Skip to main content
Log in

Local existence and blow up for the wave equation with nonlinear logarithmic source term and nonlinear dynamical boundary conditions combined with distributed delay

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

In this paper we highlight a type of hyperbolic equation relating the logarithmic source term with distributed delay and dynamic boundary condition. We get, under comfortable primary data is the weak solution to local existence. The results of the solutions were found using the Faydo–Galerkin method and Schoder’s fixed point theorem. Then, the minimum blow-up result was studied. Our work is an extension of some previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

There is no data associated to the current study.

References

  1. Alotaibi, M., Jleli, M., Ragusa, M.A., Samet, B.: On the absence of global weak solutions for a nonlinear time-fractional Schrödinger equation. Appl. Anal. (2023). https://doi.org/10.1080/00036811.2022.2036335

    Article  Google Scholar 

  2. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Academic Press, New York, USA (2003)

    Google Scholar 

  3. Bejenaru, I., Diaz, J.I., Vrabie, I.: An abstract approximate controllability result and applications to elliptic and parabolic systems with dynamic boundary conditions. Electron. J. Differ. Equ. 50, 1–19 (2001)

    MathSciNet  Google Scholar 

  4. A.B. Beylin, L.S. Pulkina. A problem with dynamical boundary condition for a one-dimensional hyperbolic equation. Journal of Samara State Technical University, Series Physical and Mathematical Sciences 2020; 24 (3): 407-423. https://doi.org/10.14498/vsgtu1775

  5. Bialynicki-Birula, I., Mycielski, J.: Wave equations with logarithmic nonlinearities. Bull. Polish Acad. Sci. 3(23), 461–466 (1975)

    MathSciNet  Google Scholar 

  6. L. Bociu, I. Lasiecka. Blow-up of weak solutions for the semilinear wave equations with nonlinear boundary and interior sources and damping. Applicationes Mathematicae. 35.3 (2008): 281-304. http://eudml.org/doc/279900

  7. Boulaaras, S., Choucha, A., Ouchenane, D., Jan, R.: Blow up, growth, and decay of solutions for a class of coupled nonlinear viscoelastic Kirchhoff equations with distributed delay and variable exponents. J. Inequal Appl. 2024, 55 (2024). https://doi.org/10.1186/s13660-024-03132-2

    Article  MathSciNet  Google Scholar 

  8. Calatroni, L., Colli, P.: Global solution to the Allen-Cahn equation with singular potentials and dynamic boundary conditions. Nonlinear Analysis: Theory, Methods and Applications 79, 12–27 (2013). https://doi.org/10.1016/j.na.2012.11.010

    Article  MathSciNet  Google Scholar 

  9. T. Cazenave, A. Haraux. Equations dévolution avec non linéarité logarithmique, Annales de La Laculté Des Sciences de Toulouse 1980; 2 (1): 21-51. http://www.numdam.org/item?id=AFST_1980_5_2_1_21_0

  10. Chen, G., Zhang, J.: Asymptotic behavior for a stochastic wave equation with dynamical boundary conditions. Discrete Continuous Dyn. Syst.-B 17(5), 1441 (2012). https://doi.org/10.3934/dcdsb.2012.17.1441

    Article  MathSciNet  Google Scholar 

  11. Chen, Y., Xu, R.: Global well-posedness of solutions for fourth order dispersive wave equation with nonlinear weak damping, linear strong damping and logarithmic nonlinearity. Nonlinear Anal. 192, 111664 (2020). https://doi.org/10.1016/j.na.2019.111664

    Article  MathSciNet  Google Scholar 

  12. Choucha, A., Shahrouzi, M., Jan, R., Boulaaras, S.: Blow-up of solutions for a system of nonlocal singular viscoelastic equations with sources and distributed delay terms. Bound Value Probl. 2024, 77 (2024). https://doi.org/10.1186/s13661-024-01888-6

    Article  MathSciNet  Google Scholar 

  13. A. Choucha & S. Boulaaras. On a Viscoelastic Plate Equation with Logarithmic Nonlinearity and Variable-Exponents: Global Existence, General Decay and Blow-Up of Solutions. Bulletin of the Iranian Mathematical Society. 50(55), (2024). https://doi.org/10.1007/s41980-024-00897-6.

  14. A. Choucha, S. Boulaaras, R. Jan, and R. Alharbi, Blow-up and decay of solutions for a viscoelastic Kirchhoff-type equation with distributed delay and variable exponents, Math. Meth. Appl. Sci. (2024), 1-18, DOI 10.1002/mma.9950

  15. J. Cui, S. Chai. Energy decay for a wave equation of variable coefficients with logarithmic nonlinearity source term. Applicable Analysis 2021; 1-15. https://doi.org/10.1080/00036811.2021.1998463

  16. Dai, X., Yang, C., Huang, S., Yu, T., Zhu, Y.: Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems. Electron. Res. Arch. 28(1), 91–102 (2020). https://doi.org/10.3934/era.2020006

    Article  MathSciNet  Google Scholar 

  17. Di, H., Shang, Y., Song, Z.: Initial boundary value problem for a class of strongly damped semilinear wave equations with logarithmic nonlinearity. Nonlinear Anal. 51, 102968 (2020). https://doi.org/10.1016/j.nonrwa.2019.102968

    Article  MathSciNet  Google Scholar 

  18. Ding, H., Wang, R., Zhou, J.: Infinite time blow-up of solutions to a class of wave equations with weak and strong damping terms and logarithmic nonlinearity. Stud. Appl. Math. 147(3), 914–934 (2021). https://doi.org/10.1111/sapm.12405

    Article  MathSciNet  Google Scholar 

  19. Escher, J.: Quasilinear parabolic systems with dynamical boundary conditions. Commun. partial differ. Eqs. 18(7–8), 1309–1364 (1993). https://doi.org/10.1080/03605309308820976

    Article  MathSciNet  Google Scholar 

  20. Fiscella, A., Vitillaro, E.: Blow-up for the wave equation with nonlinear source and boundary damping terms. Proc. R. Soc. Edinburgh 145(4), 759–778 (2015). https://doi.org/10.1017/S0308210515000165

    Article  MathSciNet  Google Scholar 

  21. Fischer, H.P., Maass, P., Dieterich, W.: Novel surface modes in spinodal decomposition. Phys. Rev. Lett. 79(5), 893–896 (1997). https://doi.org/10.1103/PhysRevLett.79.893

    Article  Google Scholar 

  22. S. Gerbi, B. Said Houari. Local existence and exponential growth for a semilinear damped wave equation with dynamic boundary conditions. Advances in Differential Equations 2008; 13 (11-12): 1051-1074. ade/1355867286

  23. Graber, P.J., Shomberg, J.L.: Attractors for strongly damped wave equations with nonlinear hyperbolic dynamic boundary conditions. Nonlinearity 29(4), 1171–1212 (2016). https://doi.org/10.1088/0951-7715/29/4/1171

    Article  MathSciNet  Google Scholar 

  24. Ha, T.G., Park, S.H.: Blow-up phenomena for a viscoelastic wave equation with strong damping and logarithmic nonlinearity. Adv. Differ. Eqs. 2020, 235 (2020). https://doi.org/10.1186/s13662-020-02694-x

    Article  MathSciNet  Google Scholar 

  25. Irkil, N.: On the p-Laplacian type equation with logarithmic nonlinearity: Existence, decay and blow up. Filomat 37(16), 5485–5507 (2023). https://doi.org/10.2298/FIL2316485I

    Article  MathSciNet  Google Scholar 

  26. N, Irkil, K. Mahdi, E. Piskin, M. Alnegga and S. Boulaaras. On a logarithmic wave equation with nonlinear dynamical boundary conditions: local existence and blow-up. Journal of Inequalities and Applications. (2023) 2023:159 https://doi.org/10.1186/s13660-023-03072-3

  27. V.A. Kirichek, L.S. Pulkina. Problem with dynamic boundary conditions for a hyperbolic equation. Vestnik Samarskogo Universiteta: Estestvenno-Nauchnaya Seriya 2017; (1): 21-27. https://elibrary.ru/item.asp?id=29945519

  28. Lions, J.L.: Quelques méthodes de résolutions des problémes aux limites non linéaires. Dunod, Paris (1969)

    Google Scholar 

  29. Lions, J.L.: Equations differentielles operationnelles: et problèmes aux limites Heidelberg. Springer-Verlag, Berlin, New York (2013)

    Google Scholar 

  30. Liu, W., Zhu, B., Li, G.: Upper and lower bounds for the blow-up time for a viscoelastic wave equation with dynamic boundary conditions. Quaestiones Mathematicae 43(8), 9991017 (2020). https://doi.org/10.2989/16073606.2019.1595768

    Article  MathSciNet  Google Scholar 

  31. Ma, L., Fang, Z.B.: Energy decay estimates and infinite blow-up phenomena for a strongly damped semilinear wave equation with logarithmic nonlinear source. Math. Methods Appl. Sci. 41(7), 2639–2653 (2018). https://doi.org/10.1002/mma.4766

    Article  MathSciNet  Google Scholar 

  32. Meng Y., Du X.R., Pang H.H., Iterative positive solutions to a coupled RiemannLiouville fractional q-difference system with the Caputo fractional q-derivative boundary conditions, Journal of Function Spaces, vol.2023, art.n.5264831, (2023);

  33. Nicaise, A.S., Pignotti, C.: Stabilization of the wave equation with boundary or internal distributed delay. Diff. Int. Eqs. 21(9–10), 935–958 (2008)

    MathSciNet  Google Scholar 

  34. Nhan, N.H., Nam, B.D., Ngoc, L.T.P., Long, N.T.: Asymptotic expansion of solutions for the Robin-Dirichlet problem of Kirchhoff-Carrier type with Balakrishnan-Taylor damping. Filomat 37(8), 2321–2346 (2023)

    Article  MathSciNet  Google Scholar 

  35. Piskin, E., Boulaaras, S., Irkil, N.: Qualitative analysis of solutions for the p-Laplacian hyperbolic equation with logarithmic nonlinearity. Math. Methods Appl. Sci. 44(6), 4654–4672 (2021). https://doi.org/10.1002/mma.7058

    Article  MathSciNet  Google Scholar 

  36. Piskin, E., Boulaaras, S., Irkil, N.: Qualitative analysis of solutions for the p-Laplacian hyperbolic equation with logarithmic nonlinearity. Math. Methods Appl. Sci. 44(6), 4654–4672 (2021)

    Article  MathSciNet  Google Scholar 

  37. Pucci, P., Serrin, J.: Global nonexistence for abstract evolution equations with positive initial energy. J. Differ. Eqs. 150(1), 203–214 (1998). https://doi.org/10.1006/jdeq.1998.3477

    Article  MathSciNet  Google Scholar 

  38. Vitillaro, E.: Global existence for the wave equation with nonlinear boundary damping and source terms. J. Differ. Eqs. 186(1), 259–298 (2002). https://doi.org/10.1016/S0022-0396(02)00023-2

    Article  MathSciNet  Google Scholar 

  39. Zhang, H., Hu, Q.: Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition. Commun. Pure Appl. Anal. 4(4), 861–869 (2005). https://doi.org/10.3934/cpaa.2005.4.861

    Article  MathSciNet  Google Scholar 

Download references

Funding

There is no applicable fund.

Author information

Authors and Affiliations

Authors

Contributions

AC: writing original draft, Methodology, Resources, Methodology, formal analysis, Conceptualization; SB, AC: conceptualized, investigated, analyzed and validated the research while, SB, AC: formulated, investigated, reviewed and supervised, SB: Corresponding author, Supervision.

Corresponding author

Correspondence to Salah Boulaaras.

Ethics declarations

Ethical approval

There is no applicable.

Conflict of interest

There is no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choucha, A., Boulaaras, S. & Alnegga, M. Local existence and blow up for the wave equation with nonlinear logarithmic source term and nonlinear dynamical boundary conditions combined with distributed delay. Afr. Mat. 35, 71 (2024). https://doi.org/10.1007/s13370-024-01212-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13370-024-01212-6

Keywords

Mathematics Subject Classification