Skip to main content

Advertisement

Log in

Mathematical modeling applied to epidemics: an overview

  • Survey
  • Published:
São Paulo Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

This work presents an overview of the evolution of mathematical modeling applied to the context of epidemics and the advances in modeling in epidemiological studies. In fact, mathematical treatments have contributed substantially in the epidemiology area since the formulation of the famous SIR (susceptible-infected-recovered) model, in the beginning of the 20th century. We presented the SIR deterministic model and we also showed a more realistic application of this model applying a stochastic approach in complex networks. Nowadays, computational tools, such as big data and complex networks, in addition to mathematical modeling and statistical analysis, have been shown to be essential to understand the developing of the disease and the scale of the emerging outbreak. These issues are fundamental concerns to guide public health policies. Lately, the current pandemic caused by the new coronavirus further enlightened the importance of mathematical modeling associated with computational and statistical tools. For this reason, we intend to bring basic knowledge of mathematical modeling applied to epidemiology to a broad audience. We show the progress of this field of knowledge over the years, as well as the technical part involving several numerical tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. Here we are considering an approximation to simplify the mathematical calculations. We know that there are several biological factors that can, for example, make a fraction of the population naturally immune to some new epidemic. However, to attend our aim, this assumption is quite reasonable.

  2. In fact, any realization of the epidemic dynamics in finite networks reaches the absorbing state sooner or later because of dynamic fluctuations inherent to stochastic process, even above the critical point. This simulation difficulty was traditionally overcome by quasi stationary methods. For further details, the reader can consult the following references: [54, 61]

References

  1. Allen, L.J.: A primer on stochastic epidemic models: formulation, numerical simulation, and analysis. Infect. Dis. Modell. 2(2), 128–142 (2017)

    Google Scholar 

  2. Anderson, K.B., Thomas, S.J., Endy, T.P.: The emergence of zika virus. Ann. Intern. Med. 165(3), 175–183 (2016)

    Article  Google Scholar 

  3. Anderson, R., May, R.: Infectious Diseases of Humans: Dynamics and Control. Dynamics and Control. OUP, Oxford (1992)

    Google Scholar 

  4. Anderson, W.: Continuous-time Markov Chains: an Applications-Oriented Approach. Springer Series in Statistics. Springer, New York (2012)

    Google Scholar 

  5. Arenas, A., Cota, W., Gómez-Gardeñes, J., Gómez, S., Granell, C., Matamalas, J.T., Soriano-Paños, D., Steinegger, B.: Modeling the spatiotemporal epidemic spreading of covid-19 and the impact of mobility and social distancing interventions. Phys. Rev. X 10, 041055 (2020). https://doi.org/10.1103/PhysRevX.10.041055

    Article  Google Scholar 

  6. Azevedo, L., Pereira, M.J., Ribeiro, M.C., Soares, A.: Geostatistical covid-19 infection risk maps for portugal. Int. J. Health Geogr. 19(1), 1–8 (2020)

    Article  Google Scholar 

  7. Bailey, N.T.J.: The Mathematical Theory of Infectious Diseases and Its Applications. Charles Griffin Company Limited, London (1975)

    MATH  Google Scholar 

  8. Balcan, D., Gonçalves, B., Hu, H., Ramasco, J.J., Colizza, V., Vespignani, A.: Modeling the spatial spread of infectious diseases: the global epidemic and mobility computational model. J. Comput. Sci. 3, 132–145 (2010)

    Article  Google Scholar 

  9. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  11. Bauch, C.T., Galvani, A.P.: Social factors in epidemiology. Science 342(6154), 47–49 (2013)

    Article  Google Scholar 

  12. Bautista, L.E.: Maternal zika virus infection and newborn microcephaly–an analysis of the epidemiological evidence. Ann. Epidemiol. 28(2), 111–118 (2018)

    Article  Google Scholar 

  13. Blanco-Melo, D., Nilsson-Payant, B.E., Liu, W.C., Uhl, S., Hoagland, D., Møller, R., Jordan, T.X., Oishi, K., Panis, M., Sachs, D., Wang, T.T., Schwartz, R.E., Lim, J.K., Albrecht, R.A., tenOever, B.R.: Imbalanced host response to sars-cov-2 drives development of covid-19. Cell 181(5), 1036-1045.e9 (2020)

    Article  Google Scholar 

  14. Brooks-Pollock, E., de Jong, M., Keeling, M., Klinkenberg, D., Wood, J.: Eight challenges in modelling infectious livestock diseases. Epidemics 10, 1–5 (2015)

    Article  Google Scholar 

  15. Caldarelli, G.: Scale-Free Networks: Complex Webs in Nature and Technology. Oxford University Press, Oxford (2007)

    Book  MATH  Google Scholar 

  16. Carias, C., O’Hagan, J.J., Gambhir, M., Kahn, E.B., Swerdlow, D.L., Meltzer, M.I.: Forecasting the 2014 west African ebola outbreak. Epidemiol. Rev. 41(1), 34–50 (2019)

  17. Castellano, C., Pastor-Satorras, R.: Thresholds for epidemic spreading in networks. Phys. Rev. Lett. 105, 218701d (2010)

    Article  Google Scholar 

  18. Castro, M., Ares, S., Cuesta, J.A., Manrubia, S.: Predictability: can the turning point and end of an expanding epidemic be precisely forecast? 2004.08842 (2020)

  19. Chang, S., Pierson, E., Koh, P.W., Gerardin, J., Redbird, B., Grusky, D., Leskovec, J.: Mobility network models of covid-19 explain inequities and inform reopening. Nature 589(37), 82–87 (2021). https://doi.org/10.1038/s41586-020-2923-3

    Article  Google Scholar 

  20. Choi, B.C.K.: The past, present, and future of public health surveillance. Scientifica 2012 (2012)

  21. Colizza, V., Vespignani, A.: Invasion threshold in heterogeneous metapopulation networks. Phys. Rev. Lett. 99, 148701 (2007)

    Article  Google Scholar 

  22. Costa, G.S., Cota, W., Ferreira, S.C.: Outbreak diversity in epidemic waves propagating through distinct geographical scales. Phys. Rev. Res. 2, 043306 (2020). https://doi.org/10.1103/PhysRevResearch.2.043306

    Article  Google Scholar 

  23. Cota, W., Ferreira, S.C.: Optimized gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks. Comput. Phys. Commun. 219, 303–312 (2017)

    Article  MATH  Google Scholar 

  24. Cutts, F., Dansereau, E., Ferrari, M., Hanson, M., McCarthy, K., Metcalf, C., Takahashi, S., Tatem, A., Thakkar, N., Truelove, S., Utazi, E., Wesolowski, A., Winter, A.: Using models to shape measles control and elimination strategies in low- and middle-income countries: a review of recent applications. Vaccine 38(5), 979–992 (2020)

    Article  Google Scholar 

  25. Dave, K., Lee, P.C.: Global geographical and temporal patterns of seasonal influenza and associated climatic factors. Epidemiol. Rev. 41(1), 51–68 (2019)

    Article  Google Scholar 

  26. de Arruda, G.F., Rodrigues, F.A., Moreno, Y.: Fundamentals of spreading processes in single and multilayer complex networks. Phys. Rep. 756, 1–59 (2018). https://doi.org/10.1016/j.physrep.2018.06.007

    Article  MathSciNet  MATH  Google Scholar 

  27. Dye, C., Mertens, T., Hirnschall, G., Mpanju-Shumbusho, W., Newman, R.D., Raviglione, M.C., Savioli, L., Nakatani, H.: Who and the future of disease control programmes. The Lancet 381(9864), 413–418 (2013)

    Article  Google Scholar 

  28. Emanuel, E.J.: The lessons of sars. Ann. Intern. Med. 139(7), 589–591 (2003)

    Article  Google Scholar 

  29. Erdős, P., Rényi, A.: On random graphs. Publicationes Mathematicae Debrecen 6, 290–297 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  30. Estrada, E.: Covid-19 and sars-cov-2. modeling the present, looking at the future. Phys. Rep. 869, 1–51 (2020a)

    Article  MathSciNet  MATH  Google Scholar 

  31. Estrada, E.: Topological analysis of sars cov-2 main protease. Chaos: an Interdisciplinary. J. Nonlinear Sci. 30(6), 061102 (2020b)

    Google Scholar 

  32. Fauci, A.S., Macher, A.M., Longo, D.L., Lane, H.C., Rook, A.H., Masur, H., Gelmann, E.P.: Acquired immunodeficiency syndrome: epidemiologic, clinical, immunologic, and therapeutic considerations. Ann. Intern. Med. 100(1), 92–106 (1984)

    Article  Google Scholar 

  33. Ferreira, S.C., Castellano, C., Pastor-Satorras, R.: Epidemic thresholds of the susceptible-infected-susceptible model on networks: a comparison of numerical and theoretical results. Phys. Rev. E 86, 041125 (2012)

    Article  Google Scholar 

  34. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  35. Gog, J.R.: How you can help with covid-19 modelling. Nat. Rev. Phys. 2(6), 274–275 (2020)

    Article  Google Scholar 

  36. Gómez, S., Arenas, A., Borge-Holthoefer, J., Meloni, S., Moreno, Y.: Discrete-time Markov chain approach to contact-based disease spreading in complex networks. EPL (Europhys. Lett.) 89(3), 38009 (2010)

    Article  Google Scholar 

  37. Gómez, S., Díaz-Guilera, A., Gómez-Gardeñes, J., Pérez-Vicente, C.J., Moreno, Y., Arenas, A.: Diffusion dynamics on multiplex networks. Phys. Rev. Lett. 110, 028701 (2013)

    Article  Google Scholar 

  38. Goufo, E.F.D., Noutchie, S.C.O., Mugisha, S.: A fractional seir epidemic model for spatial and temporal spread of measles in metapopulations. Abstract Appl. Anal. 2014(781028),(2014)

  39. Grant, R., Malik, M.R., Elkholy, A., Van Kerkhove, M.D.: A review of asymptomatic and subclinical middle east respiratory syndrome coronavirus infections. Epidemiol. Rev. 41(1), 69–81 (2019)

    Article  Google Scholar 

  40. Heesterbeek, H., Anderson, R.M., Andreasen, V., Bansal, S., De Angelis, D., Dye, C., Eames, K.T.D., Edmunds, W.J., Frost, S.D.W., Funk, S., Hollingsworth, T.D., House, T., Isham, V., Klepac, P., Lessler, J., Lloyd-Smith, J.O., Metcalf, C.J.E., Mollison, D., Pellis, L., Pulliam, J.R.C., Roberts, M.G., Viboud, C.: Modeling infectious disease dynamics in the complex landscape of global health. Science 347(6227),(2015)

  41. Huang, R., Liu, M., Ding, Y.: Spatial-temporal distribution of covid-19 in china and its prediction: a data-driven modeling analysis. J. Infect. Dev. Ctries. 14(3), 246–253 (2020)

    Article  Google Scholar 

  42. Imai, N., Cori, A., Dorigatti, I., Baguelin, M., Donnelly, C.A., Riley, S., Ferguson, N.M.: Report 3—transmissibility of 2019-ncov. WHO collaborating centre for infectious disease modelling, pp 689–697 (2020)

  43. Julia, C., Valleron, A.J.: Louis-rené villermé (1782–1863), a pioneer in social epidemiology: re-analysis of his data on comparative mortality in paris in the early 19th century. J. Epidemiol. Commun. Health 65(8), 666–670 (2011)

    Article  Google Scholar 

  44. Keeling, M.J., Rohani, P.: Model. Infect. Dis. Hum. Anim. Princeton University Press, Princeton, Oxford (2008)

    Google Scholar 

  45. Kermack, W.O., McKendrick, A.G., Walker, G.T.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Charact. 115(772), 700–721 (1927)

    MATH  Google Scholar 

  46. Klepac, P., Kucharski, A.J., Conlan, A.J., Kissler, S., Tang, M., Fry, H., Gog, J.R.: Contacts in context: large-scale setting-specific social mixing matrices from the bbc pandemic project. medRxiv (2020)

  47. Koher, A., Lentz, H.H.K., Gleeson, J.P., Hövel, P.: Contact-based model for epidemic spreading on temporal networks. Phys. Rev. X 9, 031017 (2019)

    Google Scholar 

  48. Lai, C.C., Shih, T.P., Ko, W.C., Tang, H.J., Hsueh, P.R.: Severe acute respiratory syndrome coronavirus 2 (sars-cov-2) and coronavirus disease-2019 (covid-19): the epidemic and the challenges. Int. J. Antimicrob. Agents 55(3), 105924 (2020)

    Article  Google Scholar 

  49. Lauer, S., Grantz, K., Bi, Q., Jones, F., Zheng, Q., Meredith, H., Azman, A., Nand Lessler, Reich J.: The incubation period of coronavirus disease 2019 (covid-19) from publicly reported confirmed cases: estimation and application. Ann. Intern. Med. 172, 577–582 (2020)

    Article  Google Scholar 

  50. Leung, G.M., Hedley, A.J., Ho, L.M., et al.: The epidemiology of severe acute respiratory syndrome in the 2003 Hong Kong epidemic: an analysis of all 1755 patients. Ann. Intern. Med. 141(9), 662–673 (2004)

    Article  Google Scholar 

  51. Linka, K., Peirlinck, M., Costabal, F.S., Kuhl, E.: Outbreak dynamics of covid-19 in Europe and the effect of travel restrictions. Comput. Methods Biomech. Biomed. Engin. 23(11), 710–717 (2020)

    Article  Google Scholar 

  52. Maheshwari, P., Albert, R.: Network model and analysis of the spread of covid-19 with social distancing. Netw. Sci. Appl. (2020). https://doi.org/10.1007/s41109-020-00344-5

    Article  Google Scholar 

  53. Manchein, C., Brugnago, E.L., da Silva, R.M., Mendes, C.F.O., Beims, M.W.: Strong correlations between power-law growth of covid-19 in four continents and the inefficiency of soft quarantine strategies. Chaos: An Interdisciplinary. J. Nonlinear Sci. 30(4), 041102 (2020)

    Google Scholar 

  54. Marro, J., Dickman, R.: Nonequilibrium Phase Transitions in Lattice Models. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  55. Metcalf, C., Edmunds, W., Lessler, J.: Six challenges in modelling for public health policy. Epidemics 10, 93–96 (2015)

    Article  Google Scholar 

  56. Morabia, A.: P. c. a. louis and the birth of clinical epidemiology. J. Clin. Epidemiol. 49(12), 1327–1333 (1996)

    Article  Google Scholar 

  57. Morens, D.M., Folkers, G.K., Fauci, A.S.: The challenge of emerging and re-emerging infectious diseases. Nature 430(6996), 242–249 (2004)

    Article  Google Scholar 

  58. Morse, S.S.: Factors in the emergence of infectious diseases. Emerg. Infect. Dis. 1, 7–15 (1995)

    Article  Google Scholar 

  59. Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980), 876–878 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  60. Nii-Trebi, N.I.: (2017) Emerging and neglected infectious diseases: insights, advances, and challenges. BioMed Res. Int. (2017)

  61. de Oliveira, M.M., Dickman, R.: How to simulate the quasistationary state. Phys. Rev. E 71, 016129 (2005)

    Article  Google Scholar 

  62. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203 (2001)

    Article  Google Scholar 

  63. Paneth, A.N.: Assessing the contributions of john snow to epidemiology: 150 years after removal of the broad street pump handle. Epidemiology 15, 514–516 (2004)

    Article  Google Scholar 

  64. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925–979 (2015). https://doi.org/10.1103/RevModPhys.87.925

    Article  MathSciNet  Google Scholar 

  65. Pedrosa, N.L., Albuquerque, N.L.S.: Spatial analysis of covid-19 cases and intensive care beds in the state of ceará, brazil. Cien. Saude Colet. 25, 2461–2468 (2020)

    Article  Google Scholar 

  66. Ribeiro, M.H.D.M., da Silva, R.G., Mariani, V., dos Santos, C.L.: Short-term forecasting covid-19 cumulative confirmed cases: perspectives for Brazil. Chaos Solitons Fractals, 1–10 (2020)

  67. Riedel, S.: Edward jenner and the history of smallpox and vaccination. Proc (Bayl Univ Med Cent) 18, 21–25 (2005)

    Google Scholar 

  68. Rothman, K.J.: Lessons from John Graunt. Lancet 347(8993), 37–39 (1996)

    Article  Google Scholar 

  69. Sharkey, K.J.: Deterministic epidemic models on contact networks: correlations and unbiological terms. Theor. Popul. Biol. 79(4), 115–129 (2011)

    Article  MATH  Google Scholar 

  70. Silva-Júnior, M., Mendonça, K., Lima, C., Pires, P.L.S., Calegari, T., Oliveira, S.: Analysis of the spatial-temporal dynamics of incidence, mortality and test rates (rapid and rt-pcr) of covid-19 in the state of minas Gerais, Brazil. Scielo Preprint pp 1–16 (2020)

  71. Small, M., Cavanagh, D.: Modelling strong control measures for epidemic propagation with networks—a covid-19 case study. IEEE Access 8, 109719–109731 (2020)

    Article  Google Scholar 

  72. Smith, K.: Louis pasteur, the father of immunology? Front. Immunol. 3, 68 (2012)

    Article  Google Scholar 

  73. Thurner, S., Klimek, P., Hanel, R.: A network-based explanation of why most covid-19 infection curves are linear. Proc. Natl. Acad. Sci. 117(37), 22684–22689 (2020). https://doi.org/10.1073/pnas.2010398117

    Article  Google Scholar 

  74. Trawicki, M.: Deterministic seirs epidemic model for modeling vital dynamics, vaccinations, and temporary immunity. Mathematics 5(7) (2017)

  75. Trilla, A., Trilla, G., Daer, C.: The 1918 “spanish flu” in Spain. Clin. Infect. Dis. 47(5), 668–673 (2008)

  76. Tulu, T.W., Tian, B., Wu, Z.: Mathematical modeling, analysis and Markov chain Monte Carlo simulation of ebola epidemics. Res. Phys. 7, 962–968 (2017)

    Google Scholar 

  77. Vermeil, T., Peters, A., Kilpatrick, C., Pires, D., Allegranzi, B., Pittet, D.: Hand hygiene in hospitals: anatomy of a revolution. J. Hosp. Infect. 101(4), 383–392 (2019)

    Article  Google Scholar 

  78. Wang, P., Ja, Lu., Zhu, M., Wang, L., Chen, S.: Statistical and network analysis of 1212 covid-19 patients in Henan, China. Int. J. Infect. Dis. 95, 391–398 (2020)

    Article  Google Scholar 

  79. Wells, C.R., Sah, P., Moghadas, S.M., Pandey, A., Shoukat, A., Wang, Y., Wang, Z., Meyers, L.A., Singer, B.H., Galvani, A.P.: Impact of international travel and border control measures on the global spread of the novel 2019 coronavirus outbreak. Proc. Natl. Acad. Sci. U.S.A. 117(13), 7504–7509 (2020)

    Article  Google Scholar 

  80. WHO (2021) World health organization. https://www.who.int/

  81. Wu, J.T., Leung, K., Leung, G.M.: Nowcasting and forecasting the potential domestic and international spread of the 2019-ncov outbreak originating in wuhan, china: a modelling study. Lancet 395, 689–697 (2020)

    Article  Google Scholar 

  82. Xia, Y., Bjørnstad, O.N., Grenfell, B.T.: Measles metapopulation dynamics: a gravity model for epidemiological coupling and dynamics. Am. Nat. 164(2), 267–281 (2004)

    Article  Google Scholar 

  83. Zarocostas, J.: How to fight an infodemic. The Lancet 395(10225), 676 (2020)

    Article  Google Scholar 

  84. Zhao, S., Zhuang, Z., Cao, P., Ran, J., Gao, D., Lou, Y., Yang, L., Cai, Y., Wang, W., He, D., Wang, M.H.: Quantifying the association between domestic travel and the exportation of novel coronavirus (2019-ncov) cases from wuhan, china in 2020: a correlational analysis. J. Travel Med. 27(2), taaa0222 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

Angélica S. Mata acknowledges the support from FAPEMIG (Grant No. APQ-02482-18) and CNPq (Grant No. 423185/2018-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angélica S. Mata.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Additional information

Communicated by José Alberto Cuminato.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mata, A.S., Dourado, S.M.P. Mathematical modeling applied to epidemics: an overview. São Paulo J. Math. Sci. 15, 1025–1044 (2021). https://doi.org/10.1007/s40863-021-00268-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40863-021-00268-7

Keywords