Skip to main content

Advertisement

Log in

Central and Peripheral Nervous System Complications of Vasculitis Syndromes from Pathology to Bedside: Part 2—Peripheral Nervous System

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Peripheral nervous system vasculitides (PNSV) are a heterogeneous group of disorders with a clinical subset that may differ in prognosis and therapy. We provide a comprehensive update on the clinical assessment, diagnosis, complications, treatment, and follow-up of PNSV.

Recent Findings

Progress in neuroimaging, molecular testing, and peripheral nerve biopsy has improved clinical assessment and decision-making of PNSV, also providing novel insights on how to prevent misdiagnosis and increase diagnostic certainty. Advances in imaging techniques, allowing to clearly display the vessel walls, have also enhanced the possibility to differentiate inflammatory from non-inflammatory vascular lesions, while recent histopathology data have identified the main morphological criteria for more accurate diagnosis and differential diagnoses. Overall, the identification of peculiar morphological findings tends to improve diagnostic accuracy by defining a clearer boundary between systemic and non-systemic neuropathies. Therefore, the definition of epineurium vessel wall damage, type of vascular lesion, characterization of lymphocyte populations, antibodies, and inflammatory factors, as well as the identification of direct nerve damage or degeneration, are the common goals for pathologists and clinicians, who will both benefit for data integration and findings translation. Nevertheless, to date, treatment is still largely empiric and, in some cases, unsatisfactory, thus often precluding precise prognostic prediction. In this context, new diagnostic techniques and multidisciplinary management will be essential in the proper diagnosis and prompt management of PNSV, as highlighted in the present review.

Summary

Thirty to fifty percent of all patients with vasculitis have signs of polyneuropathy. Neuropathies associated with systemic vasculitis are best managed according to the guidelines of the underlying disease because appropriate workup and initiation of treatment can reduce morbidity. Steroids, or in severe or progressive cases, cyclophosphamide pulse therapy is the standard therapy in non-systemic vasculitic neuropathies. Some patients need long-term immunosuppression. The use of novel technologies for high-throughput genotyping will permit to determine the genetic influence of related phenotypes in patients with PNSV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Burns TM, Schaublin GA, Dyck PJ. Vasculitic neuropathies. Neurol Clin. 2007;25(1):89–113. https://doi.org/10.1016/j.ncl.2006.11.002.

    Article  PubMed  Google Scholar 

  2. • Mansueto G, Lanza G, Fisicaro F, Alaouieh D, Hong E, Girolami S, et al. Central and peripheral nervous system complications of vasculitis syndromes from pathology to bedside: part 1-central nervous system. Curr Neurol Neurosci Rep. 2022;22(1):47–69. https://doi.org/10.1007/s11910-022-01172-z. A comprehensive update on the clinical assessment, diagnosis, complications, and treatment of primary central nervous system vasculitis.

    Article  PubMed  PubMed Central  Google Scholar 

  3. • Beachy N, Satkowiak K, Gwathmey KG. Vasculitic neuropathies. Semin Neurol. 2019;39(5):608–19. https://doi.org/10.1055/s-0039-1688990. An organization of the vasculitic neuropathies and an overview of principles of diagnosis and treatment for the clinical neurologist.

    Article  PubMed  Google Scholar 

  4. • Gwathmey KG, Tracy JA, Dyck PJB. Peripheral nerve vasculitis: classification and disease associations. Neurol Clin. 2019;37(2):303–33. https://doi.org/10.1016/j.ncl.2019.01.013. Useful review on the classification, clinical presentation, diagnostic approach, etiologies, and treatment of the vasculitic neuropathies.

    Article  PubMed  Google Scholar 

  5. •• Collins MP, Hadden RD. The nonsystemic vasculitic neuropathies. Nat Rev Neurol. 2017;13(5):302–16. https://doi.org/10.1038/nrneurol.2017.42. An update on the classification of the Peripheral Nerve Society guideline group published in 2010, and the new diagnostic criteria for vasculitic neuropathy by the Brighton Collaboration in 2015. Clear description of nonsystemic vasculitic neuropathy subtypes. Useful pearls on diagnosis and treatment.

    Article  PubMed  Google Scholar 

  6. •• Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC, Ferrario F, et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013;65(1):1–11. https://doi.org/10.1002/art.37715. The nomenclature and classification of vasculitis.

    Article  CAS  PubMed  Google Scholar 

  7. •• Collins MP, Dyck PJ, Gronseth GS, Guillevin L, Hadden RD, Heuss D, et al. Peripheral Nerve Society Guideline on the classification, diagnosis, investigation, and immunosuppressive therapy of non-systemic vasculitic neuropathy: executive summary. J Peripher Nerv Syst. 2010;15(3):176–84. https://doi.org/10.1111/j.1529-8027.2010.00281.x. The nomenclature and classification non-systemic vasculitic neuropathy (NSVN). diagnostic criteria for vasculitic neuropathy, classification criteria for NSVN, and therapeutic approaches to NSVN are defined.

    Article  PubMed  Google Scholar 

  8. • Hoffman GS, Calabrese LH. Vasculitis: determinants of disease patterns. Nat Rev Rheumatol. 2014;10(8):454–62. https://doi.org/10.1038/nrrheum.2014.89. An unteresting update on pathophysiology, this review explaims how certain antigens, including infectious agents, might become disease-relevant and how vascular diversity could influence disease phenotypes and the spectrum of vascular inflammatory diseases.

    Article  PubMed  Google Scholar 

  9. Mizisin AP, Weerasuriya A. Homeostatic regulation of the endoneurial microenvironment during development, aging and in response to trauma, disease and toxic insult. Acta Neuropathol. 2011;121(3):291–312. https://doi.org/10.1007/s00401-010-0783-x.

    Article  CAS  PubMed  Google Scholar 

  10. Collins MP, Periquet MI, Mendell JR, Sahenk Z, Nagaraja HN, Kissel JT. Nonsystemic vasculitic neuropathy: insights from a clinical cohort. Neurology. 2003;61(5):623–30. https://doi.org/10.1212/01.wnl.0000082715.48844.3e.

    Article  CAS  PubMed  Google Scholar 

  11. Nicolle MW, Barron JR, Watson BV, Hammond RR, Miller TA. Wartenberg’s migrant sensory neuritis. Muscle Nerve. 2001;24(3):438–43. https://doi.org/10.1002/1097-4598(200103)24:3%3c438::aid-mus1020%3e3.0.co;2-y.

    Article  CAS  PubMed  Google Scholar 

  12. Wolf J, Schmitt V, Palm F, Grau AJ, Bergner R. Peripheral neuropathy as initial manifestation of primary systemic vasculitides. J Neurol. 2013;260(4):1061–70. https://doi.org/10.1007/s00415-012-6760-7.

    Article  PubMed  Google Scholar 

  13. •• Hadden RDM, Collins MP, Zivkovic SA, Hsieh ST, Bonetto C, Felicetti P, et al. Vasculitic peripheral neuropathy: case definition and guidelines for collection, analysis, and presentation of immunisation safety data. Vaccine. 2017;35(11):1567–78. https://doi.org/10.1016/j.vaccine.2015.11.047. The Brighton Collaboration refines diagnostic approach by combining clinical and pathological evidence to describe three levels of case definition of vasculitic neuropathy.

    Article  PubMed  Google Scholar 

  14. Martinez V, Cohen P, Pagnoux C, Vinzio S, Mahr A, Mouthon L, et al. Intravenous immunoglobulins for relapses of systemic vasculitides associated with antineutrophil cytoplasmic autoantibodies: results of a multicenter, prospective, open-label study of twenty-two patients. Arthritis Rheum. 2008;58(1):308–17. https://doi.org/10.1002/art.23147.

    Article  CAS  PubMed  Google Scholar 

  15. Nathani D, Spies J, Barnett MH, Pollard J, Wang MX, Sommer C, et al. Nerve biopsy: current indications and decision tools. Muscle Nerve. 2021;64(2):125–39. https://doi.org/10.1002/mus.27201.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Vital C, Vital A, Canron MH, Jaffre A, Viallard JF, Ragnaud JM, et al. Combined nerve and muscle biopsy in the diagnosis of vasculitic neuropathy. A 16-year retrospective study of 202 cases. J Peripher Nerv Syst. 2006;11(1):20–9. https://doi.org/10.1111/j.1085-9489.2006.00060.x.

    Article  PubMed  Google Scholar 

  17. Collins MP, Dyck PJ (2014) Vasculitides. In: Vallant J, Weis J, (Eds). Peripheral nerve disorders: pathology and genetics vol International Society of Neuropathology Series: Wiley Blackwel. p. 175–95. https://doi.org/10.1002/9781118618424.ch24

  18. • Kao JC, Liao B, Markovic SN, Klein CJ, Naddaf E, Staff NP, et al. Neurological complications associated with anti-programmed death 1 (PD-1) antibodies. JAMA Neurol. 2017;74(10):1216–22. https://doi.org/10.1001/jamaneurol.2017.1912. Vasculic neuropathy associated with the use of anti-programmed death 1 (PD-1) antibodies in the treatment of solid-organ tumors.

    Article  PubMed  PubMed Central  Google Scholar 

  19. • Ramineni KK, Chandra SR, Mahadevan A, Kulkarni GB, Ramanujam CN. Clinical, electrophysiological and laboratory parameters, and outcome in patients with biopsy proven systemic and nonsystemic vasculitic neuropathy. Neurol India. 2019;67(Supplement):S62–70. https://doi.org/10.4103/0028-3886.250709. The clinical features, electrophysiology, laboratory results, and nerve biopsy ino non-systemic and systemic vasculitic neuropathies from patients esamined in a developing country.

    Article  PubMed  Google Scholar 

  20. Takahashi M, Koike H, Ikeda S, Kawagashira Y, Iijima M, Hashizume A, et al. Distinct pathogenesis in nonsystemic vasculitic neuropathy and microscopic polyangiitis. Neurol Neuroimmunol Neuroinflamm. 2017;4(6):e407. https://doi.org/10.1212/NXI.0000000000000407.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schneider C, Wunderlich G, Bleistein J, Fink GR, Deckert M, Brunn A, et al. Lymphocyte antigens targetable by monoclonal antibodies in non-systemic vasculitic neuropathy. J Neurol Neurosurg Psychiatry. 2017;88(9):756–60. https://doi.org/10.1136/jnnp-2017-315878.

    Article  PubMed  Google Scholar 

  22. Takeuchi H, Kawasaki T, Shigematsu K, Kawamura K, Oka N. Neutrophil extracellular traps in neuropathy with anti-neutrophil cytoplasmic autoantibody-associated microscopic polyangiitis. Clin Rheumatol. 2017;36(4):913–7. https://doi.org/10.1007/s10067-017-3546-4.

    Article  PubMed  Google Scholar 

  23. •• Castiglione JI, Marrodan M, Alessandro L, Taratuto AL, Brand P, Nogues M, et al. Vasculitic peripheral neuropathy, differences between systemic and non-systemic etiologies: a case series and biopsy report. J Neuromuscul Dis. 2021;8(1):155–61. https://doi.org/10.3233/JND-200576. A well-documented case series. Erythrocyte sedimentation rate as an usedul tool to help distinguish between systemic vasculitic neuropathy and non-systemic vasculitic neuropathy. Early nerve biopsy in untreated patients increases diagnostic accuracy.

    Article  CAS  PubMed  Google Scholar 

  24. Dhinakaran S, Mahadevan A, Unchagi A, Kulkarni GB, Nagappa M, Chickabasaviah YT, et al. Is Perls Prussian blue stain for hemosiderin a useful adjunct in the diagnosis of vasculitic neuropathies? Neurol India. 2021;69(1):140–6. https://doi.org/10.4103/0028-3886.310064.

    Article  PubMed  Google Scholar 

  25. Hui M, Meena AK, Rajasekhar L, Sireesha Y, Afshan J, Mridula R, et al. Vasculitic neuropathy: a retrospective analysis of nerve biopsies and clinical features from a single tertiary care center. Ann Indian Acad Neurol. 2019;22(2):180–6. https://doi.org/10.4103/aian.AIAN_47_18.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Luigetti M, Di Paolantonio A, Bisogni G, Romano A, Conte A, Barbato F, et al. Sural nerve biopsy in peripheral neuropathies: 30-year experience from a single center. Neurol Sci. 2020;41(2):341–6. https://doi.org/10.1007/s10072-019-04082-0.

    Article  PubMed  Google Scholar 

  27. Pant I, Jha K, Singh R, Kushwaha S, Chaturvedi S. Peripheral neuropathy and the role of nerve biopsy: a revisit. Indian J Pathol Microbiol. 2018;61(3):339–44. https://doi.org/10.4103/IJPM.IJPM_402_17.

    Article  PubMed  Google Scholar 

  28. Suanprasert N, Taylor BV, Klein CJ, Roforth MM, Karam C, Keegan BM, et al. Polyneuropathies and chronic inflammatory demyelinating polyradiculoneuropathy in multiple sclerosis. Mult Scler Relat Disord. 2019;30:284–90. https://doi.org/10.1016/j.msard.2019.02.026.

    Article  PubMed  Google Scholar 

  29. Sireesha Y, Kanikannan MA, Pyal A, Sandeep G, Uppin MS, Kandadai RM, et al. Patterns of peripheral neuropathy in Sjogren’s syndrome in a tertiary care hospital from South India. Neurol India. 2019;67(Supplement):S94–9. https://doi.org/10.4103/0028-3886.250714.

    Article  PubMed  Google Scholar 

  30. • Rodrigues R, Branco M, Silva R, Ruano L, Fontao L, Lopes M, et al. Peripheral neuropathy in systemic vasculitis and other autoimmune diseases - a report of five cases emphasizing the importance of etiologic characterization. eNeurologicalSci. 2020;21:100272. https://doi.org/10.1016/j.ensci.2020.100272. An useful case study in vasculitic neuropathies.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kawamura N, Dyck PJ, Schmeichel AM, Engelstad JK, Low PA. Inflammatory mediators in diabetic and non-diabetic lumbosacral radiculoplexus neuropathy. Acta Neuropathol. 2008;115(2):231–9. https://doi.org/10.1007/s00401-007-0326-2.

    Article  CAS  PubMed  Google Scholar 

  32. •• Pinto MV, Ng PS, Howe BM, Laughlin RS, Thapa P, Dyck PJ, et al. Lumbosacral radiculoplexus neuropathy: neurologic outcomes and survival in a population-based study. Neurology. 2021;96(16):e2098–108. https://doi.org/10.1212/WNL.0000000000011799. (.)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stork AC, van der Meulen MF, van der Pol WL, Vrancken AF, Franssen H, Notermans NC. Wartenberg’s migrant sensory neuritis: a prospective follow-up study. J Neurol. 2010;257(8):1344–8. https://doi.org/10.1007/s00415-010-5530-7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nakamura T, Kawarabayashi T, Seino Y, Hirohata M, Wakabayashi K, Shoji M. Perineuritis successfully treated with early aggressive immunotherapy. Intern Med. 2019;58(19):2875–8. https://doi.org/10.2169/internalmedicine.2638-19.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Imboden JB. Involvement of the peripheral nervous system in polyarteritis nodosa and antineutrophil cytoplasmic antibodies-associated vasculitis. Rheum Dis Clin North Am. 2017;43(4):633–9. https://doi.org/10.1016/j.rdc.2017.06.011.

    Article  PubMed  Google Scholar 

  36. Bischof A, Manigold T, Barro C, Heijnen I, Berger CT, Derfuss T, et al. Serum neurofilament light chain: a biomarker of neuronal injury in vasculitic neuropathy. Ann Rheum Dis. 2018;77(7):1093–4. https://doi.org/10.1136/annrheumdis-2017-212045.

    Article  CAS  PubMed  Google Scholar 

  37. Sakai K, Komai K, Yanase D, Yamada M. Plasma VEGF as a marker for the diagnosis and treatment of vasculitic neuropathy. J Neurol Neurosurg Psychiatry. 2005;76(2):296. https://doi.org/10.1136/jnnp.2004.047571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Graf J, Imboden J. Vasculitis and peripheral neuropathy. Curr Opin Rheumatol. 2019;31(1):40–5. https://doi.org/10.1097/BOR.0000000000000559.

    Article  PubMed  Google Scholar 

  39. Sandbrink F, Klion AD, Floeter MK. “Pseudo-conduction block” in a patient with vasculitic neuropathy. Electromyogr Clin Neurophysiol. 2001;41(4):195–202.

    CAS  PubMed  Google Scholar 

  40. McCluskey L, Feinberg D, Cantor C, Bird S. “Pseudo-conduction block” in vasculitic neuropathy. Muscle Nerve. 1999;22(10):1361–6. https://doi.org/10.1002/(sici)1097-4598(199910)22:10%3c1361::aid-mus4%3e3.0.co;2-1.

    Article  CAS  PubMed  Google Scholar 

  41. Zivkovic SA, Ascherman D, Lacomis D. Vasculitic neuropathy–electrodiagnostic findings and association with malignancies. Acta Neurol Scand. 2007;115(6):432–6. https://doi.org/10.1111/j.1600-0404.2006.00781.x.

    Article  CAS  PubMed  Google Scholar 

  42. Vrancken AF, Said G. Vasculitic neuropathy. Handb Clin Neurol. 2013;115:463–83. https://doi.org/10.1016/B978-0-444-52902-2.00026-6.

    Article  PubMed  Google Scholar 

  43. Illes Z, Blaabjerg M. Cerebrospinal fluid findings in Guillain-Barre syndrome and chronic inflammatory demyelinating polyneuropathies. Handb Clin Neurol. 2017;146:125–38. https://doi.org/10.1016/B978-0-12-804279-3.00009-5.

    Article  PubMed  Google Scholar 

  44. Schneider C, Sprenger A, Weiss K, Slebocki K, Maintz D, Fink GR, et al. MRI detects peripheral nerve and adjacent muscle pathology in non-systemic vasculitic neuropathy (NSVN). J Neurol. 2019;266(4):975–81. https://doi.org/10.1007/s00415-019-09224-0.

    Article  PubMed  Google Scholar 

  45. Grimm A, Decard BF, Bischof A, Axer H. Ultrasound of the peripheral nerves in systemic vasculitic neuropathies. J Neurol Sci. 2014;347(1–2):44–9. https://doi.org/10.1016/j.jns.2014.09.017.

    Article  PubMed  Google Scholar 

  46. Grimm A, Heiling B, Schumacher U, Witte OW, Axer H. Ultrasound differentiation of axonal and demyelinating neuropathies. Muscle Nerve. 2014;50(6):976–83. https://doi.org/10.1002/mus.24238.

    Article  PubMed  Google Scholar 

  47. Uceyler N, Schafer KA, Mackenrodt D, Sommer C, Mullges W. High-resolution ultrasonography of the superficial peroneal motor and sural sensory nerves may be a non-invasive approach to the diagnosis of vasculitic neuropathy. Front Neurol. 2016;7:48. https://doi.org/10.3389/fneur.2016.00048.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Collins MP. The vasculitic neuropathies: an update. Curr Opin Neurol. 2012;25(5):573–85. https://doi.org/10.1097/WCO.0b013e3283580432.

    Article  CAS  PubMed  Google Scholar 

  49. Yates M, Watts RA, Bajema IM, Cid MC, Crestani B, Hauser T, et al. EULAR/ERA-EDTA recommendations for the management of ANCA-associated vasculitis. Ann Rheum Dis. 2016;75(9):1583–94. https://doi.org/10.1136/annrheumdis-2016-209133.

    Article  CAS  PubMed  Google Scholar 

  50. Mukhtyar C, Guillevin L, Cid MC, Dasgupta B, de Groot K, Gross W, et al. EULAR recommendations for the management of primary small and medium vessel vasculitis. Ann Rheum Dis. 2009;68(3):310–7. https://doi.org/10.1136/ard.2008.088096.

    Article  CAS  PubMed  Google Scholar 

  51. Ntatsaki E, Carruthers D, Chakravarty K, D’Cruz D, Harper L, Jayne D, et al. BSR and BHPR guideline for the management of adults with ANCA-associated vasculitis. Rheumatology (Oxford). 2014;53(12):2306–9. https://doi.org/10.1093/rheumatology/ket445.

    Article  CAS  PubMed  Google Scholar 

  52. Litchfield I, Greenfield S, Harper L. Addressing the transition to a chronic condition: exploring independent adoption of self-management by patients with ANCA-associated vasculitis. Rheumatol Adv Pract. 2021;5(3):rkab075. https://doi.org/10.1093/rap/rkab075.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ginsberg L. Vasculitis and the peripheral nervous system. Rheumatology (Oxford). 2020;59(Suppl 3):iii55–9. https://doi.org/10.1093/rheumatology/keaa075.

    Article  CAS  PubMed  Google Scholar 

  54. Uceyler N, Geng A, Reiners K, Toyka KV, Sommer C. Non-systemic vasculitic neuropathy: single-center follow-up of 60 patients. J Neurol. 2015;262(9):2092–100. https://doi.org/10.1007/s00415-015-7813-5.

    Article  PubMed  Google Scholar 

  55. •• Younger DS. Treatment of vasculitis of the nervous system. Neurol Clin. 2019;37(2):399–423. https://doi.org/10.1016/j.ncl.2019.01.014. Useful general guidelines for treating peripheral nerve vasculitides: diagnosis accuracy, induction therapy, and maintenance immunosuppression.

    Article  PubMed  Google Scholar 

  56. Said G, Lacroix C. Primary and secondary vasculitic neuropathy. J Neurol. 2005;252(6):633–41. https://doi.org/10.1007/s00415-005-0833-9.

    Article  PubMed  Google Scholar 

  57. Gold R, Fontana A, Zierz S. Therapy of neurological disorders in systemic vasculitis. Semin Neurol. 2003;23(2):207–14. https://doi.org/10.1055/s-2003-41133.

    Article  PubMed  Google Scholar 

  58. Langford CA. 15. Vasculitis. J Allergy Clin Immunol. 2003;111(2 Suppl):S602-112. https://doi.org/10.1067/mai.2003.80.

    Article  CAS  PubMed  Google Scholar 

  59. Stone JH, Merkel PA, Spiera R, Seo P, Langford CA, Hoffman GS, et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med. 2010;363(3):221–32. https://doi.org/10.1056/NEJMoa0909905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jayne DR, Chapel H, Adu D, Misbah S, O’Donoghue D, Scott D, et al. Intravenous immunoglobulin for ANCA-associated systemic vasculitis with persistent disease activity. QJM. 2000;93(7):433–9. https://doi.org/10.1093/qjmed/93.7.433.

    Article  CAS  PubMed  Google Scholar 

  61. Levy Y, Uziel Y, Zandman G, Rotman P, Amital H, Sherer Y, et al. Response of vasculitic peripheral neuropathy to intravenous immunoglobulin. Ann N Y Acad Sci. 2005;1051:779–86. https://doi.org/10.1196/annals.1361.121.

    Article  CAS  PubMed  Google Scholar 

  62. Tsurikisawa N, Taniguchi M, Saito H, Himeno H, Ishibashi A, Suzuki S, et al. Treatment of Churg-Strauss syndrome with high-dose intravenous immunoglobulin. Ann Allergy Asthma Immunol. 2004;92(1):80–7. https://doi.org/10.1016/S1081-1206(10)61714-0.

    Article  CAS  PubMed  Google Scholar 

  63. Pietrogrande M, De Vita S, Zignego AL, Pioltelli P, Sansonno D, Sollima S, et al. Recommendations for the management of mixed cryoglobulinemia syndrome in hepatitis C virus-infected patients. Autoimmun Rev. 2011;10(8):444–54. https://doi.org/10.1016/j.autrev.2011.01.008.

    Article  PubMed  Google Scholar 

  64. Cacoub P, Terrier B, Saadoun D. Hepatitis C virus-induced vasculitis: therapeutic options. Ann Rheum Dis. 2014;73(1):24–30. https://doi.org/10.1136/annrheumdis-2013-203883.

    Article  CAS  PubMed  Google Scholar 

  65. Gritsenko D, Hughes G. Ledipasvir/Sofosbuvir (harvoni): improving options for hepatitis C virus infection. P T. 2015;40(4):256–76.

    PubMed  PubMed Central  Google Scholar 

  66. Murai H, Inaba S, Kira J, Yamamoto A, Ohno M, Goto I. Hepatitis C virus associated cryoglobulinemic neuropathy successfully treated with plasma exchange. Artif Organs. 1995;19(4):334–8. https://doi.org/10.1111/j.1525-1594.1995.tb02337.x.

    Article  CAS  PubMed  Google Scholar 

  67. Scarpato S, Tirri E, Naclerio C, Moscato P, Salvati G. Plasmapheresis in cryoglobulinemic neuropathy: a clinical study. Dig Liver Dis. 2007;39(Suppl 1):S136–7. https://doi.org/10.1016/s1590-8658(07)80027-2.

    Article  PubMed  Google Scholar 

  68. Braun A, Neumann T, Oelzner P, Hein G, Grone HJ, Ziemer M, et al. Cryoglobulinaemia type III with severe neuropathy and immune complex glomerulonephritis: remission after plasmapheresis and rituximab. Rheumatol Int. 2008;28(5):503–6. https://doi.org/10.1007/s00296-007-0462-y.

    Article  PubMed  Google Scholar 

  69. Ramos-Casals M, Stone JH, Cid MC, Bosch X. The cryoglobulinaemias. Lancet. 2012;379(9813):348–60. https://doi.org/10.1016/S0140-6736(11)60242-0.

    Article  CAS  PubMed  Google Scholar 

  70. Montero N, Fava A, Rodriguez E, Barrios C, Cruzado JM, Pascual J, et al. Treatment for hepatitis C virus-associated mixed cryoglobulinaemia. Cochrane Database Syst Rev. 2018;5:CD011403. https://doi.org/10.1002/14651858.CD011403.pub2.

    Article  PubMed  Google Scholar 

  71. Dammacco F, Tucci FA, Lauletta G, Gatti P, De Re V, Conteduca V, et al. Pegylated interferon-alpha, ribavirin, and rituximab combined therapy of hepatitis C virus-related mixed cryoglobulinemia: a long-term study. Blood. 2010;116(3):343–53. https://doi.org/10.1182/blood-2009-10-245878.

    Article  CAS  PubMed  Google Scholar 

  72. Soares CN. Refractory mononeuritis multiplex due to hepatitis C infection and cryoglobulinemia: efficient response to rituximab. Neurologist. 2016;21(3):47–8. https://doi.org/10.1097/NRL.0000000000000075.

    Article  PubMed  Google Scholar 

  73. Guillevin L. Infections in vasculitis. Best Pract Res Clin Rheumatol. 2013;27(1):19–31. https://doi.org/10.1016/j.berh.2013.01.004.

    Article  PubMed  Google Scholar 

  74. Patel N, Khan T, Espinoza LR. HIV infection and clinical spectrum of associated vasculitides. Curr Rheumatol Rep. 2011;13(6):506–12. https://doi.org/10.1007/s11926-011-0214-6.

    Article  PubMed  Google Scholar 

  75. Collins MP, Kissel JT (2005) Neuropathies with systemic vasculitis. In: Dyck PJ, P.K. T (Eds). Peripheral neuropathy. 4th ed.: Elsevier Inc. p. 2335–404. https://doi.org/10.1016/B978-0-7216-9491-7.X5001-7

  76. Fargeot G, Perillaud-Dubois C, Deback C, Noel N, Adam C, Cauquil C, et al. Parvovirus B19-related peripheral nerve necrotizing vasculitis following SARS-CoV-2 infection. Rev Neurol (Paris). 2022;178(1–2):158–60. https://doi.org/10.1016/j.neurol.2021.07.013.

    Article  CAS  PubMed  Google Scholar 

  77. Guillevin L, Pagnoux C, Seror R, Mahr A, Mouthon L, Toumelin PL. The Five-Factor Score revisited: assessment of prognoses of systemic necrotizing vasculitides based on the French Vasculitis Study Group (FVSG) cohort. Medicine (Baltimore). 2011;90(1):19–27. https://doi.org/10.1097/MD.0b013e318205a4c6.

    Article  PubMed  Google Scholar 

  78. Rutgers A, Heeringa P, Damoiseaux JG, Tervaert JW. ANCA and anti-GBM antibodies in diagnosis and follow-up of vasculitic disease. Eur J Intern Med. 2003;14(5):287–95. https://doi.org/10.1016/s0953-6205(03)00097-9.

    Article  CAS  PubMed  Google Scholar 

  79. Lurati-Ruiz F, Spertini F. Predictive value of antineutrophil cytoplasmic antibodies in small-vessel vasculitis. J Rheumatol. 2005;32(11):2167–72.

    CAS  PubMed  Google Scholar 

  80. A‐Rahman AKM, Spencer D (2003) Totally implantable vascular access devices for cystic fibrosis. Cochrane Database Syst Rev. (3):CD004111. https://doi.org/10.1002/14651858.CD004111

  81. Ginsberg L. Chapter 42 Specific painful neuropathies. Handb Clin Neurol. 2006;81:635–52.

    Article  PubMed  Google Scholar 

  82. Attal N, Cruccu G, Haanpaa M, Hansson P, Jensen TS, Nurmikko T, et al. EFNS guidelines on pharmacological treatment of neuropathic pain. Eur J Neurol. 2006;13(11):1153–69. https://doi.org/10.1111/j.1468-1331.2006.01511.x.

    Article  CAS  PubMed  Google Scholar 

  83. Murnion BP. Neuropathic pain: current definition and review of drug treatment. Aust Prescr. 2018;41(3):60–3. https://doi.org/10.18773/austprescr.2018.022.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Saarto T, Wiffen PJ (2005) Antidepressants for neuropathic pain. Cochrane Database Syst Rev. (3):CD005454. https://doi.org/10.1002/14651858.CD005454

  85. Finnerup NB, Sindrup SH, Jensen TS. The evidence for pharmacological treatment of neuropathic pain. Pain. 2010;150(3):573–81. https://doi.org/10.1016/j.pain.2010.06.019.

    Article  PubMed  Google Scholar 

  86. Sindrup SH, Otto M, Finnerup NB, Jensen TS. Antidepressants in the treatment of neuropathic pain. Basic Clin Pharmacol Toxicol. 2005;96(6):399–409. https://doi.org/10.1111/j.1742-7843.2005.pto_96696601.x.

    Article  CAS  PubMed  Google Scholar 

  87. Rowbotham MC, Goli V, Kunz NR, Lei D. Venlafaxine extended release in the treatment of painful diabetic neuropathy: a double-blind, placebo-controlled study. Pain. 2004;110(3):697–706. https://doi.org/10.1016/j.pain.2004.05.010.

    Article  CAS  PubMed  Google Scholar 

  88. Bril V, England J, Franklin GM, Backonja M, Cohen J, Del Toro D, et al. Evidence-based guideline: treatment of painful diabetic neuropathy: report of the American Academy of Neurology, the American Association of Neuromuscular and Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology. 2011;76(20):1758–65. https://doi.org/10.1212/WNL.0b013e3182166ebe.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Said G, Lacroix-Ciaudo C, Fujimura H, Blas C, Faux N. The peripheral neuropathy of necrotizing arteritis: a clinicopathological study. Ann Neurol. 1988;23(5):461–5. https://doi.org/10.1002/ana.410230506.

    Article  CAS  PubMed  Google Scholar 

  90. Dyck PJ, Benstead TJ, Conn DL, Stevens JC, Windebank AJ, Low PA. Nonsystemic vasculitic neuropathy. Brain. 1987;110(Pt 4):843–53. https://doi.org/10.1093/brain/110.4.843.

    Article  PubMed  Google Scholar 

  91. Torvik A, Berntzen AE. Necrotizing vasculitis without visceral involvement. Postmortem examination of three cases with affection of skeletal muscles and peripheral nerves. Acta Med Scand. 1968;184(1–2):69–77.

    CAS  PubMed  Google Scholar 

  92. Pagnoux C, Seror R, Henegar C, Mahr A, Cohen P, Le Guern V, et al. Clinical features and outcomes in 348 patients with polyarteritis nodosa: a systematic retrospective study of patients diagnosed between 1963 and 2005 and entered into the French Vasculitis Study Group Database. Arthritis Rheum. 2010;62(2):616–26. https://doi.org/10.1002/art.27240.

    Article  PubMed  Google Scholar 

  93. Atkinson MA, Maclaren NK. The pathogenesis of insulin-dependent diabetes mellitus. N Engl J Med. 1994;331(21):1428–36. https://doi.org/10.1056/NEJM199411243312107.

    Article  CAS  PubMed  Google Scholar 

  94. Grimaldi LM, Martino G, Braghi S, Quattrini A, Furlan R, Bosi E, et al. Heterogeneity of autoantibodies in stiff-man syndrome. Ann Neurol. 1993;34(1):57–64. https://doi.org/10.1002/ana.410340111.

    Article  CAS  PubMed  Google Scholar 

  95. Younger DS, Rosoklija G, Hays AP, Trojaborg W, Latov N. Diabetic peripheral neuropathy: a clinicopathologic and immunohistochemical analysis of sural nerve biopsies. Muscle Nerve. 1996;19(6):722–7. https://doi.org/10.1002/(SICI)1097-4598(199606)19:6%3c722::AID-MUS6%3e3.0.CO;2-C.

    Article  CAS  PubMed  Google Scholar 

  96. Younger DS. Diabetic neuropathy: a clinical and neuropathological study of 107 patients. Neurol Res Int. 2010;2010:140379. https://doi.org/10.1155/2010/140379.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Dyck PJ, Windebank AJ. Diabetic and nondiabetic lumbosacral radiculoplexus neuropathies: new insights into pathophysiology and treatment. Muscle Nerve. 2002;25(4):477–91. https://doi.org/10.1002/mus.10080.

    Article  PubMed  Google Scholar 

  98. Dyck PJ, Norell JE. Non-diabetic lumbosacral radiculoplexus neuropathy: natural history, outcome and comparison with the diabetic variety. Brain. 2001;124(Pt 6):1197–207. https://doi.org/10.1093/brain/124.6.1197.

    Article  CAS  PubMed  Google Scholar 

  99. Younger DS. Diabetic lumbosacral radiculoplexus neuropathy: a postmortem studied patient and review of the literature. J Neurol. 2011;258(7):1364–7. https://doi.org/10.1007/s00415-011-5938-8.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Blaes F. Diagnosis and therapeutic options for peripheral vasculitic neuropathy. Ther Adv Musculoskelet Dis. 2015;7(2):45–55. https://doi.org/10.1177/1759720X14566617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Carmona FD, Mackie SL, Martin JE, Taylor JC, Vaglio A, Eyre S, et al. A large-scale genetic analysis reveals a strong contribution of the HLA class II region to giant cell arteritis susceptibility. Am J Hum Genet. 2015;96(4):565–80. https://doi.org/10.1016/j.ajhg.2015.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Saruhan-Direskeneli G, Hughes T, Aksu K, Keser G, Coit P, Aydin SZ, et al. Identification of multiple genetic susceptibility loci in Takayasu arteritis. Am J Hum Genet. 2013;93(2):298–305. https://doi.org/10.1016/j.ajhg.2013.05.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24. https://doi.org/10.1038/nature11582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fischer A, Ellinghaus D, Nutsua M, Hofmann S, Montgomery CG, Iannuzzi MC, et al. Identification of immune-relevant factors conferring sarcoidosis genetic risk. Am J Respir Crit Care Med. 2015;192(6):727–36. https://doi.org/10.1164/rccm.201503-0418OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gao S, Ma W, Lin X, Huang S, Yu M. Identification of key genes and underlying mechanisms in acute Kawasaki disease based on bioinformatics analysis. Med Sci Monit. 2021;27:e930547. https://doi.org/10.12659/MSM.930547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Carmona FD, Coit P, Saruhan-Direskeneli G, Hernandez-Rodriguez J, Cid MC, Solans R, et al. Analysis of the common genetic component of large-vessel vasculitides through a meta-Immunochip strategy. Sci Rep. 2017;7:43953. https://doi.org/10.1038/srep43953.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ortiz-Fernandez L, Carmona FD, Lopez-Mejias R, Gonzalez-Escribano MF, Lyons PA, Morgan AW, et al. Cross-phenotype analysis of Immunochip data identifies KDM4C as a relevant locus for the development of systemic vasculitis. Ann Rheum Dis. 2018;77(4):589–95. https://doi.org/10.1136/annrheumdis-2017-212372.

    Article  CAS  PubMed  Google Scholar 

  108. Stone JH, Klearman M, Collinson N. Trial of tocilizumab in giant-cell arteritis. N Engl J Med. 2017;377(15):1494–5. https://doi.org/10.1056/NEJMc1711031.

    Article  PubMed  Google Scholar 

  109. Samson M, Espigol-Frigole G, Terrades-Garcia N, Prieto-Gonzalez S, Corbera-Bellalta M, Alba-Rovira R, et al. Biological treatments in giant cell arteritis & Takayasu arteritis. Eur J Intern Med. 2018;50:12–9. https://doi.org/10.1016/j.ejim.2017.11.003.

    Article  PubMed  Google Scholar 

  110. Yachoui R, Kreidy M, Siorek M, Sehgal R. Successful treatment with ustekinumab for corticosteroid- and immunosuppressant-resistant Takayasu’s arteritis. Scand J Rheumatol. 2018;47(3):246–7. https://doi.org/10.1080/03009742.2017.1278788.

    Article  CAS  PubMed  Google Scholar 

  111. Onouchi Y, Suzuki Y, Suzuki H, Terai M, Yasukawa K, Hamada H, et al. ITPKC and CASP3 polymorphisms and risks for IVIG unresponsiveness and coronary artery lesion formation in Kawasaki disease. Pharmacogenomics J. 2013;13(1):52–9. https://doi.org/10.1038/tpj.2011.45.

    Article  CAS  PubMed  Google Scholar 

  112. Alphonse MP, Duong TT, Shumitzu C, Hoang TL, McCrindle BW, Franco A, et al. Inositol-triphosphate 3-kinase c mediates inflammasome activation and treatment response in Kawasaki disease. J Immunol. 2016;197(9):3481–9. https://doi.org/10.4049/jimmunol.1600388.

    Article  CAS  PubMed  Google Scholar 

  113. Madian AG, Wheeler HE, Jones RB, Dolan ME. Relating human genetic variation to variation in drug responses. Trends Genet. 2012;28(10):487–95. https://doi.org/10.1016/j.tig.2012.06.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018;50(9):1219–24. https://doi.org/10.1038/s41588-018-0183-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Singh P, Singh M, Khinda R, Valecha S, Kumar N, Singh S, et al. Genetic scores of eNOS, ACE and VEGFA genes are predictive of endothelial dysfunction associated osteoporosis in postmenopausal women. Int J Environ Res Public Health. 2021;18(3):1–19. https://doi.org/10.3390/ijerph18030972.

    Article  Google Scholar 

  116. Zhang Z, Liu S, Guo L, Wang L, Wu Q, Zheng W, et al. Clinical characteristics of peripheral neuropathy in eosinophilic granulomatosis with polyangiitis: a retrospective single-center study in China. J Immunol Res. 2020;2020:3530768. https://doi.org/10.1155/2020/3530768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Di Napoli.

Ethics declarations

Conflict of Interest

Gelsomina Mansueto, Giuseppe Lanza, Jessica Falleti, Pasquale Orabona, Danielle Alaouieh, Emily Hong, Sara Girolami, Marco Montella, Francesco Fisicaro, Anna Galdieri, Puneetpal Singh, and Mario Di Napoli each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 900 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansueto, G., Lanza, G., Falleti, J. et al. Central and Peripheral Nervous System Complications of Vasculitis Syndromes from Pathology to Bedside: Part 2—Peripheral Nervous System. Curr Neurol Neurosci Rep 23, 83–107 (2023). https://doi.org/10.1007/s11910-023-01249-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-023-01249-3

Keywords

Profiles

  1. Giuseppe Lanza