Skip to main content

Advertisement

Log in

Solving Fredholm Integral Equations Using Deep Learning

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The aim of this paper is to provide a deep learning based method that can solve high-dimensional Fredholm integral equations. A deep residual neural network is constructed at a fixed number of collocation points selected randomly in the integration domain. The loss function of the deep residual neural network is defined as a linear least-square problem using the integral equation at the collocation points in the training set. The training iteration is done for the same set of parameters for different training sets. The numerical experiments show that the deep learning method is efficient with a moderate generalization error at all points. And the computational cost does not suffer from “curse of dimensionality” problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Availability of data and materials

All data generated or analyzed during this study are included in this manuscript.

References

  1. Michalski, K.A., Mosig, J.R.: Multilayered media Green’s functions in integral equation formulations. IEEE T. Antenn. Propag. 45(3), 508–519 (2002)

    Article  Google Scholar 

  2. Yang, P., Liou, K.N.: Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals. Appl. Opt. 35, 6568–6584 (1996)

    Article  Google Scholar 

  3. De Bonis, M.C., Stanić, M.P., Tomović Mladenović, T.V.: Nystörm methods for approximating the solutions of an integral equation arising from a problem in mathematical biology. Appl. Numer. Math. 171, 193–211 (2022)

    Article  MathSciNet  Google Scholar 

  4. Baleanu, D., Zibaei, S., Namjoo, M., Jajarmi, A.: A nonstandard finite difference scheme for the modelling and nonidentical synchronization of a novel fractional chaotic system. Adv. Differ. Equ. 2021, 308 (2021)

    Article  Google Scholar 

  5. Baleanu, D., Hassan Abadi, M., Jajarmi, A., Zarghami Vahid, K., Nieto, J.J.: A new comparative study on the general fractional model of COVID-19 with isolation and quarantine effects. Alex. Eng. J. 61(6), 4779–4791 (2022)

    Article  Google Scholar 

  6. Erturk, V.S., Godwe, E., Baleanu, D., Kumar, P., Asad, J., Jajarmi, A.: Novel fractional-order Lagrangian to describe motion of beam on nanowire. Acta Phys. Pol. A. 140(3), 265–272 (2021)

    Article  Google Scholar 

  7. Jajarmi, A., Baleanu, D., Zarghami Vahid, K., Mohammadi Pirouz, H., Asad, J.H.: A new and general fractional Lagrangian approach: a capacitor microphone case study. Results Phys. 31, 104950 (2021)

    Article  Google Scholar 

  8. Atkinson, K.: Iterative variants of the Nyström method for the numerical solution of integral equations. Numer. Math. 22(1), 17–31 (1974)

    Article  Google Scholar 

  9. Khorrami, N., Shamloo, A.S., Parsa Moghaddam, B.: Nyström method for solution of Fredholm integral equations of the second kind under interval data. J. Intell. Fuzzy Syst. 36(3), 2807–2816 (2019)

    Article  Google Scholar 

  10. Han, G., Wang, R.: Richardson extrapolation of iterated discrete Galerkin solution for two-dimensional Fredholm integral equations. J. Comput. Appl. Math. 139(1), 49–63 (2002)

    Article  MathSciNet  Google Scholar 

  11. Babolian, E., Shahsavaran, A.: Numerical solution of nonlinear Fredholm integral equations of the second kind using Haar wavelets. J. Comput. Appl. Math. 225(1), 87–95 (2009)

    Article  MathSciNet  Google Scholar 

  12. Asady, B., Hakimzadegan, F., Nazarlue, R.: Utilizing artificial neural network approach for solving two-dimensional integral equations. Math. Sci. 8, 117 (2014)

    Article  MathSciNet  Google Scholar 

  13. Effati, S., Buzhabadi, R.: A neural network approach for solving Fredholm integral equations of the second kind. Neural Comput. Appl. 21(5), 843–852 (2012)

    Article  Google Scholar 

  14. Wang, K., Wang, Q.: Taylor collocation method and convergence analysis for the Volterra-Fredholm integral equations. J. Comput. Appl. Math. 260, 294–300 (2014)

    Article  MathSciNet  Google Scholar 

  15. Jin, C., Ding, J.: Solving Fredholm integral equations via a piecewise linear maximum entropy method. J. Comput. Appl. Math. 304, 130–137 (2016)

    Article  MathSciNet  Google Scholar 

  16. Saeed, T., Sabir, Z., Alhodaly, M.S., Alsulami, H.H., Guerrero Sánchez, Y.: An advanced heuristic approach for a nonlinear mathematical based medical smoking model. Results Phys. 32, 105137 (2022)

    Article  Google Scholar 

  17. Sabir, Z., Wahab, H.A., Javeed, S., Baskonus, H.M.: An efficient stochastic numerical computing framework for the nonlinear higher order singular models. Fractal Fract. 5, 176 (2021)

    Article  Google Scholar 

  18. Sabir, Z.: Stochastic numerical investigations for nonlinear three-species food chain system. Int. J. Biomath. 2250005, (2021)

  19. Sabir, Z., Wahab, H.A.: Evolutionary heuristic with Gudermannian neural networks for the nonlinear singular models of third kind. Phys. Scr. 96, 125261 (2021)

    Article  Google Scholar 

  20. Sabir, Z., Ali, M.R., Sadat, R.: Gudermannian neural networks using the optimization procedures of genetic algorithm and active set approach for the three-species food chain nonlinear model. J. Ambient Intell. Human. Comput. (2022). https://doi.org/10.1007/s12652-021-03638-3

    Article  Google Scholar 

  21. Wang, B., Wang, Y., Gómez-Aguilar, J.F., Sabir, Z., Raja, M.A.Z., Jahanshahi, H., Alassafi, M.O., Alsaadi, F.E.: Gudermannian neural networks to investigate the Liénard differential model. Fractals (2021). https://doi.org/10.1142/S0218348X22500505

    Article  Google Scholar 

  22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition, (2016), Las Vegas, USA

  23. Sun, Y., Chen, Y., Wang, X., Tang, X.: Deep learning face representation by joint identification-verification. NIPS 27, (2014)

  24. Graves, A., Mohamed, A. R., Hinton, G.: Speech recognition with deep recurrent neural networks. IEEE International Conference on Acoustics, Speech and Signal Processing, May 2013, Vancouver, Canada

  25. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N., Kingsbury, B.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Proc. Mag. 29(6), 82–97 (2012)

    Article  Google Scholar 

  26. Tom, Y., Devamanyu, H., Soujanya, P., Erik, C.: Recent trends in deep learning based natural language processing. IEEE Comput. Intell. Mag. 13(3), 55–75 (2018)

    Article  Google Scholar 

  27. Beck, C.E.W., Jentzen, A.: Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations. J. Nonlinear Sci. 29, 1563–1619 (2019)

    Article  MathSciNet  Google Scholar 

  28. Han, J., Jentzen, A.: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Commun. Math. Stat. 5, 349–380 (2017)

    Article  MathSciNet  Google Scholar 

  29. Yu, B.: The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems. Commun. Math. Stat. 6, 1–12 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Zhang, L., Han, J., Wang, H., Car, R.E.W.: Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120(14), 143001 (2018)

    Article  Google Scholar 

  31. Kingma, D. P., Ba, J. L.: Adam: A Method for stochastic Optimization. The International Conference on Learning Representations (ICLR), May 2015, San Diego, USA

  32. Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE T. Inform. Theory. 39(3), 930–945 (1993)

    Article  MathSciNet  Google Scholar 

  33. Barron, A. R., Klusowski, J. M.: Approximation and estimation for high-dimensional deep learning networks. arXiv:1809.03090v2, (2018)

  34. Ma, C., Wu, L., Wojtowytsch, S., Wu, L.: Towards a mathematical understanding of neural network-based machine learning: what we know and what we don’t. arXiv:2009.10713v2, (2020)

Download references

Acknowledgements

The research of Congming Jin was supported by the National Natural Science Foundation of China (No. 11571314).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congming Jin.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Y., Fang, T., Zhang, D. et al. Solving Fredholm Integral Equations Using Deep Learning. Int. J. Appl. Comput. Math 8, 87 (2022). https://doi.org/10.1007/s40819-022-01288-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-022-01288-3

Keywords