Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Photonic Sensors
  3. Article

Humidity Sensor Based on a Hollow Core Fiber Anti-Resonant Reflection Optical Waveguide

  • Regular
  • Open access
  • Published: 21 January 2025
  • Volume 15, article number 250202, (2025)
  • Cite this article
Download PDF

You have full access to this open access article

Photonic Sensors Aims and scope Submit manuscript
Humidity Sensor Based on a Hollow Core Fiber Anti-Resonant Reflection Optical Waveguide
Download PDF
  • Ao Cheng1,2,
  • Chaoqi Wang1,2,
  • Jiadong Xu1,2,
  • Peiqing Zhang1,2,3,
  • Yu Zheng4 &
  • …
  • Shixun Dai1,2,3 
  • 516 Accesses

  • Explore all metrics

Abstract

In this paper, a graphene oxide (GO) composite film-coated humidity sensor is proposed based on the hollow core fiber (HCF). A segment of the HCF is spliced between two segments of the single-mode fiber (SMF). The relative humidity (RH) sensing characteristics of the sensor are experimentally investigated by observing the intensity shift of resonant dips in the transmission spectrum, which shows the GO composite film-coated HCF has the good stability in the measurement of humidity. The maximum humidity sensitivity of 0.12 dB/%RH is obtained in the RH range of 30%–78%. The proposed sensor has the advantages of the simple structure, easy fabrication, good stability, and high performance, which can be applied to marine climate detection, tunnel air humidity detection, agricultural testing, and other fields.

Article PDF

Download to read the full article text

Similar content being viewed by others

High-Performance PCF-SPR Sensor Coated with Ag and Graphene for Humidity Sensing

Article 08 June 2022

Single-Mode Modified Tapered Fiber Structure Functionalized With GO-PVA Composite Layer for Relative Humidity Sensing

Article Open access 27 July 2020

Performance analysis of humidity high-sensitivity tapered optical fiber sensor

Article 20 July 2022

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Fiber Optics
  • Fibre Optics
  • Hydrogen storage materials
  • Optical Sensor
  • Sensors
  • Sensors and biosensors
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. T. Xie, Z. W. Xu, X. Cai, D. Zhang, and H. Y. Fu, “Highly sensitive fiber Bragg grating sensing system based on a dual-loop optoelectronic oscillator with the enhanced vernier effect,” Journal of Lightwave Technology, 2022, 40(14): 4871–4877.

    Article  ADS  MATH  Google Scholar 

  2. Y. Lin, Y. Gong, Y. Wu, and H. J. Wu, “Polyimide-coated fiber Bragg grating for relative humidity sensing,” Photonic Sensors, 2015, 5: 60–66.

    Article  ADS  MATH  Google Scholar 

  3. M. Konstantaki, S. Pissadakis, S. Pispas, N. Madamopoulos, and N. A. Vainos, “Optical fiber long-period grating humidity sensor with poly (ethylene oxide)/cobalt chloride coating,” Applied Optics, 2006, 45(19): 4567–4571.

    Article  ADS  Google Scholar 

  4. Y. L. Wang, Y. Q. Liu, F. Zou, J. Chen, C. B. Mou, and T. Y. Wang, “Humidity sensor based on a long-period fiber grating coated with polymer composite film,” Sensors, 2019, 19(10): 2263.

    Article  ADS  MATH  Google Scholar 

  5. R. J. Tong, Y. Zhao, M. Q. Chen, and Y. Peng, “Relative humidity sensor based on small up-tapered photonic crystal fiber Mach-Zehnder interferometer,” Sensors and Actuators A: Physical, 2018, 280: 24–30.

    Article  ADS  MATH  Google Scholar 

  6. Y. Q. Wang, C. Y. Shen, W. M. Lou, and F. Y. Shentu, “Polarization-dependent humidity sensor based on an in-fiber Mach-Zehnder interferometer coated with graphene oxide,” Sensors and Actuators B: Chemical, 2016, 234: 503–509.

    Article  ADS  MATH  Google Scholar 

  7. N. Wang, W. H. Tian, H. S. Zhang, X. D. Yu, X. L. Yin, Y. G. Du, et al., “An easily fabricated high performance Fabry-Perot optical fiber humidity sensor filled with graphene quantum dots,” Sensors, 2021, 21(3): 806.

    Article  ADS  MATH  Google Scholar 

  8. C. Li, X. Y. Yu, W. Zhou, Y. B. Cui, J. Liu, and S. C. Fan, “Ultrafast miniature fiber-tip Fabry-Perot humidity sensor with thin graphene oxide diaphragm,” Optics Letters, 2018, 43(19): 4719–4722.

    Article  ADS  Google Scholar 

  9. Y. Shao, Y. Wang, S. Q. Cao, Y. J. Huang, L. F. Zhang, F. Zhang, et al., “Mechanism and characteristics of humidity sensing with polyvinyl alcohol-coated fiber surface plasmon resonance sensor,” Sensors, 2019, 18(7): 2029.

    Article  ADS  MATH  Google Scholar 

  10. Q. L. Ma, L. Huang, Z. X. Guo, and T. Rossmann, “Spectral shift response of optical whispering-gallery modes due to water vapor adsorption and desorption,” Measurement Science and Technology, 2010, 21(11): 115206.

    Article  ADS  MATH  Google Scholar 

  11. A. K. Mallik, D. Liu, V. Kavungal, Q. Wu, G. Farrell, and Y. Semenova, “Agarose coated spherical micro resonator for humidity measurements,” Optics Express, 2016, 24(19): 21216–21227.

    Article  ADS  Google Scholar 

  12. B. You, J. Y. Lu, C. P. Yu, and T. A. Liu, “Terahertz refractive index sensors using dielectric pipe waveguides,” Optics Express, 2012, 20(6): 5858–5866.

    Article  ADS  MATH  Google Scholar 

  13. N. Litchinitser, A. Abeeluck, C. Headley, and B. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Optics Letters, 2002, 27(18): 1592–1594.

    Article  ADS  Google Scholar 

  14. G. Pearce, G. Wiederhecker, C. G. Poulton, S. Burger, and P. S. J. Russell, “Models for guidance in Kagome-structured hollow-core photonic crystal fibers,” Optics Express, 2007, 15(20): 12680–12685.

    Article  ADS  Google Scholar 

  15. N. Cai, L. Xia, and Y. Wu, “Multiplexing of anti-resonant reflecting optical waveguides for temperature sensing based on quartz capillary,” Optics Express, 2018, 26(25): 33501–33509.

    Article  ADS  Google Scholar 

  16. R. Gao, Y. Jiang, and Y. Zhao, “Magnetic field sensor based on anti-resonant reflecting guidance in the magnetic gel-coated hollow core fiber,” Optics Letters, 2014, 39(21): 6293–6296.

    Article  ADS  MATH  Google Scholar 

  17. D. Liu, F. Ling, R. Kumar, A. K. Mallik, K. Tian, C. Shen, et al., “Sub-micrometer resolution liquid level sensor based on a hollow core fiber structure,” Optics Letters, 2019, 44(8): 2125–2128.

    Article  ADS  Google Scholar 

  18. D. Liu, W. Li, Q. Wu, H. Zhao, F. Ling, K. Tian, et al., “High sensitivity liquid level sensor for microfluidic applications using a hollow core fiber structure,” Sensors and Actuators A: Physical, 2021, 332: 113134.

    Article  Google Scholar 

  19. M. Hou, F. Zhu, Y. Wang, Y. Wang, C. Liao, S. Liu, et al., “Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing,” Optics Express, 2016, 24(24): 27890–27898.

    Article  ADS  Google Scholar 

  20. Y. Liu, P. Li, N. Zhang, X. H. Zhang, S. M. Chen, Z. G. Liu, et al., “Fiber-optic evanescent field humidity sensor based on a micro-capillary coated with graphene oxide,” Optics Materials Express, 2019, 9(11): 4418–4428.

    Article  ADS  MATH  Google Scholar 

  21. M. Hou, N. Wang, Y. Chen, Z. Ou, X. Chen, F. Shen, et al., “Laser-induced graphene coated hollow-core fiber for humidity sensing,” Sensors and Actuators B: Chemical, 2022, 359: 131530.

    Article  Google Scholar 

  22. Y. Q. Wang, C. Y. Shen, W. M. Lou, and F. Y. Shentu, “Fiber optic humidity sensor based on the graphene oxide/PVA composite film,” Optics Communications, 2016, 372: 229–234.

    Article  ADS  MATH  Google Scholar 

  23. Y. Xiao, J. Zhang, X. Cai, S. Z. Tan, J. H. Yu, H. H. Lu, et al., “Reduced graphene oxide for fiber-optic humidity sensing,” Optics Express, 2014, 22(25): 31555–31567.

    Article  ADS  Google Scholar 

  24. R. Gao, D. F. Lu, J. Cheng, Y. Jiang, and L. Jiang, “Optical displacement sensor in a capillary covered hollow core fiber based on anti-resonant reflecting guidance,” IEEE Journal of Selected Topics in Quantum Electronics, 2016, 23(2):193–198.

    Article  ADS  MATH  Google Scholar 

  25. W. Sun, X. Zhang, Y. Yu, L. Yang, F. Hou, Y. Yang, et al., “Comparative study on transmission mechanisms in a SMF-capillary-SMF structure,” Journal of Lightwave Technology, 2020, 38(15): 4075–4085.

    MATH  Google Scholar 

  26. S. Liu, Y. Ji, L. Cui, W. Sun, J. Yang, and H. Li, “Humidity-insensitive temperature sensor based on a quartz capillary anti-resonant reflection optical waveguide,” Optics Express, 2017, 25(16): 18929–18939.

    Article  ADS  Google Scholar 

  27. G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” Journal of Applied Physics, 2008, 103(6): 064302.

    Article  ADS  MATH  Google Scholar 

  28. R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sensors and Actuators B: Chemical, 2016, 222: 618–624.

    Article  ADS  MATH  Google Scholar 

  29. Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, et al., “Dirac charge dynamics in graphene by infrared spectroscopy,” Nature Physics, 2008, 4(7): 532–535.

    Article  Google Scholar 

  30. B. Jiang, Z. Bi, Z. Hao, Q. Yuan, D. Feng, K. Zhou, et al., “Graphene oxide-deposited tilted fiber grating for ultrafast humidity sensing and human breath monitoring,” Sensors and Actuators B: Chemical, 2019, 293: 336–341.

    Article  ADS  Google Scholar 

  31. S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sensors and Actuators B: Chemical, 2005, 104(2): 217–222.

    Article  ADS  Google Scholar 

  32. C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sensors and Actuators B: Chemical, 2000, 69(1–2): 127–131.

    Article  ADS  Google Scholar 

Download references

Acknowledgment

We acknowledge the support from the National Natural Science Foundation of China (Grant No. 62090064); Key Research & Development Program of Ningbo City (Grant No. 2022Z208).

Author information

Authors and Affiliations

  1. Laboratory of Infrared Material and Devices, Advanced Technology Research Institute, Ningbo University, Ningbo, 315211, China

    Ao Cheng, Chaoqi Wang, Jiadong Xu, Peiqing Zhang & Shixun Dai

  2. Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo, 315211, China

    Ao Cheng, Chaoqi Wang, Jiadong Xu, Peiqing Zhang & Shixun Dai

  3. Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, 315211, China

    Peiqing Zhang & Shixun Dai

  4. Ifiber (Ningbo) Optoelectronics Technology Co., Ltd., Ningbo, 315211, China

    Yu Zheng

Authors
  1. Ao Cheng
    View author publications

    Search author on:PubMed Google Scholar

  2. Chaoqi Wang
    View author publications

    Search author on:PubMed Google Scholar

  3. Jiadong Xu
    View author publications

    Search author on:PubMed Google Scholar

  4. Peiqing Zhang
    View author publications

    Search author on:PubMed Google Scholar

  5. Yu Zheng
    View author publications

    Search author on:PubMed Google Scholar

  6. Shixun Dai
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Shixun Dai.

Ethics declarations

Conflict of Interest All authors declare that there are no competing interests.

Permissions All the included figures, tables, or text passages that have already been published elsewhere have obtained the permission from the copyright owner(s) for both the print and online format.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, A., Wang, C., Xu, J. et al. Humidity Sensor Based on a Hollow Core Fiber Anti-Resonant Reflection Optical Waveguide. Photonic Sens 15, 250202 (2025). https://doi.org/10.1007/s13320-025-0749-1

Download citation

  • Received: 04 January 2024

  • Revised: 27 June 2024

  • Published: 21 January 2025

  • DOI: https://doi.org/10.1007/s13320-025-0749-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Humidity sensing
  • hollow core fiber
  • anti-resonant refection optical waveguide
  • graphene oxide
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature