Skip to main content
Log in

Improving the tensile strength of continuous basalt fiber by mixing basalts

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

SiO2 is a key factor that affects the tensile strength of continuous basalt fiber, as shown in a previous study. In the present work, to improve the tensile strength of continuous basalt fiber, basalts with a high SiO2 content were mixed with basalts with a low SiO2 content to obtain basalt mixtures with SiO2 contents ranging from 51 to 58 %. The filament tensile strength, melting properties (viscosity, upper-limit crystallization temperature and fiber-forming temperature) of basalt mixtures were investigated. The effects of the chemical composition, mineral components and glass melt homogeneity of basalt mixtures on the tensile strength of basalt fiber were studied, and the tensile strength and melting properties were compared between the basalt mixtures and the individual basalts. The basalt mixtures with high SiO2 contents exhibited higher filament tensile strengths than the individual basalts. However, when the SiO2 content of the basalt mixtures was similar to or less than the SiO2 content of the individual basalts, the filament tensile strength of the basalt mixtures was still higher, which was attributed to the change in the type and content of the mineral components and to the improvement of the glass melt homogeneity as a result of the optimized melting properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Z. S. Wu, X. Wang, and G. Wu, in The 6th International Conference on FRP Composites in Civil Engineering (CICE2012), pp.13–15, Rome, Italy, 2012.

    Google Scholar 

  2. V. Dhand, G. Mittal, K. Y. Rhee, S. J. Park, and D. Hui, Compos. Pt. B-Eng., 73, 166 (2015).

    Article  CAS  Google Scholar 

  3. X. Wang, J. Z. Shi, J. X. Liu, L. Yang, and Z. S. Wu, Mater. Des., 59, 558 (2014).

    Article  CAS  Google Scholar 

  4. V. Fiore, T. Scalici, G. D. Bella, and A. Valenza, Compos. Pt. B-Eng., 74, 74 (2015).

    Article  CAS  Google Scholar 

  5. G. Wu, X. Wang, Z. S. Wu, Z. Q. Dong, and G. C. Zhang, J. Compos. Mater., 49, 873 (2015).

    Article  CAS  Google Scholar 

  6. K. Singha, Int. J. Text. Sci., 1, 19 (2012).

    Google Scholar 

  7. J. Militky and V. Kovacic, Text. Res. J., 66, 225 (1996).

    Article  CAS  Google Scholar 

  8. M. S. Manylov, S. I. Gutnikov, Y. V. Lipatov, A. P. Malakho, and B. I. Lazoryak, Mendeleev. Commun., 25, 386 (2015).

    Article  CAS  Google Scholar 

  9. H. F. Austin and R. V. Subramanian, U.S. Patent, 4149866 (1979).

    Google Scholar 

  10. T. Jung and R. V. Subramanian, Scripta. Metall. et. Mater., 28, 527 (1993).

    Article  CAS  Google Scholar 

  11. S. I. Gutnikov, A. P. Malakho, B. I. Lazoryak, and V. S. Loginov, Russ. J. Inorg. Chem., 54, 191 (2009).

    Article  Google Scholar 

  12. B. Wei, S. H. Song, and H. L. Cao, Mater. Des., 32, 4180 (2011).

    Article  CAS  Google Scholar 

  13. V. A. Rybin, А._V. Utkin, and N. I. Baklanova, Cement. Concrete. Res., 53, 1 (2013).

    Article  CAS  Google Scholar 

  14. M. A. Sokolinskaya, L. K. Zabava, T. M. Tsybulya, and A. A. Medvedev, Glass. Ceram., 48, 435 (1991).

    Article  Google Scholar 

  15. X. F. Chen, Y. S. Zhang, D. Hui, M. R. Chen, and Z. S. Wu, Compos. Part B-Eng., 116, 53 (2017).

    Article  CAS  Google Scholar 

  16. X. F. Chen, H. B. Huo, and Z. S. Wu, China. Patent, 201610801288.1 (2016).

    Google Scholar 

  17. S. A. Morse, “Basalts and Phase Diagrams”, 1st ed., pp.7–18, pp.427–434, Springer-Verlag New York Inc., New York, 1980.

    Book  Google Scholar 

  18. Shaanxi University of Science & Technology ed., “Glass technology”, 1st ed., pp.1–76, pp.88–100, China Light Industry Press, Beijing, 2006.

    Google Scholar 

  19. Y. Zhang, J. Li, and Z. Jiang, “Glass Fiber and Mineral Wool Encyclopedia”, 1st ed., pp.5–52, Chemical Industry Publishing House, Beijing, 2001.

    Google Scholar 

  20. P. Lu, “Inorganic Materials Science Foundation”, 4th ed., pp.38–74, Wuhan University of Technology Press, Wuhan, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhishen Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhang, Y., Huo, H. et al. Improving the tensile strength of continuous basalt fiber by mixing basalts. Fibers Polym 18, 1796–1803 (2017). https://doi.org/10.1007/s12221-017-6804-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-6804-9

Keywords