, J.D. Giallonardo and U. Erb, Reducing Complex Microstructural Heterogeneity in Electrodeposited and Cold Sprayed Copper Coating Junctions, Surf. Coat. Technol., 2020, 404, p 126479.

    Article  CAS  Google Scholar 

  86. NASA additively manufactured rocket engine hardware passes cold spray, hot fire tests, https://www.nasa.gov/centers/marshall/news/releases/2021/nasa-additively-manufactured-rocket-engine-hardware-passes-cold-spray-hot-fire-tests.html

  87. K. Malamousi, K. Delibasis, B. Allcock, S. Kamnis, Digital Transformation of Thermal and Cold Spray Processes with Emphasis on Machine Learning. Surf. Coat. Technol., 128138 (2022)

  88. D. Ikeuchi, A. Vargas-Uscategui, X. Wu and P.C. King, Neural Network Modelling of Track Profile in Cold Spray Additive Manufacturing, Materials, 2019, 12(17), p 2827.

    Article  CAS  Google Scholar 

  89. H. Canales, I. Cano and S. Dosta, Window of Deposition Description and Prediction of Deposition Efficiency Via Machine Learning Techniques in Cold Spraying, Surf. Coat. Technol., 2020, 401, p 126143.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is supported by Guangdong Academy of Sciences Special Fund for Comprehensive Industrial Technology Innovation Center Building (2022GDASZH-2022010107), Key-Area Research and Development Program of Guangdong Province (2020B0101330001), International Science & Technology Cooperation Program of Guangdong Province (2020A0505100046), Science and Technology Program of Guangzhou (202007020008) and Research Fund of State Key Laboratory for Marine Corrosion and Protection of Luoyang Ship Material Research Institute (LSMRI) under the contract No. 6142901200303.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renzhong Huang, Jibo Huang or Guosheng Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special issue focus in the Journal of Thermal Spray Technology celebrating the 30th anniversary of the journal. The papers and topics were curated by the Editor-in-Chief Armelle Vardelle, University of Limoges/ENSIL

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Chu, X., Lan, H. et al. Current Implementation Status of Cold Spray Technology: A Short Review. J Therm Spray Tech 31, 848–865 (2022). https://doi.org/10.1007/s11666-022-01382-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01382-4

Keywords