Skip to main content

Advertisement

Log in

Determination of 25 quaternary ammonium compounds in sludge by liquid chromatography–mass spectrometry

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

With the pandemic of COVID-19, the application of quaternary ammonium compounds (QACs), which can be used in SARS-CoV-2 disinfection products, has increased substantially. QACs cumulated in sewer system are ultimately deposited and enriched in sludge. QACs in the environment can adversely affect human health and the environment. In this study, a liquid chromatography–mass spectrometry method was established for the simultaneous determination of 25 QACs in sludge samples. Ultrasonic extraction and filtration of the samples was performed using a 50 mM hydrochloric acid–methanol solution. The samples were separated by liquid chromatography and detected in multiple reaction monitoring mode. The matrix effects of the sludge on the 25 QACs ranged from − 25.5% to 7.2%. All substances showed good linearity in the range of 0.5–100 ng/mL, with all determination coefficients (R2) greater than 0.999. The method detection limits (MDLs) were 9.0 ng/g for alkyltrimethylammonium chloride (ATMAC), 3.0 ng/g for benzylalkyldimethylammonium chloride (BAC), and 3.0 ng/g for dialkyldimethylammonium chloride (DADMAC). The spiked recovery rates were in the range of 74–107%, while the relative standard deviations were in the range of 0.8–20.6%. Considering its sensitivity, accuracy, and easy operation, the proposed method in this study was used to determine 22 sludge samples collected from a comprehensive wastewater treatment plant. The results showed that the concentrations of ΣATMACs, ΣBACs, and ΣDADMACs were 19.684, 3.199, and 8.344 μg/g, respectively. The main components included ATMAC-C16, ATMAC-C18, ATMAC-C20, ATMAC-C22, BAC-C12, and DADMAC-C18:C18, with concentrations exceeding 1.0 μg/g. The concentration relationships of different components in the congeners showed that some components were of similar origin.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. P.A. Lara-Martín, X. Li, R.F. Bopp, B.J. Brownawell, Environ Sci Technol. (2010). https://doi.org/10.1021/es101169a

    Article  PubMed  Google Scholar 

  2. C.P. Gerba, Appl Environ Microbiol. (2015). https://doi.org/10.1128/aem.02633-14

    Article  PubMed  PubMed Central  Google Scholar 

  3. U. Tezel, S.G. Pavlostathis, Curr Opin Biotechnol. (2015). https://doi.org/10.1016/j.copbio.2015.03.018

    Article  PubMed  Google Scholar 

  4. C. Zhang, F. Cui, G.M. Zeng, M. Jiang, Z.Z. Yang, Z.G. Yu et al., Sci Total Environ. (2015). https://doi.org/10.1016/j.scitotenv.2015.03.007

    Article  PubMed  PubMed Central  Google Scholar 

  5. A. Meireles, E. Giaouris, M. Simões, Food Res Int. (2016). https://doi.org/10.1016/j.foodres.2016.01.021

    Article  PubMed  Google Scholar 

  6. P. I. Hora, S. G. Pati, P. J. Mc Namara, Arnold W. A., Environ Sci Technol Lett. (2020)

  7. H. Dewey, J.M. Jones, M.R. Keating, J. Budhathoki-Uprety, ACS Chem Health Saf. 29(1), 27–38 (2022)

    Article  Google Scholar 

  8. U. S. E. P. Agency: List N: Products with Emerging Viral Pathogens AND Human Coronavirus claims for use against SARS-CoV-2. https://www.epa.gov/sites/default/files/2020-06/documents/sars-cov2_listn_06122020.pdf. Accessed 12 June 2020.

  9. N. Baker, A.J. Williams, A. Tropsha, S. Ekins, Pharm Res. (2020). https://doi.org/10.1007/s11095-020-02842-8

    Article  PubMed  PubMed Central  Google Scholar 

  10. A. Suthar, A. Gopalakrishnan, C. Maji, R.K. Dahiya, R. Kumar, S. Kumar, Int J Parasitol Drugs Drug Resist. (2022). https://doi.org/10.1016/j.ijpddr.2022.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  11. O. Alonso-González, F. Nava-Alonso, C. Jimenez-Velasco, A. Uribe-Salas, Miner Eng. (2013). https://doi.org/10.1016/j.mineng.2012.11.013

    Article  Google Scholar 

  12. Q. Liu, M. Zhang, Y. Cao, B. Peng, J.B. Barvor, Sep Purif Technol. (2021). https://doi.org/10.1016/j.seppur.2021.119057

    Article  PubMed  PubMed Central  Google Scholar 

  13. L. Fang, L. Ding, W. Ren, H. Hu, Y. Huang, P. Shao et al., J Hazard Mater. (2021). https://doi.org/10.1016/j.jhazmat.2021.125829

    Article  PubMed  PubMed Central  Google Scholar 

  14. A.C. Chiaia-Hernandez, M. Krauss, J. Hollender, Environ Sci Technol. (2013). https://doi.org/10.1021/es303888v

    Article  PubMed  Google Scholar 

  15. T. Ruan, S. Song, T. Wang, R. Liu, Y. Lin, G. Jiang, Environ Sci Technol. (2014). https://doi.org/10.1021/es4050314

    Article  PubMed  Google Scholar 

  16. I. Mulder, J. Siemens, V. Sentek, W. Amelung, K. Smalla, S. Jechalke, Rev Environ Sci Bio/Technol. (2018). https://doi.org/10.1007/s11157-017-9457-7

    Article  Google Scholar 

  17. G. Zheng, E. Schreder, S. Sathyanarayana, A. Salamova, J Expo Sci Environ Epidemiol. (2022). https://doi.org/10.1038/s41370-022-00439-4

    Article  PubMed  PubMed Central  Google Scholar 

  18. A. Luz, P. DeLeo, N. Pechacek, M. Freemantle, Regul Toxicol Pharmacol. (2020). https://doi.org/10.1016/j.yrtph.2020.104717

    Article  PubMed  Google Scholar 

  19. N. Migueres, C. Debaille, J. Walusiak-Skorupa, A. Lipińska-Ojrzanowska, X. Munoz, V. van Kampen et al., J Allergy Clin Immunol Pract. (2021). https://doi.org/10.1016/j.jaip.2021.04.041

    Article  PubMed  Google Scholar 

  20. T.C. Hrubec, R.P. Seguin, L. Xu, G.A. Cortopassi, S. Datta, A.L. Hanlon et al., Toxicol Rep. (2021). https://doi.org/10.1016/j.toxrep.2021.03.006

    Article  PubMed  PubMed Central  Google Scholar 

  21. C. Díez, M. Feinberg, A.S. Spörri, E. Cognard, D. Ortelli, P. Edder et al., Food Anal Methods. (2016). https://doi.org/10.1007/s12161-015-0216-5

    Article  Google Scholar 

  22. P.C. DeLeo, C. Huynh, M. Pattanayek, K.C. Schmid, N. Pechacek, Ecotoxicol Environ Saf. (2020). https://doi.org/10.1016/j.ecoenv.2020.111116

    Article  PubMed  PubMed Central  Google Scholar 

  23. European Pharmacopoeia, 8th Ed. European Pharmacopoeia Commission.

  24. R.B. Taylor, S. Toasaksiri, R.G. Reid, J Chromatogr A. (1998). https://doi.org/10.1016/s0021-9673(97)00986-2

    Article  PubMed  Google Scholar 

  25. J. Zabielska-Matejuk, K. Czaczyk, Wood Sci Technol. 40(6), 461–475 (2006)

    Article  CAS  Google Scholar 

  26. B. Thalhamer, A.S. Guntner, W. Buchberger, J Anal Appl Pyrolysis. (2022). https://doi.org/10.1016/j.jaap.2022.105447

    Article  PubMed  PubMed Central  Google Scholar 

  27. P.K. Thai, J.W. O’Brien, A.P.W. Banks, G. Jiang, J. Gao, P.M. Choi et al., Sci Total Environ. (2019). https://doi.org/10.1016/j.scitotenv.2019.03.231

    Article  PubMed  PubMed Central  Google Scholar 

  28. V.G. Amelin, D.S. Bol’shakov, Pharm Chem J. (2020). https://doi.org/10.1007/s11094-020-02216-9

    Article  Google Scholar 

  29. A. Lazofsky, C. Doherty, P. Szary, B. Buckley, Emerg Contam. (2022). https://doi.org/10.1016/j.emcon.2022.06.005

    Article  PubMed  PubMed Central  Google Scholar 

  30. T. Boogaerts, L. Jurgelaitiene, C. Dumitrascu, B. Kasprzyk-Hordern, A. Kannan, F. Been et al., Sci Total Environ. (2021). https://doi.org/10.1016/j.scitotenv.2021.145914

    Article  PubMed  PubMed Central  Google Scholar 

  31. W. Zhou, S. Yang, P.G. Wang, Bioanalysis (2017). https://doi.org/10.4155/bio-2017-0214

    Article  PubMed  Google Scholar 

  32. S.G. Pati, W.A. Arnold, Environ Sci Process Impacts. (2020). https://doi.org/10.1039/c9em00554d

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the Municipal Financial Research Project of Beijing Academy of Science and Technology, grant number 11000022T000000445296, the Municipal Financial Research Project of Beijing Academy of Science and Technology, Grant No. 11000022T000000468149 and National Natural Science Foundation of China, Grant No. 72061137007.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Wang or Yifei Hu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, M., Ding, D., Asihaer, Y. et al. Determination of 25 quaternary ammonium compounds in sludge by liquid chromatography–mass spectrometry. ANAL. SCI. 39, 1435–1444 (2023). https://doi.org/10.1007/s44211-023-00354-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00354-0

Keywords