Abstract
Geographical clusters are defined as the occurrence of an unusual number of cases higher than expected in a given geographical area in a certain period of time. The aim of this study was to identify potential geographical clusters of specific selected congenital anomalies (CA) in Argentina. The cases were ascertained from 703,325 births, examined in 133 maternity hospitals in the 24 provinces of Argentina. We used the spatial scan statistic to determine areas of Argentina which had statistically significant elevations of prevalence. Prenatal diagnosis followed by referral of high-risk pregnancies to high complexity hospitals in a hospital-based surveillance system can create artifactual clusters. We assessed the referral bias by evaluating the prevalence heterogeneity within each cluster. Eight clusters of selected CAs with unusually high birth prevalence were identified: anencephaly, encephalocele, spina bifida, diaphragmatic hernia, talipes equinovarus, omphalocele, Cleft lip with or without cleft palate (CL/P), and Down syndrome. The clusters of Down syndrome and CL/P observed in this study match the previously reported clusters. These findings support local targeted interventions to lower the prevalence of the CAs and/or further research on the cause of each cluster. The clusters of spina bifida, anencephaly, encephalocele, omphalocele, congenital diaphragmatic hernia, and talipes equinovarus may be influenced by prenatal diagnosis and referral to high complexity hospitals.


Similar content being viewed by others
References
Campaña H, Pawluk MS, López Camelo JS y Grupo de Estudio del ECLAMC (2010). Prevalencia al nacimiento de 27 anomalías congénitas seleccionadas, en 7 regiones geográficas de la Argentina. Arch. Argent. pediatr. vol.108 no.5
Castilla EE, Orioli IM, ECLAMC (2004) The Latin-American collaborative study of congenital malformations. Community Genet 7:76–94
Castilla EE, Mastroiacovo P, López-Camelo JS, Saldarriaga W, Isaza C, Orioli IM (2008). Sirenomelia and cyclopia cluster in Cali, Colombia. Am J Med Genet A. 15;146A(20):2626-36.
Cech I, Burau KD, Walston J (2007) Spatial distribution of orofacial cleft defect births in Harris County, Texas, 1990 to 1994, and historical evidence for the presence of low-level radioactivity in tap water. South Med J 100(6):560–569
Dolk H, Busby A, Armstrong BG, Walls PH (1998). Geographical variation in anophthalmia and microphthalmia in England, 1988-94. BMJ. 3;317(7163):905-9.
Gili JA, Poletta FA, Pawluk M, Gimenez LG, Campaña H, Castilla E, López-Camelo JS (2015). High birth prevalence rates for congenital anomalies in South American regions. Epidemiology. Sep;26(5)
Gordon TE, Leeth EA, Nowinski CJ, MacGregor SN, Kambich M, Silver RK (2003) Geographic and temporal analysis of folate-sensitive fetal malformations. J Soc Gynecol Investig 10(5):298–301
Gorlin RJ, Cohen MM, Hennekam R (2001). Syndromes of the head and the neck, Oxford University Press
Groisman B, Bidondo MP, Barbero P, Gili JA, Liascovich R, Task Force RENAC (2013) RENAC: National Registry of Congenital Anomalies of Argentina. Arch Argent Pediatr 111(6):484–494
Hackshaw A, Rodeck C, Boniface S (2011) Maternal smoking in pregnancy and birth defects: a systematic review based on 173,687 malformed cases and 11.7 million controls. Hum Reprod Update 17(5):589–604
ICBDSR - International Clearinghouse Centre for Birth Defects (2014). Annual reports: 2012. Available at: http://www.icbdsr.org/filebank/documents/ar2005/Report2012.pdf
INDEC (2010). National Institute for Statistics and Census. National census 2010. www.indec.gov.ar
Johnson CY, Little J (2008) Folate intake, markers of folate status and oral clefts: is the evidence converging? Int J Epidemiol 37(5):1041–1058
Kulldorff M, Athas WF, Feurer EJ, Miller BA, Key Sep CR (1998) Evaluating cluster alarms: a space-time scan statistic and brain cancer in Los Alamos, New Mexico. Am J Public Health 88:1377–1380
Kulldorff M, Nagarwalla N (1995). Spatial disease clusters: detection and inference. Stat Med. 30;14(8):799-810.
Law number 1044 (2003) of the Autonomous City of Buenos Aires. Available at www.cedom.gov.ar/es/legislacion/normas/leyes/ley1044.html
Meredith R, Taylor AI, Ansi FM (1978). High risk of Down’s syndrome at advanced maternal age. Lancet. 11;1(8063):564-5.
Pawluk MS, Hebe C, López Camelo Jorge S (2010) Agregados geográficos, condición socioeconómica y prevalencia de anomalías congénitas en Argentina. J Basic Appl Gen 21(1):49–59
Pawluk MS, Campaña H, Gili JA, Comas B, Giménez LG, Villalba MI, Scala SC, Poletta FA, López Camelo JS (2014) Adverse social determinants and risk for congenital anomalies. Arch Argent Pediatr 112(3):215–223
Poletta FA, Castilla EE, Orioli IM, Lopez-Camelo JS. (2007) Regional analysis on the occurrence of oral clefts in South America. Am J Med Genet A. 15;143A(24):3216-27.
Rasmussen SA, Frías JL. Non-genetic risk factors for gastroschisis (2008). Am J Med Genet C Semin Med Genet. 15;148C(3):199-212.
Rimoin D, Connor JM, Pyeritz R, Korf B (2006), Emery and Rimoin’s principles and practice of medical genetics, Elsevier.
Root ED, Meyer RE, Emch M (2011) Socioeconomic context and gastroschisis: exploring associations at various geographic scales. Soc Sci Med 72(4):625–633
Root ED, Meyer RE, Emch ME (2009) Evidence of localized clustering of gastroschisis births in North Carolina, 1999–2004. Soc Sci Med 68(8):1361–1367
UN Statistics Division (2015) Live births by age of mother and sex of child bred, general and age-specific fertility rates: latest available year, 2000–2009. Available at http://unstats.un.org/unsd/demographic/products/dyb/dyb2009-2010.htm
National Ministry of health (2014), Vital Statistics. Dirección de Estadísticas e Información de Salud (DEIS), Estadísticas Vitales, Información Básica Año 2014.
National Ministry of Health of Argentina (2011), Second national risk factors survey.
Werler MM, Yazdy MM, Kasser JR, Mahan ST, Meyer RE, Anderka M, Druschel CM, Mitchell AA (2015) Maternal cigarette, alcohol, and coffee consumption in relation to risk of clubfoot. Paediatr Perinat Epidemiol 29(1):3–10
World Health Organization (1996) Control of hereditary diseases. Report of a WHO Scientific Group. WHO Technical Report Series 865
Yuan P, Qiao L, Dai L, Wang YP, Zhou GX, Han Y, Liu XX, Zhang X, Cao Y, Liang J, Zhu J (2009). Spatial distribution patterns of anorectal atresia/stenosis in China: use of two-dimensional graph-theoretical clustering. World J Gastroenterol. 14;15(22):2787-93.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interests
The authors declare that they have no conflict of interest.
Funding
This study was supported by the National Center of Medical Genetics, and the National Program of Rare Diseases and Congenital Anomalies, National Ministry of Health. It was supported by grants from the Agencia Nacional de Promoción Científica y Técnológica, National Ministry of Science and Technology, Buenos Aires, Argentina (PICTO 2011-0147) and the National Ministry of Health (Becas Salud Investiga).
Consent
This article does not contain any studies with human participants or animals performed by any of the authors. This study uses aggregated and anonymous data from a public health surveillance system (RENAC).
Rights and permissions
About this article
Cite this article
Groisman, B., Gili, J., Giménez, L. et al. Geographic clusters of congenital anomalies in Argentina. J Community Genet 8, 1–7 (2017). https://doi.org/10.1007/s12687-016-0276-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12687-016-0276-2