Skip to main content
Log in

On existence of invariant measures

  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

Let G be a Lie group, HG a closed subgroup and MG/H. In [14] André Weil gave a necessary and sufficient condition for the existence of invariant measures on homogeneous spaces of arbitrary locally compact groups. For Lie groups using the structure theory we give a neater necessary and sufficient condition for the existence of a G-invariant measure on M, cf. Theorems (2.1) and (3.2) in the introduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Bourbaki, Lie groups and Lie algebras, translated from the French original by Andrew Pressley, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002.

    Google Scholar 

  2. Shiing-shen Chern, On integral geometry in Klein spaces. Ann. of Math., 43(2), (1942), 178–189.

    Article  MathSciNet  Google Scholar 

  3. A. Gaal Steven, Linear analysis and representation theory. Die Grundlehren der mathematischenWissenschaften, Band 198. Springer-Verlag, New York-Heidelberg, 1973.

    MATH  Google Scholar 

  4. Alfred Haar, Der Massbegriff in der Theorie der kontinuierlichen Gruppen, (German) Ann. of Math., 34(1) (1933), 147–169.

    Article  MathSciNet  Google Scholar 

  5. Harish-Chandra, On the radical of a Lie algebra, Proc. Amer. Math. Soc., 1 (1950), 14–17.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press (1962).

  7. N. Jacobson, Lie Algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, New York-London 1962.

  8. A.W. Knapp, Lie Groups Beyond an Introduction, Progress in Mathematics, Birkhäuser.

  9. S. Kumaresan, A Course in Differential Geometry and Lie Groups, TRIM Series, Hindustan Book Agency.

  10. Leopoldo Nachbin, The Haar Integral, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London 1965.

    MATH  Google Scholar 

  11. John von Neumann, The Uniqueness of Haar’s Measure, Mat. Sbornik, N.S., 1 (1934), 106–114.

    MATH  Google Scholar 

  12. John von Neumann, um Haarschen masz in topologischen Gruppen, Comp. Math., 1 (1934), 106–114.

    MATH  Google Scholar 

  13. G. P. Scott, The Geometries of 3-manifolds, Bull. Lond. Math Soc., 15 (1983) 401–487.

    Article  MATH  Google Scholar 

  14. André Weil, L’intégration dans les groupes topologiques et ses applications, Actualités Scientifiques et Industrielles, Hermann, 1940.

    Google Scholar 

  15. André Weil, Sur les groupes topologiques et les groupes mesurés, C.R. Acad. Sci. Paris 202, (1936) 1147–1149.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram T. Aithal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aithal, V.T., Kulkarni, R.S. On existence of invariant measures. Indian J Pure Appl Math 43, 343–358 (2012). https://doi.org/10.1007/s13226-012-0021-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-012-0021-4

Key words