Skip to main content

Advertisement

Log in

Carbon Fibers for Bioelectrochemical: Precursors, Bioelectrochemical System, and Biosensors

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Carbon fibers (CFs) demonstrate a range of excellent properties including (but not limited to) microscale diameter, high hardness, high strength, light weight, high chemical resistance, and high temperature resistance. Therefore, it is necessary to summarize the application market of CFs. CFs with good physical and chemical properties stand out among many materials. It is believed that highly fibrotic CFs will play a crucial role. This review first introduces the precursors of CFs, such as polyacrylonitrile, bitumen, and lignin. Then this review introduces CFs used in BESs, such as electrode materials and modification strategies of MFC, MEC, MDC, and other cells in a large space. Then, CFs in biosensors including enzyme sensor, DNA sensor, immune sensor and implantable sensor are summarized. Finally, we discuss briefly the challenges and research directions of CFs application in BESs, biosensors and more fields.

Highlights

  • CF is a new-generation reinforced fiber with high hardness and strength.

  • Summary precursors from different sources of CFs and their preparation processes.

  • Introduction of the application and modification methods of CFs in BESs and biosensor.

  • Suggest the challenges in the application of CFs in the field of bio-electrochemistry.

  • Propose the prospective research directions for CFs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Copyright 2020 American Chemical Society. c Schematic of conversion of CO2 to formate using a g-C3N4-NiCoWo4 photoanode supported by activated carbon fibers in a microbial electrosynthesis system; reproduced with permission from Ref. [165], Copyright 2022, Elsevier; d schematic diagram of enhanced microbial electrosynthesis of 3D graphene functionalized cathodes prepared by solvothermal synthesis; reproduced with permission from Ref. [166], Copyright 2016, Elsevier

Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Li D, Long X, Wu Y, Hou H, Wang X, Ren J, Zhang L, Yang D, Xia Y. Hierarchically porous and defective carbon fiber cathode for efficient Zn-air batteries and microbial fuel cells. Adv Fiber Mater. 2022;4(4):795.

    Article  CAS  Google Scholar 

  2. Chen M, Wang Z, Li K, Wang X, Wei L. Elastic and stretchable functional fibers: a review of materials, fabrication methods, and applications. Adv Fiber Mater. 2021;3(1):1.

    Article  Google Scholar 

  3. Lim TH, Kim MS, Yeo SY, Jeong E. Preparation and evaluation of isotropic and mesophase pitch-based carbon fibers using the pelletizing and continuous spinning process. J Ind Text. 2019;48(7):1242.

    Article  CAS  Google Scholar 

  4. Aldosari SM, Khan M, Rahatekar S. Manufacturing carbon fibres from pitch and polyethylene blend precursors: a review. J Mater Res Technol. 2020;9(4):7786.

    Article  CAS  Google Scholar 

  5. Zhang F, Chen J, Yang J. Fiber materials for electrocatalysis applications. Adv Fiber Mater. 2022;4(4):720.

    Article  CAS  Google Scholar 

  6. Das TK, Ghosh P, Das NC. Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review. Adv Compos Hybrid Mater. 2019;2(2):214.

    Article  CAS  Google Scholar 

  7. Shirvanimoghaddam K, Hamim SU, Karbalaei Akbari M, Fakhrhoseini SM, Khayyam H, Pakseresht AH, Ghasali E, Zabet M, Munir KS, Jia S, Davim JP, Naebe M. Carbon fiber reinforced metal matrix composites: fabrication processes and properties. Compos Part A. 2017;92:70.

    Article  CAS  Google Scholar 

  8. Oroumei A, Naebe M. Mechanical property optimization of wet-spun lignin/polyacrylonitrile carbon fiber precursor by response surface methodology. Fibers Polym. 2017;18(11):2079.

    Article  CAS  Google Scholar 

  9. Dong C, Davies IJ. Effect of stacking sequence on the flexural properties of carbon and glass fibre-reinforced hybrid composites. Adv Compos Hybrid Mater. 2018;1(3):530.

    Article  CAS  Google Scholar 

  10. Liu Y, Kumar S. Recent progress in fabrication, structure, and properties of carbon fibers. Polym Rev. 2012;52(3–4):234.

    Article  CAS  Google Scholar 

  11. Fang W, Yang S, Wang X-L, Yuan T-Q, Sun R-C. Manufacture and application of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers (LCNFs). Green Chem. 2017;19(8):1794.

    Article  CAS  Google Scholar 

  12. Poursorkhabi V, Abdelwahab MA, Misra M, Khalil H, Gharabaghi B, Mohanty AK. Processing, carbonization, and characterization of lignin based electrospun carbon fibers: a review. Front Energy Res. 2020;8:208.

    Article  Google Scholar 

  13. Hindatu Y, Annuar MSM, Gumel AM. Mini-review: anode modification for improved performance of microbial fuel cell. Renew Sustain Energy Rev. 2017;73:236.

    Article  CAS  Google Scholar 

  14. Zhu Y, Ji J, Ren J, Yao C. Ge L Conductive multilayered polyelectrolyte films improved performance in microbial fuel cells (MFCs). Colloids Surf A. 2014;455:92.

    Article  CAS  Google Scholar 

  15. Chou H-T, Lee H-J, Lee C-Y, Tai N-H, Chang H-Y. Highly durable anodes of microbial fuel cells using a reduced graphene oxide/carbon nanotube-coated scaffold. Bioresour Technol. 2014;169:532.

    Article  CAS  Google Scholar 

  16. Khayyam H, Jazar RN, Nunna S, Golkarnarenji G, Badii K, Fakhrhoseini SM, Kumar S, Naebe M. PAN precursor fabrication, applications and thermal stabilization process in carbon fiber production: experimental and mathematical modelling. Prog Mater Sci. 2020;107: 100575.

    Article  CAS  Google Scholar 

  17. Der A, Dilger N, Kaluza A, Creighton C, Kara S, Varley R, Herrmann C, Thiede S. Modelling and analysis of the energy intensity in polyacrylonitrile (PAN) precursor and carbon fibre manufacturing. J Clean Prod. 2021;303: 127105.

    Article  CAS  Google Scholar 

  18. Ye C, Wu H, Huang D, Li B, Shen K, Yang J, Liu J, Li X. The microstructures and mechanical properties of ultra-high-strength PAN-based carbon fibers during graphitization under a constant stretching. Carbon Lett. 2019;29(5):497.

    Article  Google Scholar 

  19. Golkarnarenji G, Naebe M, Badii K, Milani AS, Jazar RN, Khayyam H. Support vector regression modelling and optimization of energy consumption in carbon fiber production line. Comput Chem Eng. 2018;109:276.

    Article  CAS  Google Scholar 

  20. Kausar A. Polyacrylonitrile-based nanocomposite fibers: a review of current developments. J Plast Film Sheet. 2019;35(3):295.

    Article  CAS  Google Scholar 

  21. Ahn H, Yeo SY, Lee B-S. Designing materials and processes for strong polyacrylonitrile precursor fibers. Polymers. 2021;13(17):2863.

    Article  CAS  Google Scholar 

  22. Fakhrhoseini SM, Khayyam H, Naebe M. Chemically enhanced wet-spinning process to accelerate thermal stabilization of polyacrylonitrile fibers. Macromol Mater Eng. 2018;303(8):1700557.

    Article  Google Scholar 

  23. Nunna S, Naebe M, Hameed N, Fox BL, Creighton C. Evolution of radial heterogeneity in polyacrylonitrile fibres during thermal stabilization: an overview. Polym Degrad Stab. 2017;136:20.

    Article  CAS  Google Scholar 

  24. Khayyam H, Fakhrhoseini SM, Church JS, Milani AS, Bab-Hadiashar A, Jazar RN, Naebe M. Predictive modelling and optimization of carbon fiber mechanical properties through high temperature furnace. Appl Therm Eng. 2017;125:1539.

    Article  CAS  Google Scholar 

  25. Youn YS, Kim S. Real-time atomic force microscopy imaging of collagen fibril under ultraviolet irradiation. J Ind Eng Chem. 2016;42:15.

    Article  CAS  Google Scholar 

  26. Khayyam H, Naebe M, Bab-Hadiashar A, Jamshidi F, Li QX, Atkiss S, Buckmaster D, Fox B. Stochastic optimization models for energy management in carbonization process of carbon fiber production. Appl Energy. 2015;158:643.

    Article  CAS  Google Scholar 

  27. Zhang XY, Xu JJ, Wu JY, Shan F, Ma XD, Chen YZ, Zhang T. Seeds triggered massive synthesis and multi-step room temperature post-processing of silver nanoink-application for paper electronics. RSC Adv. 2017;7(1):8.

    Article  CAS  Google Scholar 

  28. Nunna S, Creighton C, Hameed N, Naebe M, Henderson LC, Setty M, Fox BL. Radial structure and property relationship in the thermal stabilization of PAN precursor fibres. Polym Test. 2017;59:203.

    Article  CAS  Google Scholar 

  29. Frank E, Ingildeev D, Buchmeiser MR. 2—high-performance PAN-based carbon fibers and their performance requirements. In: Bhat G, editor. Structure and properties of high-performance fibers. Oxford: Woodhead Publishing; 2017. p. 7–30.

    Chapter  Google Scholar 

  30. Yang J, Nakabayashi K, Miyawaki J, Yoon S-H. Preparation of isotropic pitch-based carbon fiber using hyper coal through co-carbonation with ethylene bottom oil. J Ind Eng Chem. 2016;34:397.

    Article  CAS  Google Scholar 

  31. Baker DA, Rials TG. Recent advances in low-cost carbon fiber manufacture from lignin. J Appl Polym Sci. 2013;130(2):713.

    Article  CAS  Google Scholar 

  32. Frank E, Steudle LM, Ingildeev D, Spoerl JM, Buchmeiser MR. Carbon fibers: precursor systems, processing, structure, and properties. Angewandte Chemie-International Edition. 2014;53(21):5262.

    Article  CAS  Google Scholar 

  33. Takanohashi T, Shishido T, Kawashima H, Saito I. Characterisation of hyperCoals from coals of various ranks. Fuel. 2008;87(4):592.

    Article  CAS  Google Scholar 

  34. Wang S, Lu A, Zhang L. Recent advances in regenerated cellulose materials. Prog Polym Sci. 2016;53:169.

    Article  CAS  Google Scholar 

  35. Okolie JA, Nanda S, Dalai AK, Kozinski JA. Chemistry and specialty industrial applications of lignocellulosic biomass. Waste Biomass Valoriz. 2021;12(5):2145.

    Article  CAS  Google Scholar 

  36. Chen X, Yan N. Novel catalytic systems to convert chitin and lignin into valuable chemicals. Catal Surv Asia. 2014;18(4):164.

    Article  CAS  Google Scholar 

  37. Chatterjee S, Saito T, Bhattacharya P. 11-lignin-derived carbon fibers, in lignin in polymer composites. In: Faruk O, Sain M, editors. 2016, William Andrew Publishing. pp. 207–216.

  38. Souto F, Calado V, Pereira N Jr. Lignin-based carbon fiber: a current overview. Mater Res Express. 2018;5(7): 072001.

    Article  Google Scholar 

  39. Kadla JF, Kubo S, Venditti RA, Gilbert RD, Compere AL, Griffith W. Lignin-based carbon fibers for composite fiber applications. Carbon. 2002;40(15):2913.

    Article  CAS  Google Scholar 

  40. Tomani P. The lignoboost process. Cellul Chem Technol. 2010;44(1–3):53.

    CAS  Google Scholar 

  41. Mohan SV, Mohanakrishna G, Velvizhi G, Babu VL, Sarma PN. Bio-catalyzed electrochemical treatment of real field dairy wastewater with simultaneous power generation. Biochem Eng J. 2010;51(1–2):32.

    Article  Google Scholar 

  42. ElMekawy A, Srikanth S, Bajracharya S, Hegab HM, Nigam PS, Singh A, Mohan SV, Pant D. Food and agricultural wastes as substrates for bioelectrochemical system (BES): the synchronized recovery of sustainable energy and waste treatment. Food Res Int. 2015;73:213.

    Article  CAS  Google Scholar 

  43. Patil SA, Gildemyn S, Pant D, Zengler K, Logan BE, Rabaey K. A logical data representation framework for electricity-driven bioproduction processes. Biotechnol Adv. 2015;33(6):736.

    Article  CAS  Google Scholar 

  44. Bajracharya S, Sharma M, Mohanakrishna G, Benneton XD, Strik DPBTB, Sarma PM, Pant D. An overview on emerging bioelectrochemical systems (BESs): technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond. Renew Energy. 2016;98:153.

    Article  CAS  Google Scholar 

  45. Singh A, Sevda S, Abu Reesh IM, Vanbroekhoven K, Rathore D, Pant D. Biohydrogen production from lignocellulosic biomass: technology and sustainability. Energies. 2015;8(11):13062.

    Article  CAS  Google Scholar 

  46. Rabaey K, Rozendal RA. Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat Rev Microbiol. 2010;8(10):706.

    Article  CAS  Google Scholar 

  47. ElMekawy A, Hegab HM, Vanbroekhoven K, Pant D. Techno-productive potential of photosynthetic microbial fuel cells through different configurations. Renew Sustain Energy Rev. 2014;39:617.

    Article  CAS  Google Scholar 

  48. Mohyudin S, Farooq R, Jubeen F, Rasheed T, Fatima M, Sher F. Microbial fuel cells a state-of-the-art technology for wastewater treatment and bioelectricity generation. Environ Res. 2022;204: 112387.

    Article  CAS  Google Scholar 

  49. Yaqoob AA, Ibrahim MNM, Rodríguez-Couto S. Development and modification of materials to build cost-effective anodes for microbial fuel cells (MFCs): an overview. Biochem Eng J. 2020;164: 107779.

    Article  CAS  Google Scholar 

  50. Sonawane JM, Patil SA, Ghosh PC, Adeloju SB. Low-cost stainless-steel wool anodes modified with polyaniline and polypyrrole for high-performance microbial fuel cells. J Power Sources. 2018;379:103.

    Article  CAS  Google Scholar 

  51. Santoro C, Arbizzani C, Erable B, Ieropoulos I. Microbial fuel cells: From fundamentals to applications. A review. J Power Sources. 2017;356:225.

    Article  CAS  Google Scholar 

  52. Artyushkova K, Roizman D, Santoro C, Doyle LE, Mohidin AF, Atanassov P, Marsili E. Anodic biofilms as the interphase for electroactive bacterial growth on carbon veil. Biointerphases. 2016;11(3): 031013.

    Article  Google Scholar 

  53. Thi Xuan Huong L, Bechelany M, Cretin M. Carbon felt based-electrodes for energy and environmental applications: a review. Carbon. 2017;122:564.

  54. Wang Y, Li B, Cui D, Xiang X, Li W. Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell. Biosens Bioelectron. 2014;51:349.

    Article  CAS  Google Scholar 

  55. Hou J, Liu Z, Yang S, Zhou Y. Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells. J Power Sources. 2014;258:204.

    Article  CAS  Google Scholar 

  56. Ci S, Wen Z, Chen J, He Z. Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells. Electrochem Commun. 2012;14(1):71.

    Article  CAS  Google Scholar 

  57. Yu Y-Y, Guo CX, Yong Y-C, Li CM, Song H. Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode. Chemosphere. 2015;140:26.

    Article  CAS  Google Scholar 

  58. Guo W, Cui Y, Song H, Sun J. Layer-by-layer construction of graphene-based microbial fuel cell for improved power generation and methyl orange removal. Bioprocess Biosyst Eng. 2014;37(9):1749.

    Article  CAS  Google Scholar 

  59. Zhao C-E, Gai P, Song R, Zhang J, Zhu J-J. Graphene/Au composites as an anode modifier for improving electricity generation in Shewanella-inoculated microbial fuel cells. Anal Methods. 2015;7(11):4640.

    Article  CAS  Google Scholar 

  60. Yuan Y, Zhou S, Zhao B, Zhuang L, Wang Y. Microbially-reduced graphene scaffolds to facilitate extracellular electron transfer in microbial fuel cells. Bioresour Technol. 2012;116:453.

    Article  CAS  Google Scholar 

  61. Yu F, Wang C, Ma J. Applications of graphene-modified electrodes in microbial fuel cells. Materials. 2016;9(10):807.

    Article  Google Scholar 

  62. Sayed ET, Alawadhi H, Olabi AG, Jamal A, Almahdi MS, Khalid J, Abdelkareem MA. Electrophoretic deposition of graphene oxide on carbon brush as bioanode for microbial fuel cell operated with real wastewater. Int J Hydrog Energy. 2021;46(8):5975.

    Article  CAS  Google Scholar 

  63. Alatraktchi FAA, Zhang Y, Angelidaki I. Nanomodification of the electrodes in microbial fuel cell: impact of nanoparticle density on electricity production and microbial community. Appl Energy. 2014;116:216.

    Article  CAS  Google Scholar 

  64. Mehdinia A, Ziaei E, Jabbari A. Facile microwave-assisted synthesized reduced graphene oxide/tin oxide nanocomposite and using as anode material of microbial fuel cell to improve power generation. Int J Hydrog Energy. 2014;39(20):10724.

    Article  CAS  Google Scholar 

  65. Tang J, Yuan Y, Liu T, Zhou S. High-capacity carbon-coated titanium dioxide core–shell nanoparticles modified three dimensional anodes for improved energy output in microbial fuel cells. J Power Sources. 2015;274:170.

    Article  CAS  Google Scholar 

  66. Fu L, Wang H, Huang Q, Song T-S, Xie J. Modification of carbon felt anode with graphene/Fe2O3 composite for enhancing the performance of microbial fuel cell. Bioprocess Biosyst Eng. 2020;43(3):373.

    Article  CAS  Google Scholar 

  67. Zheng J, Cheng C, Zhang J, Wu X. Appropriate mechanical strength of carbon black-decorated loofah sponge as anode material in microbial fuel cells. Int J Hydrog Energy. 2016;41(48):23156.

    Article  CAS  Google Scholar 

  68. Fan M, Zhang W, Sun J, Chen L, Li P, Chen Y, Zhu S, Shen S. Different modified multi-walled carbon nanotube–based anodes to improve the performance of microbial fuel cells. Int J Hydrog Energy. 2017;42(36):22786.

    Article  CAS  Google Scholar 

  69. Aryal RA, Beltran D, Liu J. Effects of Ni nanoparticles, MWCNT, and MWCNT/Ni on the power production and the wastewater treatment of a microbial fuel cell. Int J Green Energy. 2019;16(15):1391.

    Article  CAS  Google Scholar 

  70. Yang J, Cheng S, Sun Y, Li C. Improving the power generation of microbial fuel cells by modifying the anode with single-wall carbon nanohorns. Biotechnol Lett. 2017;39(10):1515.

    Article  CAS  Google Scholar 

  71. Song R-B, Zhao C-E, Jiang L-P, Abdel-Halim ES, Zhang J-R, Zhu J-J. Bacteria-affinity 3D macroporous graphene/MWCNTs/Fe3O4 foams for high-performance microbial fuel cells. ACS Appl Mater Interfaces. 2016;8(25):16170.

    Article  CAS  Google Scholar 

  72. Yang X, Ma X, Wang K, Wu D, Lei Z, Feng C. Eighteen-month assessment of 3D graphene oxide aerogel-modified 3D graphite fiber brush electrode as a high-performance microbial fuel cell anode. Electrochim Acta. 2016;210:846.

    Article  CAS  Google Scholar 

  73. Xing X, Liu Z, Chen W, Lou X, Li Y, Liao Q. Self-nitrogen-doped carbon nanosheets modification of anodes for improving microbial fuel cells’ performance. Catalysts. 2020;10(4):381.

    Article  CAS  Google Scholar 

  74. Pu K-B, Lu C-X, Zhang K, Zhang H, Chen Q-Y, Wang Y-H. In situ synthesis of polypyrrole on graphite felt as bio-anode to enhance the start-up performance of microbial fuel cells. Bioprocess Biosyst Eng. 2020;43(3):429.

    Article  CAS  Google Scholar 

  75. Ni H, Wang K, Lv S, Wang X, Zhang J, Zhuo L, Li F. Effects of modified anodes on the performance and microbial community of microbial fuel cells using swine wastewater. Energies. 2020;13(15):3980.

    Article  CAS  Google Scholar 

  76. Ghasemi M, Daud WRW, Mokhtarian N, Mayahi A, Ismail M, Anisi F, Sedighi M, Alam J. The effect of nitric acid, ethylenediamine, and diethanolamine modified polyaniline nanoparticles anode electrode in a microbial fuel cell. Int J Hydrog Energy. 2013;38(22):9525.

    Article  CAS  Google Scholar 

  77. Wang J, Li B, Wang S, Liu T, Jia B, Liu W, Dong P. Metal-organic framework-derived iron oxide modified carbon cloth as a high-power density microbial fuel cell anode. J Clean Prod. 2022;341: 130725.

    Article  CAS  Google Scholar 

  78. Sumisha A, Haribabu K. Modification of graphite felt using nano polypyrrole and polythiophene for microbial fuel cell applications-a comparative study. Int J Hydrog Energy. 2018;43(6):3308.

    Article  CAS  Google Scholar 

  79. Geetanjali, Rani R, Sharma D, Kumar S. Optimization of operating conditions of miniaturize single chambered microbial fuel cell using NiWO4/graphene oxide modified anode for performance improvement and microbial communities dynamics. Bioresour Technol. 2019;285:121337.

  80. Wang Z-B, Xiong S-C, Guan Y-J, Zhu X-Q. Synthesization of SnO2-modified carbon nanotubes and their application in microbial fuel cell. Appl Phys A. 2016;122(3):206.

    Article  CAS  Google Scholar 

  81. Zhang H, Fu Y, Zhou C, Liu S, Zhao M, Chen T, Zai X. A novel anode modified by 1,5-dihydroxyanthraquinone/multiwalled carbon nanotubes composite in marine sediment microbial fuel cell and its electrochemical performance. Int J Energy Res. 2018;42(7):2574.

    Article  CAS  Google Scholar 

  82. Pu K-B, Gao J-Y, Cai W-F, Chen Q-Y, Guo K, Huang Y, Gao S-H, Wang Y-H. A new modification method of metal substrates via candle soot to prepare effective anodes in air-cathode microbial fuel cells. J Chem Technol Biotechnol. 2022;97(1):189.

    Article  CAS  Google Scholar 

  83. Lapinsonniere L, Picot M, Poriel C, Barriere F. Phenylboronic acid modified anodes promote faster biofilm adhesion and increase microbial fuel cell performances. Electroanalysis. 2013;25(3):601.

    Article  CAS  Google Scholar 

  84. Pareek A, Shanthi Sravan J, Venkata MS. Graphene modified electrodes for bioelectricity generation in mediator-less microbial fuel cell. J Mater Sci. 2019;54(17):11604.

    Article  CAS  Google Scholar 

  85. Mbokou SF, Tonle IK, Pontié M. Development of a novel hybrid biofuel cell type APAP/O2 based on a fungal bioanode with a Scedosporium dehoogii biofilm. J Appl Electrochem. 2017;47(2):273.

    Article  CAS  Google Scholar 

  86. Zhang Y, Sun J, Hou B, Hu Y. Performance improvement of air-cathode single-chamber microbial fuel cell using a mesoporous carbon modified anode. J Power Sources. 2011;196(18):7458.

    Article  CAS  Google Scholar 

  87. Lin X-Q, Li Z-L, Liang B, Nan J, Wang A-J. Identification of biofilm formation and exoelectrogenic population structure and function with graphene/polyanliline modified anode in microbial fuel cell. Chemosphere. 2019;219:358.

    Article  CAS  Google Scholar 

  88. Fu YB, Liu ZH, Su G, Zai XR, Ying M, Yu J. Modified carbon anode by MWCNTs/PANI used in marine sediment microbial fuel cell and its electrochemical performance. Fuel Cells. 2016;16(3):377.

    Article  CAS  Google Scholar 

  89. Li X, Hu M, Zeng L, Xiong J, Tang B, Hu Z, Xing L, Huang Q, Li W. Co-modified MoO2 nanoparticles highly dispersed on N-doped carbon nanorods as anode electrocatalyst of microbial fuel cells. Biosens Bioelectron. 2019;145: 111727.

    Article  CAS  Google Scholar 

  90. Huang L, Li X, Ren Y, Wang X. In-situ modified carbon cloth with polyaniline/graphene as anode to enhance performance of microbial fuel cell. Int J Hydrog Energy. 2016;41(26):11369.

    Article  CAS  Google Scholar 

  91. Zhang Y, Mo G, Li X, Zhang W, Zhang J, Ye J, Huang X, Yu C. A graphene modified anode to improve the performance of microbial fuel cells. J Power Sources. 2011;196(13):5402.

    Article  CAS  Google Scholar 

  92. You J, Santoro C, Greenman J, Melhuish C, Cristiani P, Li B, Ieropoulos I. Micro-porous layer (MPL)-based anode for microbial fuel cells. Int J Hydrog Energy. 2014;39(36):21811.

    Article  CAS  Google Scholar 

  93. Feng C, Lv Z, Yang X, Wei C. Anode modification with capacitive materials for a microbial fuel cell: an increase in transient power or stationary power. Phys Chem Chem Phys. 2014;16(22):10464.

    Article  CAS  Google Scholar 

  94. Li W, Sun J, Hu Y, Zhang Y, Deng F, Chen J. Simultaneous pH self-neutralization and bioelectricity generation in a dual bioelectrode microbial fuel cell under periodic reversion of polarity. J Power Sources. 2014;268:287.

    Article  CAS  Google Scholar 

  95. Yuan H, He Z. Graphene-modified electrodes for enhancing the performance of microbial fuel cells. Nanoscale. 2015;7(16):7022.

    Article  CAS  Google Scholar 

  96. Santoro C, Bollella P, Erable B, Atanassov P, Pant D. Oxygen reduction reaction electrocatalysis in neutral media for bioelectrochemical systems. Nat Catal. 2022;5(6):473.

    Article  CAS  Google Scholar 

  97. Rahimnejad M, Adhami A, Darvari S, Zirepour A, Oh S-E. Microbial fuel cell as new technology for bioelectricity generation: a review. Alex Eng J. 2015;54(3):745.

    Article  Google Scholar 

  98. Liu X, Niu Y, Wang L, Guo Q. Treatment of m-cresol wastewater in an anaerobic fluidized bed microbial fuel cell equipped with different modified carbon cloth cathodes. Energy Fuels. 2020;34(8):10059.

    Article  CAS  Google Scholar 

  99. Zhou Q, Li D, Wang T, Hu X. Leaching of graphene oxide nanosheets in simulated soil and their influences on microbial communities. J Hazard Mater. 2021;404: 124046.

    Article  CAS  Google Scholar 

  100. Ge B, Li K, Fu Z, Pu L, Zhang X, Liu Z, Huang K. The performance of nano urchin-like NiCo2O4 modified activated carbon as air cathode for microbial fuel cell. J Power Sources. 2016;303:325.

    Article  CAS  Google Scholar 

  101. Chen J, Hu Y, Huang W, Zhang L. Enhanced electricity generation for biocathode microbial fuel cell by in situ microbial-induced reduction of graphene oxide and polarity reversion. Int J Hydrog Energy. 2017;42(17):12574.

    Article  CAS  Google Scholar 

  102. Mashkour M, Rahimnejad M, Pourali SM, Ezoji H, ElMekawy A, Pant D. Catalytic performance of nano-hybrid graphene and titanium dioxide modified cathodes fabricated with facile and green technique in microbial fuel cell. Prog Nat Sci Mater Int. 2017;27(6):647.

    Article  CAS  Google Scholar 

  103. Chen J, Hu Y, Tan X, Zhang L, Huang W, Sun J. Enhanced performance of microbial fuel cell with in situ preparing dual graphene modified bioelectrode. Bioresour Technol. 2017;241:735.

    Article  CAS  Google Scholar 

  104. Chen J, Zhang L, Hu Y, Huang W, Niu Z, Sun J. Bacterial community shift and incurred performance in response to in situ microbial self-assembly graphene and polarity reversion in microbial fuel cell. Bioresour Technol. 2017;241:220.

    Article  CAS  Google Scholar 

  105. Wu X, Tong F, Yong X, Zhou J, Zhang L, Jia H, Wei P. Effect of NaX zeolite-modified graphite felts on hexavalent chromium removal in biocathode microbial fuel cells. J Hazard Mater. 2016;308:303.

    Article  CAS  Google Scholar 

  106. Liang B, Ren C, Zhao Y, Li K, Lv C. Nitrogenous mesoporous carbon coated with Co/Cu nanoparticles modified activated carbon as air cathode catalyst for microbial fuel cell. J Electroanal Chem. 2020;860: 113904.

    Article  CAS  Google Scholar 

  107. Sallam ER, Khairy HM, Elnouby MS, Fetouh HA. Sustainable electricity production from seawater using Spirulina platensis microbial fuel cell catalyzed by silver nanoparticles-activated carbon composite prepared by a new modified photolysis method. Biomass Bioenergy. 2021;148: 106038.

    Article  CAS  Google Scholar 

  108. Champavert J, Ben Rejeb S, Innocent C, Pontié M. Microbial fuel cell based on Ni-tetra sulfonated phthalocyanine cathode and graphene modified bioanode. J Electroanal Chem. 2015;757:270.

    Article  CAS  Google Scholar 

  109. Liu Y, Liu H, Wang C, Hou S-X, Yang N. Sustainable energy recovery in wastewater treatment by microbial fuel cells: stable power generation with nitrogen-doped graphene cathode. Environ Sci Technol. 2013;47(23):13889.

    Article  CAS  Google Scholar 

  110. Zhuang L, Yuan Y, Yang G, Zhou S. In situ formation of graphene/biofilm composites for enhanced oxygen reduction in biocathode microbial fuel cells. Electrochem Commun. 2012;21:69.

    Article  CAS  Google Scholar 

  111. Li S, Hu Y, Xu Q, Sun J, Hou B, Zhang Y. Iron- and nitrogen-functionalized graphene as a non-precious metal catalyst for enhanced oxygen reduction in an air-cathode microbial fuel cell. J Power Sources. 2012;213:265.

    Article  CAS  Google Scholar 

  112. Wen Q, Wang S, Yan J, Cong L, Pan Z, Ren Y, Fan Z. MnO2–graphene hybrid as an alternative cathodic catalyst to platinum in microbial fuel cells. J Power Sources. 2012;216:187.

    Article  CAS  Google Scholar 

  113. Gnana Kumar G, Awan Z, Suk Nahm K, Stanley Xavier J. Nanotubular MnO2/graphene oxide composites for the application of open air-breathing cathode microbial fuel cells. Biosens Bioelectron. 2014;53:528.

  114. Li R, Dai Y, Chen B, Zou J, Jiang B, Fu H. Nitrogen-doped Co/Co9S8/partly-graphitized carbon as durable catalysts for oxygen reduction in microbial fuel cells. J Power Sources. 2016;307:1.

    Article  CAS  Google Scholar 

  115. Hou Y, Yuan H, Wen Z, Cui S, Guo X, He Z, Chen J. Nitrogen-doped graphene/CoNi alloy encased within bamboo-like carbon nanotube hybrids as cathode catalysts in microbial fuel cells. J Power Sources. 2016;307:561.

    Article  CAS  Google Scholar 

  116. Ren Y, Pan D, Li X, Fu F, Zhao Y, Wang X. Effect of polyaniline-graphene nanosheets modified cathode on the performance of sediment microbial fuel cell. J Chem Technol Biotechnol. 2013;88(10):1946.

    Article  CAS  Google Scholar 

  117. Sonawane JM, Pant D, Ghosh PC, Adeloju SB. Fabrication of a carbon paper/polyaniline-copper hybrid and its utilization as an air cathode for microbial fuel cells. ACS Appl Energy Mater. 2019;2(3):1891.

    Article  CAS  Google Scholar 

  118. Singh S, Pophali A, Omar RA, Kumar R, Kumar P, Mondal DP, Pant D, Verma N. A nickel oxide-decorated in situ grown 3-D graphitic forest engrained carbon foam electrode for microbial fuel cells. Chem Commun. 2021;57(7):879.

    Article  CAS  Google Scholar 

  119. Liu S, Wang R, Ma C, Yang D, Li D, Lewandowski Z. Improvement of electrochemical performance via enhanced reactive oxygen species adsorption at ZnO–NiO@rGO carbon felt cathodes in photosynthetic algal microbial fuel cells. Chem Eng J. 2020;391: 123627.

    Article  CAS  Google Scholar 

  120. Wang W, Wang Y, Wang X, Jiang B, Song H. Engineering hollow core–shell N-C@Co/N–C catalysts with bits of Ni doping used as efficient electrocatalysts in microbial fuel cells. ACS Appl Mater Interfaces. 2022;14(37):41912.

    Article  CAS  Google Scholar 

  121. Mahmoud M, Torres CI, Rittmann BE. Changes in glucose fermentation pathways as a response to the free ammonia concentration in microbial electrolysis cells. Environ Sci Technol. 2017;51(22):13461.

    Article  CAS  Google Scholar 

  122. Logan BE, Rabaey K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science. 2012;337(6095):686.

    Article  CAS  Google Scholar 

  123. Cui H, Qian Y, An H, Sun C, Zhai J, Li Q. Electrochemical removal of fluoride from water by PAOA-modified carbon felt electrodes in a continuous flow reactor. Water Res. 2012;46(12):3943.

    Article  CAS  Google Scholar 

  124. Cheng S, Xing D, Call DF, Logan BE. Direct biological conversion of electrical current into methane by electromethanogenesis. Water Res. 2009;43(10):3953.

    CAS  Google Scholar 

  125. Zhen G, Kobayashi T, Lu X, Xu K. Understanding methane bioelectrosynthesis from carbon dioxide in a two-chamber microbial electrolysis cells (MECs) containing a carbon biocathode. Bioresour Technol. 2015;186:141.

    Article  CAS  Google Scholar 

  126. Albo J, Alvarez-Guerra M, Castano P, Irabien A. Towards the electrochemical conversion of carbon dioxide into methanol. Green Chem. 2015;17(4):2304.

    Article  CAS  Google Scholar 

  127. Zhen G, Lu X, Kumar G, Bakonyi P, Xu K, Zhao Y. Microbial electrolysis cell platform for simultaneous waste biorefinery and clean electrofuels generation: current situation, challenges and future perspectives. Prog Energy Combust Sci. 2017;63:119.

    Article  Google Scholar 

  128. Kadier A, Kalil MS, Abdeshahian P, Chandrasekhar K, Mohamed A, Azman NF, Logroño W, Simayi Y, Hamid AA. Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals. Renew Sustain Energy Rev. 2016;61:501.

    Article  CAS  Google Scholar 

  129. Wei J, Liang P, Huang X. Recent progress in electrodes for microbial fuel cells. Bioresour Technol. 2011;102(20):9335.

    Article  CAS  Google Scholar 

  130. Luo Y, Zhang F, Wei B, Liu G, Zhang R, Logan BE. Power generation using carbon mesh cathodes with different diffusion layers in microbial fuel cells. J Power Sources. 2011;196(22):9317.

    Article  CAS  Google Scholar 

  131. Zhou M, Chi M, Luo J, He H, Jin T. An overview of electrode materials in microbial fuel cells. J Power Sources. 2011;196(10):4427.

    Article  CAS  Google Scholar 

  132. Kim KJ, Kim Y-J, Kim J-H, Park M-S. The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries. Mater Chem Phys. 2011;131(1):547.

    Article  CAS  Google Scholar 

  133. Wu S, He W, Yang W, Ye Y, Huang X, Logan BE. Combined carbon mesh and small graphite fiber brush anodes to enhance and stabilize power generation in microbial fuel cells treating domestic wastewater. J Power Sources. 2017;356:348.

    Article  CAS  Google Scholar 

  134. Zhang G-D, Zhao Q-L, Jiao Y, Zhang J-N, Jiang J-Q, Ren N, Kim BH. Improved performance of microbial fuel cell using combination biocathode of graphite fiber brush and graphite granules. J Power Sources 2011;196(15):6036.

  135. Freguia S, Virdis B, Harnisch F, Keller J. Bioelectrochemical systems: microbial versus enzymatic catalysis. Electrochim Acta. 2012;82:165.

    Article  CAS  Google Scholar 

  136. Wu X, Zhao F, Rahunen N, Varcoe JR, Avignone-Rossa C, Thumser AE, Slade RCT. A role for microbial palladium nanoparticles in extracellular electron transfer. Angewandte Chemie-International Edition. 2011;50(2):427.

    Article  CAS  Google Scholar 

  137. Peng X, Chen S, Liu L, Zheng S, Li M. Modified stainless steel for high performance and stable anode in microbial fuel cells. Electrochim Acta. 2016;194:246.

    Article  CAS  Google Scholar 

  138. Kim JR, Cheng S, Oh S-E, Logan BE. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ Sci Technol. 2007;41(3):1004.

    Article  CAS  Google Scholar 

  139. Du Y, Feng Y, Qu Y, Liu J, Ren N, Liu H. Electricity generation and pollutant degradation using a novel biocathode coupled photoelectrochemical cell. Environ Sci Technol. 2014;48(13):7634.

    Article  CAS  Google Scholar 

  140. Liu J, Zhang F, He W, Zhang X, Feng Y, Logan BE. Intermittent contact of fluidized anode particles containing exoelectrogenic biofilms for continuous power generation in microbial fuel cells. J Power Sources. 2014;261:278.

    Article  CAS  Google Scholar 

  141. Wang W-K, Tang B, Liu J, Shi H, Xu Q, Zhao G. Self-supported microbial carbon aerogel bioelectrocatalytic anode promoting extracellular electron transfer for efficient hydrogen evolution. Electrochim Acta. 2019;303:268.

    Article  CAS  Google Scholar 

  142. Fonseca EU, Kim K-Y, Rossi R, Logan BE. Improving microbial electrolysis stability using flow-through brush electrodes and monitoring anode potentials relative to thermodynamic minima. Int J Hydrog Energy. 2021;46(14):9514.

    Article  CAS  Google Scholar 

  143. San-Martín MI, Escapa A, Alonso RM, Canle M, Morán A. Degradation of 2-mercaptobenzothizaole in microbial electrolysis cells: intermediates, toxicity, and microbial communities. Sci Total Environ. 2020;733: 139155.

    Article  Google Scholar 

  144. Liu X-W, Li W-W, Yu H-Q. Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater. Chem Soc Rev. 2014;43(22):7718.

    Article  CAS  Google Scholar 

  145. Zhen G, Lu X, Kobayashi T, Kumar G, Xu K. Promoted electromethanosynthesis in a two-chamber microbial electrolysis cells (MECs) containing a hybrid biocathode covered with graphite felt (GF). Chem Eng J. 2016;284:1146.

    Article  CAS  Google Scholar 

  146. Montpart N, Rago L, Baeza JA, Guisasola A. Hydrogen production in single chamber microbial electrolysis cells with different complex substrates. Water Res. 2015;68:601.

    Article  CAS  Google Scholar 

  147. Huang Y-X, Liu X-W, Sun X-F, Sheng G-P, Zhang Y-Y, Yan G-M, Wang S-G, Xu A-W, Yu H-Q. A new cathodic electrode deposit with palladium nanoparticles for cost-effective hydrogen production in a microbial electrolysis cell. Int J Hydrog Energy. 2011;36(4):2773.

    Article  CAS  Google Scholar 

  148. Kalathil S, Lee J, Cho MH. Gold nanoparticles produced in situ mediate bioelectricity and hydrogen production in a microbial fuel cell by quantized capacitance charging. Chemsuschem. 2013;6(2):246.

    Article  CAS  Google Scholar 

  149. Cheng S, Liu H, Logan BE. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ Sci Technol. 2006;40(1):364.

    Article  CAS  Google Scholar 

  150. Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels THJA, Jeremiasse AW, Rozendal RA. Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol. 2008;42(23):8630.

    Article  CAS  Google Scholar 

  151. Qiao J, Liu Y, Hong F, Zhang J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev. 2014;43(2):631.

    Article  CAS  Google Scholar 

  152. Anwer AH, Khan MD, Khan N, Nizami AS, Rehan M, Khan MZ. Development of novel MnO2 coated carbon felt cathode for microbial electroreduction of CO2 to biofuels. J Environ Manag. 2019;249: 109376.

    Article  CAS  Google Scholar 

  153. Hu H, Fan Y, Liu H. Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts. Int J Hydrog Energy. 2009;34(20):8535.

    Article  CAS  Google Scholar 

  154. Yang E, Choi M-J, Kim K-Y, Chae K-J, Kim IS. Effect of initial salt concentrations on cell performance and distribution of internal resistance in microbial desalination cells. Environ Technol. 2015;36(7):852.

    Article  CAS  Google Scholar 

  155. Al-Mamun A, Ahmad W, Baawain MS, Khadem M, Dhar BR. A review of microbial desalination cell technology: configurations, optimization and applications. J Clean Prod. 2018;183:458.

    Article  CAS  Google Scholar 

  156. Cao X, Huang X, Liang P, Xiao K, Zhou Y, Zhang X, Logan BE. A new method for water desalination using microbial desalination cells. Environ Sci Technol. 2009;43(18):7148.

    Article  CAS  Google Scholar 

  157. Wen Q, Zhang H, Chen Z, Li Y, Nan J, Feng Y. Using bacterial catalyst in the cathode of microbial desalination cell to improve wastewater treatment and desalination. Bioresour Technol. 2012;125:108.

    Article  CAS  Google Scholar 

  158. Huang G, Wang H, Zhao H, Wu P, Yan Q. Application of polypyrrole modified cathode in bio-electro-Fenton coupled with microbial desalination cell (MDC) for enhanced degradation of methylene blue. J Power Sources. 2018;400:350.

    Article  CAS  Google Scholar 

  159. Nevin Kelly P, Woodard Trevor L, Franks Ashley E, Summers Zarath M, Lovley Derek R, Colwell Rita R. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio. 2010;1(2):e00103.

  160. Bajracharya S, Srikanth S, Mohanakrishna G, Zacharia R, Strik D, Pant D. Biotransformation of carbon dioxide in bioelectrochemical systems: state of the art and future prospects. J Power Sources. 2017;356:256.

    Article  CAS  Google Scholar 

  161. Lewis NS, Nocera DG. Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci. 2006;103(43):15729.

    Article  CAS  Google Scholar 

  162. Lovley DR, Nevin KP. A shift in the current: new applications and concepts for microbe-electrode electron exchange. Curr Opin Biotechnol. 2011;22(3):441.

    Article  CAS  Google Scholar 

  163. Zhang T, Nie H, Bain TS, Lu H, Cui M, Snoeyenbos-West OL, Franks AE, Nevin KP, Russell TP, Lovley DR. Improved cathode materials for microbial electrosynthesis. Energy Environ Sci. 2013;6(1):217.

    Article  CAS  Google Scholar 

  164. Tian S, Yao X, Song T-S, Chu Z, Xie J, Jin W. Artificial electron mediator with nanocubic architecture highly promotes microbial electrosynthesis from carbon dioxide. ACS Sustain Chem Eng. 2020;8(17):6777.

    Article  CAS  Google Scholar 

  165. Gupta P, Verma N. Conversion of CO2 to formate using activated carbon fiber-supported g-C3N4-NiCoWO4 photoanode in a microbial electrosynthesis system. Chem Eng J. 2022;446: 137029.

    Article  CAS  Google Scholar 

  166. Aryal N, Halder A, Tremblay P-L, Chi Q, Zhang T. Enhanced microbial electrosynthesis with three-dimensional graphene functionalized cathodes fabricated via solvothermal synthesis. Electrochim Acta. 2016;217:117.

    Article  CAS  Google Scholar 

  167. Karimi S, Fraser N, Roberts B, Foulkes FR. A review of metallic bipolar plates for proton exchange membrane fuel cells: Materials and fabrication methods. Adv Mater Sci Eng. 2012;2012: 828070.

    Article  Google Scholar 

  168. Joo SH, Lee HI, You DJ, Kwon K, Kim JH, Choi YS, Kang M, Kim JM, Pak C, Chang H, Seung D. Ordered mesoporous carbons with controlled particle sizes as catalyst supports for direct methanol fuel cell cathodes. Carbon. 2008;46(15):2034.

    Article  CAS  Google Scholar 

  169. Dong Q, Mench MM, Cleghorn S, Beuscher U. Distributed performance of polymer electrolyte fuel cells under low-humidity conditions. J Electrochem Soc. 2005;152(11):A2114.

    Article  Google Scholar 

  170. Chunhui S, Mu P, Qin Y, Runzhang Y. Studies on preparation and performance of sodium silicate/graphite conductive composites. J Compos Mater. 2005;40(9):839.

    Article  Google Scholar 

  171. Shen C, Pan M, Hua Z, Yuan R. Aluminate cement/graphite conductive composite bipolar plate for proton exchange membrane fuel cells. J Power Sources. 2007;166(2):419.

    Article  CAS  Google Scholar 

  172. Easton EB, Astill TD, Holdcroft S. Properties of gas diffusion electrodes containing sulfonated poly(ether ether ketone). J Electrochem Soc. 2005;152(4):A752.

    Article  CAS  Google Scholar 

  173. Ramani V, Swier S, Shaw MT, Weiss RA, Kunz HR, Fenton JM. Membranes and MEAs based on sulfonated poly(ether ketone ketone) and heteropolyacids for polymer electrolyte fuel cells. J Electrochem Soc. 2008;155(6):B532.

    Article  CAS  Google Scholar 

  174. Komoda Y, Okabayashi K, Nishimura H, Hiromitsu M, Oboshi T, Usui H. Dependence of polymer electrolyte fuel cell performance on preparation conditions of slurry for catalyst layers. J Power Sources. 2009;193(2):488.

    Article  CAS  Google Scholar 

  175. Lebègue E, Baranton S, Coutanceau C. Polyol synthesis of nanosized Pt/C electrocatalysts assisted by pulse microwave activation. J Power Sources. 2011;196(3):920.

    Article  Google Scholar 

  176. Mathew C, Mohamed SN, Devanathan LS. A comprehensive review of current research on various materials used for developing composite bipolar plates in polymer electrolyte membrane fuel cells. Polym Compos. 2022;43(7):4100.

    Article  CAS  Google Scholar 

  177. Du L, Jana SC. Highly conductive epoxy/graphite composites for bipolar plates in proton exchange membrane fuel cells. J Power Sources. 2007;172(2):734.

    Article  CAS  Google Scholar 

  178. Huang J, Baird DG, McGrath JE. Development of fuel cell bipolar plates from graphite filled wet-lay thermoplastic composite materials. J Power Sources. 2005;150:110.

    Article  CAS  Google Scholar 

  179. Hermann A, Chaudhuri T, Spagnol P. Bipolar plates for PEM fuel cells: a review. Int J Hydrog Energy. 2005;30(12):1297.

    Article  CAS  Google Scholar 

  180. Lim JW, Lee D, Kim M, Choe J, Nam S, Lee DG. Composite structures for proton exchange membrane fuel cells (PEMFC) and energy storage systems (ESS): review. Compos Struct. 2015;134:927.

    Article  Google Scholar 

  181. Ghosh A, Goswami P, Mahanta P, Verma A. Effect of carbon fiber length and graphene on carbon-polymer composite bipolar plate for PEMFC. J Solid State Electrochem. 2014;18(12):3427.

    Article  CAS  Google Scholar 

  182. Ozden A, Shahgaldi S, Li X, Hamdullahpur F. A review of gas diffusion layers for proton exchange membrane fuel cells—with a focus on characteristics, characterization techniques, materials and designs. Prog Energy Combust Sci. 2019;74:50.

    Article  Google Scholar 

  183. Ferreira RB, Falcão DS, Oliveira VB, Pinto AMFR. Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment. Electrochim Acta. 2017;224:337.

    Article  CAS  Google Scholar 

  184. Kimball EE, Benziger JB, Kevrekidis YG. Effects of GDL structure with an efficient approach to the management of liquid water in PEM fuel cells. Fuel Cells. 2010;10(4):530.

    Article  CAS  Google Scholar 

  185. Gerteisen D, Sadeler C. Stability and performance improvement of a polymer electrolyte membrane fuel cell stack by laser perforation of gas diffusion layers. J Power Sources. 2010;195(16):5252.

    Article  CAS  Google Scholar 

  186. Zaragoza-Martín F, Sopeña-Escario D, Morallón E, de Lecea CS-M. Pt/carbon nanofibers electrocatalysts for fuel cells: effect of the support oxidizing treatment. J Power Sources. 2007;171(2):302.

    Article  Google Scholar 

  187. Andersen SM, Borghei M, Lund P, Elina Y-R, Pasanen A, Kauppinen E, Ruiz V, Kauranen P, Skou EM. Durability of carbon nanofiber (CNF) & carbon nanotube (CNT) as catalyst support for proton exchange membrane fuel cells. Solid State Ionics. 2013;231:94.

    Article  CAS  Google Scholar 

  188. Bhosale AC, Rengaswamy R. Interfacial contact resistance in polymer electrolyte membrane fuel cells: recent developments and challenges. Renew Sustain Energy Rev. 2019;115: 109351.

    Article  CAS  Google Scholar 

  189. Balan BK, Unni SM, Kurungot S. Carbon nanofiber with selectively decorated Pt both on inner and outer walls as an efficient electrocatalyst for fuel cell applications. J Phys Chem C. 2009;113(40):17572.

    Article  CAS  Google Scholar 

  190. Karyakin A A. Biosensors. In: Sensors for environment, health and security. 2009. Dordrecht: Springer Netherlands.

  191. Sassolas A, Blum LJ, Leca-Bouvier BD. Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv. 2012;30(3):489.

    Article  CAS  Google Scholar 

  192. Kim J-H, Cho S, Bae T-S, Lee Y-S. Enzyme biosensor based on an N-doped activated carbon fiber electrode prepared by a thermal solid-state reaction. Sens Actuators B. 2014;197:20.

    Article  CAS  Google Scholar 

  193. Tao R, Zahertar S, Torun H, Liu YR, Wang M, Lu Y, Luo JT, Vernon J, Binns R, He Y, Tao K, Wu Q, Chang HL, Fu YQ. Flexible and integrated sensing platform of acoustic waves and metamaterials based on polyimide-coated woven carbon fibers. ACS Sens. 2020;5(8):2563.

    Article  CAS  Google Scholar 

  194. Yu Y, Jiang C, Zheng XT, Liu Y, Goh WP, Lim RHH, Tan SCL, Yang L. Three-dimensional highway-like graphite flakes/carbon fiber hybrid electrode for electrochemical biosensor. Mater Today Adv. 2022;14: 100238.

    Article  CAS  Google Scholar 

  195. Xu Q, Yuan H, Dong X, Zhang Y, Asif M, Dong Z, He W, Ren J, Sun Y, Xiao F. Dual nanoenzyme modified microelectrode based on carbon fiber coated with AuPd alloy nanoparticles decorated graphene quantum dots assembly for electrochemical detection in clinic cancer samples. Biosens Bioelectron. 2018;107:153.

    Article  Google Scholar 

  196. Abbas SZ, Rafatullah M, Ismail N, Nastro RA. Enhanced bioremediation of toxic metals and harvesting electricity through sediment microbial fuel cell. Int J Energy Res. 2017;41(14):2345.

    Article  CAS  Google Scholar 

  197. Yang S, Zhang F, Wang Z, Liang Q. A graphene oxide-based label-free electrochemical aptasensor for the detection of alpha-fetoprotein. Biosens Bioelectron. 2018;112:186.

    Article  CAS  Google Scholar 

  198. Dogru E, Erhan E, Arikan OA. The using capacity of carbon fiber microelectrodes in DNA biosensors. Electroanalysis. 2017;29(1):287.

    Article  CAS  Google Scholar 

  199. Wu Q, Zhang Y, Yang Q, Yuan N, Zhang W. Review of electrochemical DNA biosensors for detecting food borne pathogens. Sensors. 2019;19(22):4916.

    Article  CAS  Google Scholar 

  200. Mohammed M-I, Desmulliez MPY. Lab-on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers: a review. Lab Chip. 2011;11(4):569.

    Article  CAS  Google Scholar 

  201. Hasan A, Nurunnabi M, Morshed M, Paul A, Polini A, Kuila T, Al Hariri M, Lee Y-K, Jaffa AA. Recent advances in application of biosensors in tissue engineering. BioMed Res Int. 2014;2014:307519.

    Article  Google Scholar 

  202. Eissa S, Al-Kattan K, Zourob M. Combination of carbon nanofiber-based electrochemical biosensor and cotton fiber: a device for the detection of the middle-East respiratory syndrome coronavirus. ACS Omega. 2021;6(47):32072.

    Article  CAS  Google Scholar 

  203. Chen Z, Lu M. Thionine-coordinated BCN nanosheets for electrochemical enzyme immunoassay of lipocalin-2 on biofunctionalized carbon-fiber microelectrode. Sens Actuators B. 2018;273:253.

    Article  CAS  Google Scholar 

  204. Asal M, Ozen O, Sahinler M, Polatoglu I. Recent developments in enzyme, DNA and immuno-based biosensors. Sensors. 2018;18(6):1924.

    Article  Google Scholar 

  205. Wenrui Z, Fanxing M, Yanan Q, Fei C, Haitao Y, Minwei Z. Fabrication and specific functionalisation of carbon fibers for advanced flexible biosensors. Front Chem. 2020;8: 582490.

    Article  Google Scholar 

  206. Chatard C, Sabac A, Moreno-Velasquez L, Meiller A, Marinesco S. Minimally invasive microelectrode biosensors based on platinized carbon fibers for in vivo brain monitoring. ACS Cent Sci. 2018;4(12):1751.

    Article  CAS  Google Scholar 

  207. Zhang Y, Xiao J, Sun Y, Wang L, Dong X, Ren J, He W, Xiao F. Flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen doped carbon nanotube arrays: in situ electrochemical detection in live cancer cells. Biosens Bioelectron. 2018;100:453.

    Article  CAS  Google Scholar 

  208. Wang B, Wen X, Chiou P-Y, Maidment NT. Pt nanoparticle-modified carbon fiber microelectrode for selective electrochemical sensing of hydrogen peroxide. Electroanalysis. 2019;31(9):1641.

    Article  CAS  Google Scholar 

  209. Tian Y, Mao L, Okajima T, Ohsaka T. A carbon fiber microelectrode-based third-generation biosensor for superoxide anion. Biosens Bioelectron. 2005;21(4):557.

    Article  CAS  Google Scholar 

  210. Ahmad F, Christenson A, Bainbridge M, Yusof APM, Ab GS. Minimizing tissue-material interaction in microsensor for subcutaneous glucose monitoring. Biosens Bioelectron. 2007;22(8):1625.

    Article  CAS  Google Scholar 

  211. Zhang S, Bao X, Wan F, Xie Y, Liu Q, Zhou B, Xia S. Application of loofah sponge three-dimensional cage-shape activated carbon fiber with high strength in an air-cathode microbial fuel cell. J Renew Sustain Energy. 2018;10(4): 044301.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (2019YFC1804102) and the National Natural Science Foundation of China (32171615, 41877372).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengxiang Li.

Ethics declarations

Conflict of interest

No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication. The work has not been published previously, and not under consideration for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S.I.: Fiber Materials for advanced applications.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Feng, Y., Li, F. et al. Carbon Fibers for Bioelectrochemical: Precursors, Bioelectrochemical System, and Biosensors. Adv. Fiber Mater. 5, 699–730 (2023). https://doi.org/10.1007/s42765-023-00256-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00256-w

Keywords