Skip to main content Accessibility help
×
  • Cited by 139
Publisher:
Cambridge University Press
Online publication date:
June 2012
Print publication year:
2007
Online ISBN:
9781139167291

Book description

Theory of the Earth is an interdisciplinary advanced textbook on the origin, composition, and evolution of the Earth's interior: geophysics, geochemistry, dynamics, convection, mineralogy, volcanism, energetics and thermal history. This is the only book on the whole landscape of deep Earth processes which ties together all the strands of the subdisciplines. It is a complete update of Anderson's Theory of the Earth (1989). It includes many new sections and dozens of new figures and tables. As with the original book, this new edition will prove to be a stimulating textbook on advanced courses in geophysics, geochemistry, and planetary science, and supplementary textbook on a wide range of other advanced Earth science courses. It will also be an essential reference and resource for all researchers in the solid Earth sciences.

Reviews

From reviews of the previous edition, Theory of the Earth:' … Theory of the Earth is one of the most important books of the decade … Anderson is one of a very small group of scientists who have managed to achieve success in both fields [geophysics and geochemistry], providing a dual experience that makes his book an invaluable survey. Theory of the Earth, then, is in part an extensive summary of our current state of knowledge of the Earth's interior, … drawing on a wide variety of scientific disciplines including not only geophysics and geochemistry but solid-state physics, astronomy, crystallography and thermodynamics. It goes much further than merely summarizing knowledge, however, in that it also attempts to integrate the information from different fields in the spirit of an Earth that itself recognizes no humanly devised disciplinary boundaries. Both as survey and synthesis, Anderson's text, the first in its field, will be of great benefit to students around the world.'

Peter J. Smith - Open University

From reviews of the previous edition, Theory of the Earth:'Any scientist today who takes on the task of trying to integrate the mass of diverse observations about Earth into a coherent model is courageous. Anderson has attempted to put together data from modern geophysics, geochemistry, isotope systematics, and petrology and, in large part, has succeeded … this book will introduce the advanced student quite well to the tools of observation we have available to us, and to what we know and don't know about the Earth. … Anderson can be congratulated for producing a document that will be a standard taking-off point for many a future graduate seminar.'

William S. Fyfe - University of Western Ontario

From reviews of the previous edition, Theory of the Earth:' … much to the envy of the rest of us, there are a few people within the Earth-science community who are, well, fairly superhuman. Don Anderson is one of them - as close to being the complete geophysicist/geochemist as anyone is ever likely to be. Theory of the Earth, then, is an extensive summary of practically everything 'known' about the physics, chemistry and physicochemical evolution of the Earth's interior. … Anderson has produced a remarkable synthesis of our present understanding of the Earth's interior.'

Source: Nature

From reviews of the previous edition, Theory of the Earth:'The appearance of this book is a major event in geoscience literature. It is a comprehensive statement on the Physics and Chemistry of the Earth by one of the great authorities of our time. It will occupy a prominent place on our bookshelves for the rest of our professional lives. When we get into an argument with colleagues or face a fundamental problem that we are unsure about we will reach for it: 'Let's see what Anderson says about that'. … a very valuable book.’

Frank Stacey Source: Physics of the Earth and Planetary Interiors

From reviews of the previous edition, Theory of the Earth:' … as in all good scientific books, there is strong concentration on themes with which Anderson has been closely identified over a number of years. … The scope of the book is most impressive: it will be a constantly useful as a source of information that is otherwise extremely time-consuming to track down.'

Joe Cann Source: The Times Higher Education Supplement

'Don Anderson is among one of those rare geoscientists who have wisdom and capability of in-depth criticism, as is evident from this book.'

Source: Journal of Sedimentary Research

'… the sequencing topics is one of the book’s best qualities. … because it is so well written and well conceived, it is suitable either as a graduate level text book or as supplemental reading in an advanced undergraduate course, and because it is so comprehensive, it deserves to be within arm’s length of every serious student of earth.'

Source: Physics Today

'… comprehensive and in-depth … In addition to conventional (highly relevant and up-to-date) references, the added 'googlets' will be of immense help for students and researcher to find many relevant but otherwise inaccessible web documents. The mode of presentation is enjoyable and the illustrations are reader-friendly. This book will definitely motivate new research and I strongly recommend this book for libraries of universities and institutes.'

Source: Geologos

' … Anderson has written a very amazing book. … many pages bring provocative facts and interpretations, but this is essential for a stimulation of our thinking… Its importance in geosciences may not be less than in other branches of the human knowledge. When its rich content makes this book outstanding, the noted message makes it brilliant.'

Source: Paläontologie allgem

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 1 of 2



Page 1 of 2


References and notes
References and notes
References
Classical references
Birch, F. (1952) Elasticity and constitution of the Earth's interior. J. Geophys. Res., 57 CrossRef | Google Scholar, 227–86.
Bowen, N. L. (1928) The Evolution of Igneous Rocks. Princeton Google Scholar, NJ, Princeton University Press.
Bowie, W. (1927) Isostasy. New York, Dutton Google Scholar.
Bullen, K. E. (1975) The Earth's Density. London CrossRef | Google Scholar, Chapman and Hall.
Bullen, K. (1947) An Introduction to the Theory of Seismology. Cambridge Google Scholar, Cambridge University Press.
Chandrasekhar, S. (1961) Hydrodynamic and Hydromagnetic Stability. Oxford Google Scholar, Clarendon Press.
Daly, R. A. (1933) Igneous Rocks and the Depths of the Earth. New York Google Scholar, McGraw Hill.
Daly, R. A. (1940) Strength and Structure of the Earth. Englewood Cliffs Google Scholar, NJ, Prentice-Hall.
Darwin, G. H. (1879) On the bodily tides of viscous and semi-elastic spheroids and on the ocean tides upon a yielding nucleus. Phil. Trans. Roy. Soc. London A, 1970. CrossRef | Google Scholar
Dietz, R. S. (1961) Continent and ocean basin evolution by spreading of the sea floor. Nature, 190 CrossRef | Google Scholar, 854–7.
Du Toit, A. L. (1937) Our Wandering Continents. Edinburgh Google Scholar, Oliver and Boyd.
Elder, J. (1976) The Bowels of the Earth. Oxford Google Scholar, Oxford University Press.
Elsasser, W. M. (1969) Convection and stress propagation in the upper mantle. In The Application of Modern Physics to the Earth and Planetary Interiors, ed. Runcorn, S. K. New York, John Wiley & Sons, pp. 223–49. Google Scholar
Gast, P. W. (1969) The isotopic compositon of lead from St. Helena and Ascension Islands. Earth Planet. Sci. Lett., 5, 353–9. Google Scholar
Gutenberg, Beno (1939) Internal Constitution of the Earth, ed. Gutenberg, B.New York Google Scholar, McGraw-Hill. (2nd Edition, New York, Dover Publications, 1951.)
Haskell, N. A. (1937) The viscosity of the asthenosphere. Am. J. Sci., 33 CrossRef | Google Scholar, 22–30.
Hess, H. H. (1962) History of ocean basins. In Petrologic Studies: A Volume in Honor of A. F. Buddington, eds. Engel, A. E. J., James, H. L. and Leonard, B. F.Boulder, CO Google Scholar, Geological Society of America, pp. 599–620.
Hirth, J. P. and Lothe, J. (1982) Theory of Dislocations, New York Google Scholar, John Wiley & Sons.
Holmes, A. (1928) Radioactivity and continental drift. Geol. Mag., 65 Google Scholar, 236–8.
Holmes, A. (1944) Principles of Physical Geology. Edinburgh Google Scholar, Thomas and Sons Ltd.
Holmes, A. (1946) An estimate of the age of the Earth. Nature, 57 CrossRef | Google Scholar, 680–4.
Howard, L. N. (1963) Heat transport by turbulent convection. J. Fluid Mech., 17 CrossRef | Google Scholar, 405–32.
Jeffreys, H. (1926) The stability of a layer of fluid heated from below. Phil. Mag., 2 CrossRef | Google Scholar, 833–44.
Jeffreys, H. (1976) The Earth, Sixth Edition. Cambridge Google Scholar, Cambridge University Press.
Jeffreys, H. (1939) Theory of Probability. Oxford Google Scholar, Oxford University Press; with new editions in 1948 and in 1961 (also in the Oxford Classic Texts in the Physical Sciences series).
Jeffreys, H. and Swirles, B. (eds.) (1971–77) Collected Papers of Sir Harold Jeffreys on Geophysics and other Sciences (in six volumes). London Google Scholar, Gordon & Breach.
Kaula, W. M. (1968) An Introduction to Planetary Physics, the Terrestrial Planets, New York Google Scholar, John Wiley & Sons.
Patterson, C. (1956) Age of meteorites and the Earth. Geochim. Cosmochim. Acta, 10 CrossRef | Google Scholar, 230–7.
Pekeris, C. L. (1935) Thermal convection in the interior of the Earth. Mon. Not. R. Astron. Soc., Geophys. Suppl., 3 CrossRef | Google Scholar, 343–67.
Rayleigh, Lord (1916) On convection currents on a horizontal layer of fluid when the higher temperature is on the under side. Phil. Mag., 32, 529–46. (See also Pearson, J. R. A. (1958) On convection cells induced by surface tension. J. Fluid Mech., 4 Google Scholar, 489–500.)
Rutherford, E. (1907) Some cosmical aspects of radioactivity Google Scholar. J. Roy. Astr. Soc. Canada, May–June, 145–65.
Thompson, D‘Arcy (1917) On Growth and Form. Cambridge CrossRef | Google Scholar, Cambridge University Press.
Wegener, A. (1924) The Origin of Continents and Oceans. New York Google Scholar, Dutton.
Chapter 1. Origin and early history
References
Anders, E. (1968) Chemical processes in the early solar system, as inferred from meteorites. Acct. Chem. Res., 1 CrossRef | Google Scholar, 289–98.
Fuchs, L. H., Olsen, E. and Jensen, K. (1973) Mineralogy, mineral-chemistry, and composition of the Murchison (C2) meteorite. Smithsonian Contrib. Earth Sci., 10, 39. Google Scholar
Grossman, L. (1972) Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta, 36 CrossRef | Google Scholar, 597–619.
Grossman, L. and Larimer, J. (1974) Early chemical history of the solar system. Rev. Geophys. Space Phys., 12 CrossRef | Google Scholar, 71–101.
Morgan, J. W. and Anders, E. (1980) Chemical composition of the Earth, Venus, and Mercury. Proc. Natl. Acad. Sci CrossRef | Google Scholar | PubMed., 77, 6973.
Safronov, V. S. (1972) Accumulation of the planets. In On the Origin of the Solar System, ed. Reeves, H. Paris, Centre Nationale de Recherche Scientifique, pp. 89–113. Google Scholar
Selected reading
Abe, Y. (1997) Thermal and chemical evolution of the terrestrial magma ocean. Phys. Earth Planet. Inter., 100 CrossRef | Google Scholar, 27–39.
Agee, C. B. (1990) A new look at differentiation of the Earth from melting experiments on the Allende meteorite. Nature, 346 CrossRef | Google Scholar, 834–7.
Cameron, A. G. W. (1997) The origin of the moon and the single impact hypothesis. Icarus, 126 CrossRef | Google Scholar, 126–37.
Canup, R. M. and Asphaug, E. (2001) The Moon-forming impact. Nature Google Scholar, 412, 708–12.
Carrigan, C. R. (1983) A heat pipe model for vertical, magma-filled conduits. J. Volc. Geotherm. Res., 16 CrossRef | Google Scholar, 279–88.
Grossman, L. (1972) Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta, 36 CrossRef | Google Scholar, 579–619.
Murthy, V. R. (1991) Early differentiation of the earth and the problems of mantle siderophile elements: a new approach. Science, 253 CrossRef | Google Scholar, 303–6.
Ohtani, E. (1985) The primordial terrestrial magma ocean and its implications for the stratification of the mantle. Phys. Earth Planet. Inter., 38 CrossRef | Google Scholar, 70–80.
Ringwood, A. E. (1979) Origin of the Earth and Moon. New York CrossRef | Google Scholar, Springer-Verlag.
Chapter 2. Comparative planetology
References
Hartman, W., Phillips, R. and Taylor, G. (1986) Origin of the Moon. Houston Google Scholar, Lunar and Planetary Institute.
Taylor, S. R. (1982) Planetary Science, A Lunar Perspective. Houston Google Scholar, Lunar and Planetary Institute.
Taylor, S. R. and McLennan, S. (1985) The Continental Crust: Its Composition and Evolution. London Google Scholar, Blackwell.
Weaver, B. L. and Tarney, J. (1984) Major and trace element composition of the continental lithosphere. Phys. Chem Earth, 15 CrossRef | Google Scholar, 39–68.
Further reading
Anderson, D. L. (1972) The internal constitution of Mars. J. Geophys. Res., 77 CrossRef | Google Scholar, 789–95.
Ganapathy, R. and Anders, E. (1974) Bulk compositions of the Moon and Earth estimated from meteorites. Proc. Lunar Sci. Conf., 5 Google Scholar, 1181–206.
Taylor, S. R. and McLennan, S. M. (1981) The composition and evolution of the Earth's crust; rare earth element evidence from sedimentary rocks. Phil. Trans. Roy. Soc. Lond. A, 301 CrossRef | Google Scholar, 381–99.
Chapter 3. The building blocks of planets
References
Anders, E. and Ebihara, M. (1982) Solar system abundances of the Elements. Geochim. Cosmochim. Acta CrossRef | Google Scholar, 46, 2363–80.
Breneman, H. H. and Stone, E. C. (1985) Solar coronal and photospheric abundances from solar energetic particle measurements. Astrophys. J. Lett. 294 CrossRef | Google Scholar, L57–62.
BVP, Basaltic Volcanism Study Project (1980) Basaltic Volcanism on the Terrestrial Planets. New York, Pergamon. Google Scholar
Drake, M. J. and Righter, K. (2002) Determining the composition of the Earth. Nature, 416 CrossRef | Google Scholar, 39–44.
Ganapathy, R. and Anders, E. (1974) Bulk compositions of the Moon and Earth estimated from meteorites. Proc. Lunar Sci.Conf., 5 Google Scholar, 1181–206.
Grossman, L. (1972) Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta, 36 CrossRef | Google Scholar, 597–619.
Javoy, M. (1995) The integral enstatite chondrite model of the Earth. Geophys. Res. Lett., 22 CrossRef | Google Scholar, 2219–22.
Mason, B. (1962) Meteorites. New York Google Scholar, John Wiley & Sons.
Morgan, J. W. and Anders, E. (1980) Chemical composition of the Earth, Venus, and Mercury. Proc. Natl. Acad. Sci., 77 CrossRef | Google Scholar | PubMed, 6973.
Ringwood, A. E. (1977) Composition and Origin of the Earth. Publication No. 1299. Canberra Google Scholar, Research School of Earth Sciences, Australian National University.
Wood, J. A. (1962) Chondrules and the origin of the terrestrial planets. Nature, 194 CrossRef | Google Scholar, 127–30.
Further reading
Anders, E. and Owen, T. (1977) Mars and Earth: origin and abundance of volatiles. Science, 198 CrossRef | Google Scholar | PubMed, 453–65.
Cameron, A. G. W. (1982) Elementary and nuclidic abundances in the solar system. In Essays in Nuclear Astrophysics, eds. Barnes, C. A.et al. Cambridge Google Scholar, Cambridge University Press.
Duffy, T. S. and Anderson, D. L. (1989) Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J. Geophys. Res., 94 CrossRef | Google Scholar, 1895–912.
Grossman, L. and Larimer, J. (1974) Early chemical history of the solar system. Rev. Geophys. Space Phys., 12 CrossRef | Google Scholar, 71–101.
Mazor, E., Heymann, D. and Anders, E. (1970) Noble gases in carbonaceous chondrites. Geochim. Cosmochim. Acta, 34 CrossRef | Google Scholar, 781–824.
von Zahn, V., Kumar, S., Niemann, H. and Prim, R. (1983) Composition of the Venus atmosphere. In Venus, eds. Hunten, D. M., Colin, L., Donahue, T. and Moroz, V.Tucson Google Scholar, University of Arizona Press, pp. 299–430.
Wacker, J. and Marti, K. (1983) Noble gas components of Albee Meteorite. Earth Planet. Sci. Lett., 62 CrossRef | Google Scholar, 147–58.
Wanke, H., Baddenhausen, H., Blum, K., Cendales, M., Dreibus, G., Hofmeister, H., Kruse, H., Jagoutz, E., Palme, C., Spettel, B., Thacker R. and Vilcsek, E. (1977) On chemistry of lunar samples and achondrites; Primary matter in the lunar highlands; A re-evaluation. Proc. Lunar Sci. Conf. 8th Google Scholar, 2191–13.
Weidenschilling, S. J. (1976) Accretion of the terrestrial planets. Icarus, 27 CrossRef | Google Scholar, 161–70.
Chapter 4. The outer shells of Earth
References and notes
Clare, B. W. and Kepert, D. L. (1991). The optimal packing of circles on a sphere. J. Math. Chem., 6 CrossRef | Google Scholar, 325–49.
Foulger, G. L., Natland, J. H., Presnall, D. C. and Anderson, D. L. (eds.) (2005) Plates, Plumes and Paradigms. Boulder, CO Google Scholar, Geological Society of America, Special Paper 388.
Morgan, W. J. (1971) Convective plumes in the lower mantle. Nature, 230 CrossRef | Google Scholar, 42–3.
Rowley, D. B. (2002) Rate of plate creation and destruction: 180 Ma to present. Geolog. Soc. Am. Bull., 114 CrossRef | Google Scholar, 927–33.
Van Hunen, J., van den Berg, A. P. and Vlaar, N. (2002) On the role of subducting oceanic plateaus in the development of shallow flat subduction, Tectonophysics, 352 CrossRef | Google Scholar, 317–33.
Wilson, J. T. (1973) Mantle plumes and plate motions, Tectonophysics, 19 CrossRef | Google Scholar, 149–64.
Further reading
Chappell, W. M. and Tullis, T. E. (1977) Evaluation of the forces that drive plates. J. Geophys. Res., 82 CrossRef | Google Scholar, 1967–84.
Chase, C. G. (1979) Asthenospheric counterflow: a kinematic model. Geophys. J. R. Astron. Soc., 56 CrossRef | Google Scholar, 1–18.
Chase, C. G. (1979) Subduction, the geoid, and lower mantle convection. Nature, 282 CrossRef | Google Scholar, 464–8.
Elder, J. W. (1967) Convective self-propulsion of continents. Nature, 214 CrossRef | Google Scholar, 657–60.
Elsasser, W. M. (1969) Convection and stress propagation in the upper mantle. In The Application of Modern Physics to the Earth and Planetary Interiors, ed. Runcorn, S. K. New York, John Wiley & Sons, pp. 223–49. Google Scholar
Forsyth, D. and Uyeda, S. (1975) On the relative importance of the driving forces of plate motion. Geophys. J. R. Astr. Soc., 43 CrossRef | Google Scholar, 163–200.
Hager, B. H. (1983) Global isostatic geoid anomalies for plate and boundary layer models of the lithosphere. Earth Planet. Sci. Lett., 63 CrossRef | Google Scholar, 97–109.
Hager, B. H. and O'Connell, R. J. (1979) Kinematic models of large-scale flow in the Earth's mantle. J. Geophys. Res., 84 CrossRef | Google Scholar, 1031–48.
Hager, B. H. and O'Connell, R. J. (1981) A simple global model of plate dynamics and mantle convection. J. Geophys. Res., 86 CrossRef | Google Scholar, 4843–67.
Harper, J. F. (1978) Asthenosphere flow and plate motions. Geophys. J. R. Astr. Soc., 55 CrossRef | Google Scholar, 87–110.
Jacoby, W. R. (1970) Instability in the upper mantle and global plate movements. J. Geophys. Res., 75 CrossRef | Google Scholar, 5671–80.
Kaula, W. M. (1972) Global gravity and tectonics. In The Nature of the Solid Earth, ed. Robertson, E. C.New York Google Scholar, McGraw-Hill, pp. 386–405.
Kaula, W. M. (1980) Material properties for mantle convection consistent with observed surface fields. J. Geophys. Res., 85 CrossRef | Google Scholar, 7031–44.
Parmentier, E. M. and Oliver, J. E. (1979) A study of shallow global mantle flow due to the accretion and subduction of lithospheric plates. Geophys. J. R. Astr. Soc., 57 CrossRef | Google Scholar, 1–21.
Ramberg, H. (1967) Gravity, Deformation and the Earth's Crust. London Google Scholar, Academic Press.
Plate Driving Forces; Whole Mantle Convection
Becker, T. W. and O'Connell, R. J. (2001) Predicting plate motions with mantle circulation models. Geochemistry, Geophysics, Geosystems 2 CrossRef | Google Scholar, 2001GC000171.
Bercovici, D. (1995) A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow. J. Geophys. Res., 100 CrossRef | Google Scholar, 2013–30.
Tackley, P. (2000) The quest for self-consistent generation of plate tectonics in mantle convection models. In History and Dynamics of Global Plate Motions, Geophys. Monogr. Ser., eds. Richards, M. A., Gordon, R. and Hilst, R.Washington, DC Google Scholar, American Geophysical Union, pp. 47–72.
Trompert, R. & Hansen, U. (1998) Mantle convection simulations with rheologies that generate plate-like behavior. Nature, 395 CrossRef | Google Scholar, 686–9.
Lithgow-Bertelloni, C. & Richards, M. A. (1998) The dynamics of Cenozoic and Mesozoic plate motions. Rev. Geophys. 36 CrossRef | Google Scholar, 27–78.
Chapter 5. The eclogite engine
Further reading
Allen, R. & Tromp, J. (2005) Resolution of regional seismic models: Squeezing the Iceland anomaly. Geophys. J. Inter., 161 CrossRef | Google Scholar, 373–86.
Anderson, D. L. (2005) Scoring hotspots: The plume and plate paradigms. In Plates, Plumes, and Paradigms, eds. Foulger, G. R., Natland, J. H., Presnall, D. C. and Anderson, D. L.Boulder, CO Google Scholar, Geological Society of America, Special Paper 388, pp. 31–54.
Anderson, D. L. (2002) How many plates?Geology, 30 CrossRef | Google Scholar, 411–14.
Anderson, D. L. and Natland, J. H. (2005) A brief history of the plume hypothesis and its competitors: Concept and controversy. In Plates, Plumes and Paradigms, eds. Foulger, G. R., Natland, J. H., Presnall, D. C. and Anderson, D. L.Boulder, CO Google Scholar, Geological Society of America, Special Paper 388, pp. 119–46.
Anderson, D. L. and Schramm, K. A. (2005). Hotspot catalogs. In Plates, Plumes and Paradigms, eds. Foulger, G. R., Natland, J. H., Presnall, D. C. and Anderson, D. L.Boulder, CO Google Scholar, Geological Society of America, Special Paper 388, pp. 19–30.
Becker, T. W. and Boschi, L. (2002) A comparison of tomographic and geodynamic mantle models. Geochem. Geophys. Geosyst., 3 CrossRef | Google Scholar, 2001GC000168.
Cates, M. E., Wittmer, J. P., Bouchaud, J.-P. & Claudin, P. (1998) Jamming, force chains and fragile matter. Phys. Rev. Lett., 81 CrossRef | Google Scholar, 1841–4.
Conrad, C. P. & Hager, B. H. (2001) Mantle convection with strong subduction zones. Geophys. J. Inter., 144 CrossRef | Google Scholar, 271–88.
Davies, G. F. (2000) Dynamic Earth: Plates, Plumes and Mantle Convection. Cambridge Google Scholar, Cambridge University Press.
Chapter 6. The shape of the Earth
References
Hager, B. H. (1984) Subducted slabs and the geoid; constraints on mantle theology and flow. J. Geophys. Res., 89 CrossRef | Google Scholar, 6003–15.
Hager, B. H., Clayton, R., Richards, M., Comer, R. and Dziewonski, A. (1985) Lower mantle heterogeneity, dynamic topography and the geoid. Nature, 313 CrossRef | Google Scholar, 541–5.
Rapp, R. H. (1981) The Earth's gravity field to degree and order 180 using Seaset altimeter data, terrestrial gravity data, and other data. Report 322, Dept. Geodetic. Sci. and Surv. Columbus, OH, Ohio State University. Google Scholar
Richards, M. A. and Hager, B. H. (1984) Geoid anomalies in a dynamic Earth. J. Geophys. Res., 89 CrossRef | Google Scholar, 5987–6002.
Selected reading and notes
Darwin, G. (1877) On the influence of geological changes on the earth's axis of rotation. Phil. Trans. R. Soc. Lond. A, 167 CrossRef | Google Scholar, 271–312.
Goldreich, P. and Toomre, A. (1968) Some remarks on polar wandering. J. Geophys. Res., 74 CrossRef | Google Scholar, 2555–67.
Hager, B. H. and Richards, M. (1989) Long-wavelength variations in Earth's geoid: physical models and dynamical implications. Phil. Trans. R. Soc. Lond. A, 328 CrossRef | Google Scholar, 309–27.
Kaula, W. M. (1972) Global gravity and tectonics. In The Nature of the Solid Earth, ed. Robertson, E. C.New York Google Scholar, McGraw-Hill, pp. 386–405.
Kaula, W. M. (1980) Material properties for mantle convection consistent with observed surface fields. J. Geophys. Res., 85 CrossRef | Google Scholar, 7031–44.
Further reading
Parsons, B. and Sclater, J. G. (1977) An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res., 82 CrossRef | Google Scholar, 803–27.
Chapter 7. Convection and complexity
Layered mantle convection
Anderson, D. L. (1979) Chemical stratification of the mantle. J. Geophys. Res., 84 CrossRef | Google Scholar, 6297–8.
Anderson, D. L. (2002) The case for irreversible chemical stratification of the mantle. Int. Geol. Rev., 44 CrossRef | Google Scholar, 97–116.
Ciskova, H., Cadek, O., van den Berg, A. P. & Vlaar, N. (1999) Can lower mantle slab-like seismic anomalies be explained by thermal coupling between the upper and lower mantles?Geophys. Res. Lett., 26 CrossRef | Google Scholar, 1501–4.
Ciskova, H. & Cadek, O. (1997) Effect of a viscosity interface at 1000 km depth on mantle convection. Studia geoph. geod., 41 CrossRef | Google Scholar, 297–306.
Glatzmaier, G. A. & Schubert, G. (1993) Three-dimensional spherical models of layered and whole mantle convection. J. Geophys. Res., 98 CrossRef | Google Scholar, 969–76.
Gu, Y., Dziewonski, A. M. & Agee, C. (1998) Global de-correlation of the topography of transition zone discontinuities. Earth Planet. Sci. Lett., 157 CrossRef | Google Scholar, 57–67.
Honda, S. (1984) A preliminary analysis of convection in a mantle with a heterogeneous distribution of heat-producing elements. Phys. Earth Planet. Inter., 34 CrossRef | Google Scholar, 68–76.
Honda, S. (1986) Strong anisotropic flow in a finely layered asthenosphere. Geophys. Res. Lett., 13 CrossRef | Google Scholar, 1454–7.
Nataf, H-C., Moreno, S. and Cardin, Ph. (1988) What is responsible for thermal coupling in layered convection?J. Phys. France, 49 Google Scholar, 1707–14.
Phillips, B. R. and Bunge, H.-P. (2005) Heterogeneity and time dependence in 3D spherical mantle convection models with continental drift. Earth Planet. Sci. Lett., 233 CrossRef | Google Scholar, 121–35.
Schubert, G., Turcotte, D. and Olson, P. (2001) Mantle Convection in the Earth and Planets. Cambridge CrossRef | Google Scholar, Cambridge University Press.
Silver, P. G., Carlson, R. W. and Olson, P. (1988) Deep slabs, geochemical heterogeneity and the large-scale structure of mantle convection: Investigation of an enduring paradox. Ann. Rev. Earth Planet. Sci., 16 CrossRef | Google Scholar, 477–541.
Todesco, M. & Spera, F. (1992) Stability of a chemically layered upper mantle. Phys. Earth Planet. Inter., 71 CrossRef | Google Scholar, 85–99.
van Keken, P. E. & Ballantine, C. (1998) Whole-mantle versus layered mantle convection and the role of a high-viscosity lower mantle in terrestrial volatile evolution. Earth Planet. Sci. Lett., 156 Google Scholar, 19–32.
Wen, L. & Anderson, D. L. (1997) Layered mantle convection: a model for geoid and topography. Earth Planet. Sci. Lett., 146 CrossRef | Google Scholar, 367–77.
Chapter 8. Let's take it from the top: the crust and upper mantle
References
Babuska, V. (1972) Elasticity and anisotropy of dunite and bronzitite. J. Geophys. Res., 77 CrossRef | Google Scholar, 6955–65.
Christensen, N. I. and Lundquist, J. N. (1982) Pyroxene orientation within the upper mantle. Geol. Soc. Amer. Bull., 93 CrossRef | Google Scholar, 279–88.
Christensen, N. I. and Smewing, J. D. (1981) Geology and seismic structure of the northern section of the Oman ophiolite. J. Geophys. Res., 86 CrossRef | Google Scholar, 2545–55.
Clark, S. P., Jr. (1966) Handbook of Physical Constants. Geol. Soc. Amer. Mem. 97 Google Scholar.
Condie, K. L. (1982) Plate Tectonics and Crustal Evolution, Second edition. New York Google Scholar, Pergamon.
Duffy, T. S. and Anderson, D. L. (1988). Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J. Geophys. Res., 94 CrossRef | Google Scholar, 1895–912.
Dziewonski, A. M. and Anderson, D. L. (1981). Preliminary reference Earth model. Phys. Earth Planet. Inter., 25 CrossRef | Google Scholar, 297–356.
Elthon, D. (1979) High magnesia liquids as the parental magma for ocean floor basalts. Nature, 278 CrossRef | Google Scholar, 514–18.
Given, J. and Helmberger, D. (1981) Upper mantle structure of northwestern Eurasia. J. Geophys. Res., 85 CrossRef | Google Scholar, 7183–94.
Grand, S. P. and HeImberger, D. (1984a) Upper mantle shear structure of North America. Geophys. J. Roy. Astr. Soc., 76 CrossRef | Google Scholar, 399–438.
Grand, S. P. and Helmherger, D. (1984b) Upper mantle shear structure beneath the Northwest Atlantic Ocean. J. Geophys. Res., 89 CrossRef | Google Scholar, 11 465–75.
Jordan, T. H. (1979) Mineralogies, densities and seismic velocities of garnet lherzolites and their geophysical implications. In The Mantle Sample, eds. Boyd, F. R. and Meyer, H. O. A.Washington DC Google Scholar, American Geophysical Union, pp. 1–14.
Lehmann, I. (1961) S and the structure of the upper mantle, Geophys. J. R. Astron. Soc., 4 CrossRef | Google Scholar, 124–38.
Manghnani, M. H. and Ramananotoandro, C. S. P. (1974) Compressional and shear wave velocities in granulite facies rocks and eclogites to 10 kbar. J. Geophys. Res., 79 CrossRef | Google Scholar, 5427–46.
Mooney, W. D., Laske, G. and Masters, G. (1998) A new global crustal model at 5 × 5 degrees: CRUST5.1. J. Geophys. Res., 103 CrossRef | Google Scholar, 727–47.
Regan, J. and Anderson, D. L. (1984) Anisotropic models of the upper mantle. Phys. Earth Planet. Inter., 35 CrossRef | Google Scholar, 227–63.
Salisbury, M. and Christensen, N. L. (1978) The seismic velocity structure of a traverse through the Bay of Islands ophiolite complex, Newfoundland, an exposure of oceanic crust and upper mantle. J. Geophys. Res., 83 CrossRef | Google Scholar, 805–17.
Sumino, Y. and Anderson, O. L. (1984) Elastic constants of minerals. In Handbook of Physical Properties of Rocks 3, ed. Carmichael, R. S.Boca Raton, FL Google Scholar, CRC Press, pp. 39–138.
Taylor, S. R. and McLennan, S. (1985) The Continental Crust: Its Composition and Evolution. London Google Scholar, Blackwell.
Walck, M. C. (1984) The P-wave upper mantle structure beneath an active spreading center: The Gulf of California. Geophys. J. R. Astr. Soc., 76 CrossRef | Google Scholar, 697–723.
Further reading
Anderson, D. L. and Bass, J. D. (1984) Mineralogy and composition of the upper mantle. Geophys. Res. Lett., 11 CrossRef | Google Scholar, 637–40.
Bullen, K. (1947) An Introduction to the Theory of Seismology. Cambridge Google Scholar, Cambridge University Press.
Deuss, A. and Woodhouse, J. H. (2002) A systematic search for mantle discontinuities using SS-precursors. Geophys. Res. Lett., 29 CrossRef | Google Scholar, 8, doi: 10.1029/2002GL014768.
Grand, S. P. (1994). Mantle shear structure beneath the Americas and surrounding oceans. J. Geophys. Res., 99 CrossRef | Google Scholar, 591–621.
Montelli, R., Nolet, G., Dahlen, F. A., Masters, G., Engdahl, E. R. and Hung, S. H. (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303 CrossRef | Google Scholar | PubMed, 338–43.
Shimamura, H., Asada, T. and Kumazawa, M. (1977) High shear velocity layer in the upper mantle of the Western Pacific. Nature, 269 CrossRef | Google Scholar, 680–2.
Weidner, D. J. (1986) Mantle models based on measured physical properties of minerals. In Chemistry and Physics of Terrestrial Planets, ed. Saxena, S. K.New York Google Scholar, Springer-Verlag, pp. 251–74.
Weidner, D. J., Sawamoto, H., Sasaki, S. and Kumazawa, M. (1984) Single-crystal elastic properties of the spinel phase of Mg2SiO4. J. Geophys. Res., 89 CrossRef | Google Scholar, 7852–60.
Whitcomb, J. H. and Anderson, D. L. (1970) Reflection of P'P' seismic waves from discontinuities in the mantle. J. Geophys. Res., 75 CrossRef | Google Scholar, 5713–28.
Chapter 9. A laminated lumpy mantle
References
Deuss, A. and Woodhouse, J. H. (2002) A systematic search for mantle discontinuities using SS-precursors. Geophys. Res. Lett., 29 CrossRef | Google Scholar, 8, doi: 10.1029/2002GL014768.
Revenaugh, J. & Sipkin, S. A. (1994) Seismic evidence for silicate melt atop the 410-km mantle discontinuity. Nature, 369 CrossRef | Google Scholar, 474–6.
Nolet, G. & Zielhuis, A. (1994) Low S velocities under the Tornquist–Teisseyre zone: evidence for water injection into the transition zone by subduction. J. Geophys. Res., 99 CrossRef | Google Scholar, 15813–20.
Song, T., Helmberger, D. & Grand, S. (2004) Low velocity zone atop the 410 seismic discontinuity in the northwestern U. S. Nature, 427 CrossRef | Google Scholar, 530–3.
Vinnik, L., Kumar, M. R., Kind, R. & Farra, V. (2003) Super-deep low-velocity layer beneath the Arabian plate. Geophys. Res. Lett., 30 CrossRef | Google Scholar (1415), doi:10.1029/2002GL016590.
Whitcomb, J. H. & Anderson, D. L. (1970) Reflection of P′P′ seismic waves from discontinuities in the mantle. J. Geophys. Res., 75 CrossRef | Google Scholar, 5713–28.
Chapter 10. The bowels of the earth
References
Birch, F. (1952) Elasticity and constitution of the Earth's interior. J. Geophys. Res., 57 CrossRef | Google Scholar, 227–86.
Lay, T. & Helmberger, D. V. (1983) Body-wave amplitude and travel-time correlations across North America. Bull. Seism. Soc. Am., 73 Google Scholar, 17–30.
Lehmann, I. (1936) Bur. Centr. Seism. Inst. A 14 Google Scholar, 3–31.
Julian, B., Davies, D. & Sheppard, R. (1972) a seismic wave that traverses the IC as a shear wave. Nature, 235 CrossRef | Google Scholar, 317–18.
Further reading
Bullen, K. (1947) An Introduction to the Theory of Seismology. Cambridge Google Scholar, Cambridge University Press.
Wen, L. & Helmberger, D. V. (1998) Seismic evidence for an inner core transition zone. Science, 279 CrossRef | Google Scholar, 1701–3.
Ishii, M. & Dziewonski, A. M. (2002) The innermost inner core of the earth: evidence for a change in anisotropic behavior at the radius of about 300 km. PNAS, 99 CrossRef | Google Scholar | PubMed, 14026–30.
Chapter 11. Geotomography: heterogeneity of the mantle
References
Anderson, D. L. (2005) Scoring hotspots: the plume and plate paradigms, in Plates, Plumes, and Paradigms, pp. 31–54, ed. Foulger, G. R., Natland, J. H., Presnall, D. C., and Anderson, D. L., Boulder, C. O., Geological Society of America Special Paper 388. Google Scholar
Baig, A. M. and Dahlen, F. A. (2004) Travel time biases in random media and the S-wave discrepancy. Geophys. J. Inter., 158 CrossRef | Google Scholar, 922–38.
Becker, T. W. and Boschi, L. (2002) A comparison of tomographic and geodynamic mantle models. Geochem. Geophys. Geosyst., 3 CrossRef | Google Scholar, 2001GC000168.
Bijwaard, H., Spakman, W. and Engdahl, E. (1998) Closing the gap between regional and global travel time tomography. J. Geophys. Res. 103 CrossRef | Google Scholar, 30055–78.
Dziewonski, A. M. (2005) The robust aspects of global seismic tomography. In Plates, Plumes and Paradigms, eds. Foulger, G. R., Natland, J. H., Presnall, D. C. and Anderson, D. L.Boulder, CO Google Scholar, Geological Society of America, pp. 147–54.
Forsyth, D. and Uyeda, S. (1975) On the relative importance of the driving forces of plate motion. Geophys. J. R. Astr. Soc., 43 CrossRef | Google Scholar, 163–200.
Foulger, G. L., Natland, J. H., Presnall, D. C. and Anderson, D. L., eds. (2005) Plates, Plumes and Paradigms. Boulder, CO, Geological Society of America, Special Paper 388. Google Scholar
Grand, S. P. (1986) Shear velocity structure of the mantle beneath the North American plate, Ph.D. Thesis, California Institute of Technology. Google Scholar
Grand, S. P. (1994) Mantle shear structure beneath the Americas and surrounding oceans. J. Geophys. Res., 99 CrossRef | Google Scholar, 591–621.
Grand, S. P. and Helmberger, D. (1984a) Upper mantle shear structure of North America. Geophys. J. Roy. Astron. Soc., 76 CrossRef | Google Scholar, 399–438.
Grand, S. P. and Helmberger, D. (1984b) Upper mantle shear structure beneath the Northwest Atlantic Ocean. J. Geophys. Res., 89 CrossRef | Google Scholar, 11, 465–75.
Grand, S. P., van der Hilst, R. and Widiyantoro, S. (1997) Global seismic tomography: a snapshot of convection in the Earth. GSA Today, 7 Google Scholar, 1–7.
Gu, Y. J., Dziewonski, A. and Ekström, G. (2001) Preferential detection of the Lehmann discontinuity beneath continents. Geophys. Res. Lett., 28 CrossRef | Google Scholar, 4655–8.
Hager, B. H. (1983) Global isostatic geoid anomalies for plate and boundary layer models of the lithosphere. Earth Planet. Sci. Lett., 63 CrossRef | Google Scholar, 97–109.
Hager, B. H. and Clayton, R. W. (1986) Constraints on the structure of mantle convection using seismic observations, flow models and the geoid. In Mantle Convection, ed. Peltier, W. R.New York Google Scholar, Gordon and Breach Science Publishers, pp. 657–763.
Ishii, M. and Tromp, J. (2004) Constraining large-scale mantle heterogeneity using mantle and inner-core sensitive normal modes. Physics of the Earth and Planetary Interiors, 146 CrossRef | Google Scholar, 113–24.
Nakanishi, I. and Anderson, D. L. (1983) Measurements of mantle wave velocities and inversion for lateral heterogeneity and anisotropy: Part I, Analysis of great circle phase velocities. J. Geophys. Res., 88 CrossRef | Google Scholar, 10267–83.
Nakanishi, I. and Anderson, D. L. (1984a) Aspherical heterogeneity of the mantle from phase velocities of mantle waves. Nature, 307 CrossRef | Google Scholar, 117–21.
Nakanishi, I. and Anderson, D. L. (1984b). Measurements of mantle wave velocities and inversion for lateral heterogeneity and anisotropy: Part II, Analysis by single-station method. Geophys. J. Roy. Astron. Soc., 78 CrossRef | Google Scholar, 573–617.
Polet, J. and Anderson, D. L. (1995) Depth extent of cratons as inferred from tomographic studies. Geology, 23 CrossRef | Google Scholar, 205–8.
Ray, T. W. and Anderson, D. L. (1994) Spherical disharmonics in the Earth sciences and the spatial solution; ridges; ridges, hotspots, slabs, geochemistry and tomography correlations. J. Geophys. Res., 99 CrossRef | Google Scholar, 9605–14.
Scrivner, C. and Anderson, D. L. (1992) The effect of post Pangea subduction on global mantle tomography and convection. Geophys. Res. Lett., 19 CrossRef | Google Scholar, 1053–6.
Shearer, P. M. and Earle, P. S. (2004) The global short-period wavefield modelled with a Monte Carlo seismic phonon method. Geophys. J. Int., 158 CrossRef | Google Scholar, 1103–17.
Shapiro, N. M. and Ritzwoller, M. H. (2004) Thermodynamic constraints on seismic inversions. Geophys. J. Int. 157 CrossRef | Google Scholar, 1175–88, doi:10.1111/j.1365–246X.2004.02254.x, 2004.
Spakman, W. and Nolet, G. (1988) Imaging algorithms, accuracy and resolution in delay time tomography. In Mathematical Geophysics, eds. Reidel. Google Scholar
Spakman, W., Stein, S., Hilst, R. and Wortel., R. (1989). Resolution experiments for NW Pacific Subduction Zone Tomography. Geophys. Res. Lett., 16 CrossRef | Google Scholar, 1097–100.
Su, W.-J. and Dziewonski, A. M. (1991) Predominance of long-wavelength heterogeneity in the mantle. Nature, 352 CrossRef | Google Scholar, 121–6.
Su, W.-J. and Dziewonski, A. M. (1992) On the scale of mantle heterogeneity. Phys. Earth Planet. Inter. 74 CrossRef | Google Scholar, 29–54.
Tanimoto, T. (1991) Predominance of large-scale heterogeneity and the shift of velocity anomalies between the upper and lower mantle. J. Phys. Earth, 38 CrossRef | Google Scholar, 493–509.
Tanimoto, T. and Anderson, D. L. (1984) Mapping convection in the mantle. Geopkys. Res. Lett., 11 CrossRef | Google Scholar, 287–90.
Tanimoto, T. and Anderson, D. L. (1985) Lateral heterogeneity and azimuthal anisotropy of the upper mantle: Love and Rayleigh waves 100–250 sec. J. Geophys. Res., 90 CrossRef | Google Scholar, 1842–58.
Thoraval, C., Machetel, Ph. and Cazanave, A. (1995) Locally layered convection inferred from dynamic models of the Earth's mantle. Nature, 375 CrossRef | Google Scholar, 777–80.
Trampert, J., Deschamps, F., Resovsky, J. and Yuen, D. (2004) Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science, 306 CrossRef | Google Scholar | PubMed, 853–6.
Vasco, D. W., Johnson, L. R. and Pulliam, J. (1995) Lateral variations in mantle velocity structure and discontinuities determined from P, PP, S, SS, and SS-S_pS travel time residuals. J. Geophys. Res., 100 CrossRef | Google Scholar, 24037–59.
Walck, M. C. (1984) The P-wave upper mantle structure beneath an. active spreading center: The Gulf of California. Geophys. J. R. Astron. Soc., 76 CrossRef | Google Scholar, 697–723.
Wen, L. and Anderson, D. L. (1995) The fate of slabs inferred from seismic tomography and 130 million years of subduction. Earth Planet. Sci. Lett., 133 CrossRef | Google Scholar, 185–98.
Wen, L. and Anderson, D. L. (1997) Slabs, hotspots, cratons and mantle convection revealed from residual seismic tomography in the upper mantle. Phys. Earth Planet. Inter., 99 CrossRef | Google Scholar, 131–43.
Whitcomb, J. H. and Anderson, D. L. (1970) Reflection of P′P′ seismic waves from discontinuities in the mantle. J. Geophys. Res., 75 CrossRef | Google Scholar, 5713–28.
Further reading
Cizkova, H., Cadek, O., van den Berg, A. P. and Vlaar, N. (1999) Can lower mantle slab-like seismic anomalies be explained by thermal coupling between the upper and lower mantles?Geophys. Res. Lett., 26 CrossRef | Google Scholar, 1501–4.
Gu, Y., Dziewonski, A. M. and Agee, C. B. (1998) Global de-correlation of the topography of transition zone discontinuities. Earth Planet. Sci. Lett., 157 CrossRef | Google Scholar, 57–67.
Ritsema, J. (2005) Global tomography. In Plates, Plumes and Paradigms, eds. Foulger, G. L., Natland, J. H., Presnall, D. C. and Anderson, D. L.Boulder, CO Google Scholar, Geological Society of America, Special Paper 388, pp. 11–18.
www.mantleplumes.org/TopPages/TheP3Book.html, Web Supplement Google Scholar
Vasco, D. W. and Johnson, L. R. (1998) Whole Earth structure estimated from seismic arrival times. J. Geophys. Res., 103 CrossRef | Google Scholar, 2633–71.
Chapter 12. Statistics and other damned lies
Further reading
Anderson, D. L. (1989) www.caltechbook.library.caltech.edu/14/ Google Scholar
Meibom, A. and Anderson, D. L. (2003) The statistical upper mantle assemblage. Earth Planet. Sci. Lett., 217 CrossRef | Google Scholar, 123–39.
Trampert, J., Deschamps, F., Resovsky, J. and Yuen, D. (2004) Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science, 306 CrossRef | Google Scholar | PubMed, 853–6.
Chapter 13. Making an Earth
References
Anderson, D. L. (1983) Kimberlites and the evolution of the mantle. In Kimberlites and Related Rocks, ed, J. Kornprobst, pp. 395–403. Google Scholar
Jacobsen, S. B., Quick, J. and Wasserburg, G. (1984) A Nd and Sr isotopic study of the Trinity Peridotite; implications for mantle evolution, Earth Planet. Sci. Lett., 68 CrossRef | Google Scholar, 361–78.
Maaloe, S. and Steel, R. (1980) Mantle composition derived from the composition of lherzolites. Nature, 285 CrossRef | Google Scholar, 321–2.
Morgan, J. W. and Anders, E. (1980) Chemical composition of the Earth, Venus, and Mercury. Proc. Natl. Acad. Sci., 77 CrossRef | Google Scholar | PubMed, 6973–80.
Ringwood, A. E. and Kesson, S. (1976) A dynamic model for mare basalt petrogenesis, Proc. Lunar Sci. Conf., 7 Google Scholar, 1697–722.
Further reading
Anderson, D. L. (1999) A theory of the Earth: Hutton and Humpty Dumpty and Holmes. In James Hutton – Present and Future, eds. Craig, G. and Hull, J.London Google Scholar, Geological Society of London, Special Publication 150, pp. 13–35.
Chapter 14. Magmas: windows into the mantle
References
Condie, K. L. (1982) Plate Tectonics and Crustal Evolution, Second edition. New York Google Scholar, Pergamon.
Crawford, A. J., Falloon, T. J. and Green, D. H. (1989) Classification, petrogenesis and tectonic setting of boninites. In Boninites, ed. Crawford, A.London Google Scholar, Unwin Hyman, pp. 1–49.
Dawson, J. B. (1980) Kimberlites and their Xenoliths, Springer-Verlag, Berlin CrossRef | Google Scholar, 252 pp.
Gill, J. B. (1976) Composition and age of Lau basin and ridge volcanic rocks; implications for evolution of an interarc basin and remnant arc. Geol. Soc. Am. Bull., 87 CrossRef | Google Scholar, 1384–95.
Hawkins, J. W. (1977) Petrology and geochemical characteristics of marginal basin basalt. In Island Arcs, Deep Sea Trenches, and Back-Arc Basins, eds. Talwani, M. and Pittman, W. C. Washington, DC, American Geophysical Union, pp. 355–77. CrossRef | Google Scholar
Parman, S. W., Grove, T. L. and Dann, J. C. (2001) The production of Barberton komatiites in an Archean subduction zone. Geophys. Res. Lett., 28 CrossRef | Google Scholar, 2513–16.
Wedepohl, K. H. and Muramatsu, Y. (1979) The chemical composition of kimberlites compared with the average composition of three basaltic magma types. In Kimberlite, Diatremes and Diamonds, eds. Boyd, F. R. and Meyer, H. Washington, DC, American Geophysical Union, pp. 300–12. CrossRef | Google Scholar
Further reading
Anderson, D. L. (1983a) Kimberlite and the evolution of the mantle. In Kimberlites and Related Rocks, ed. J. Kornprobst, pp. 395–403. Google Scholar
Anderson, D. L. (1983b) Chemical composition of the mantle. J. Geophys. Res., 88 CrossRef | Google Scholar suppl., B41–52.
Jacobsen, S. B., Quick, J. and Wasserburg, G. (1984) A Nd and Sr isotopic study of the Trinity Peridotite; implications for mantle evolution. Earth Planet. Sci. Lett., 68 CrossRef | Google Scholar, 361–78.
Ringwood, A. E. (1966) Mineralogy of the mantle. In Advances in Earth Science. Cambridge, MA Google Scholar, MIT Press, pp. 357–99.
Ringwood, A. E. and Kesson, S. (1976) A dynamic model for mare basalt petrogenesis. PLC, 7 Google Scholar, 1697–722.
Taylor, S. (1982) Lunar and terrestrial crusts. Phys. Earth Planet. Inter., 29 CrossRef | Google Scholar, 233.
Chapter 15. The hard rock cafe
References
Basu, A. R. and Tatsumoto, M. (1982) Nd isotopes in kimberlites and mantle evolution. Terra Cog Google Scholar., 2, 2–14.
Beus, A. A. (1976) Geochemistry of the Lithosphere, Moscow Google Scholar, MIR Publications.
Boyd, F. R.(1986) High- and low-temperature garnet peridotite xenoliths and their possible relation to the lithosphere–asthenosphere boundary beneath southern Africa. In Mantle Xenoliths, ed. Nixon, P. New York, John Wiley & Sons, pp. 403–12. Google Scholar
Boyd, F. R. and Mertzman, S. A. (1987) Composition and structure of the Kaapvaal lithosphere, southern Africa. In Magmatic Processes: Physicochemical Principles, ed. Mysen, B. O.University Park, Pennsylvaniay Google Scholar, The Geochemical Society, Special Publication 1, pp. 13–24.
Clarke, D. B. (1970) Tertiary basalts of Baffin Bay; possible primary magma from the mantle. Contrib. Mineral. Petrol., Special Publication 1, 25 CrossRef | Google Scholar, 203–24.
Echeverria, L. M. (1980) Tertiary komatiites of Gorgona Island. Carnegie Instn. Wash. Ybk., 79 Google Scholar, 340–4.
Elthon, D. (1979) High magnesia liquids as the parental magma for ocean floor basalts. Nature, 278 CrossRef | Google Scholar, 514–18.
Frey, F. A. (1980) The origin of pyroxenites and garnet pyroxenites from Salt Crater, Oahu, Hawaii: trace element evidence. Am. J. Sci., 280-A Google Scholar, 427–49.
Green, D. H. and Ringwood., A. (1963) Mineral assemblages in a model mantle composition. J. Geophys. Res CrossRef | Google Scholar., 68, 937–45.
Green, D. H., Hibberson, W. and Jaques, A. (1979) Petrogenesis of mid-ocean ridge basalts. In The Earth: Its Origin, Structure and Evolution, ed. McElhinny, M. W.New York Google Scholar, Academic Press, pp. 265–95.
Jahn, B.-M., Auvray, B., Blais, S. et al. (1980) Trace element geochemistry and petrogenesis of Finnish greenstone belts. J. Petrol., 21 CrossRef | Google Scholar, 201–44.
Maaloe, S. and Aoki, K. (1977) The major element composition of the upper mantle estimated from the composition of Iherzolites. Contrib. Mineral. Petrol., 63 CrossRef | Google Scholar, 161–73.
Ringwood, A. E. (1975) Composition and Petrology of the Earth's Mantle. New York Google Scholar, McGraw-Hill.
Smyth, J. R. and Caporuscio, F. (1984) Petrology of a suite of eclogite inclusions from the Bobbejaan Kimberlite; II, Primary phase compositions and origin. In Kimberlites, ed. Kornprobst, J.Amsterdam Google Scholar, Elsevier, pp. 121–31.
Wedepohl, K. H. and Muramatsu, Y. (1979) The chemical composition of kimberlites compared with the average composition of three basaltic magma types. In Kimberlites, Diatremes, and Diamonds, eds. Boyd, F. R. and Meyer, H. O.Washington, DC Google Scholar, American Geophysical Union, pp. 300–12.
Further reading
Bowen, N. L. (1928) The Evolution of the Igneous Rocks.Princeton, NJ Google Scholar, Princeton University Press.
Carmichael, I. S. E., Turner, F. and Verhoogen, J. (1974) Igneous Petrology. New York Google Scholar, McGraw-Hill.
Chen, C. and Frey, F. (1983) Origin of Hawaiian theiite and alkali basalt. Nature, 302 CrossRef | Google Scholar, 785.
Frey, F. A., Green, D. and Roy, S. (1978) Integrated models of basalts petrogenesis: A study of quartz tholeiites to olivine melilitites from southeastern Australia utilizing geochemical and experimental petrological data. J. Petrol., 19 CrossRef | Google Scholar, 463–513.
Green, D. H. (1971) Composition of basaltic magmas as indicators of conditions of origin; application to oceanic volcanism. Phil. Trans. R. Soc., A268 CrossRef | Google Scholar, 707–25.
Green, D. H. and Ringwood, A. (1967) The genesis of basaltic magmas. Contrib. Mineral. Petrol., 15 CrossRef | Google Scholar, 103–90.
Hiyagon, H. and Ozima, M. (1986) Partition of noble gases between olivine and basalt melt. Geochim. Cosmochim. Acta, 50 CrossRef | Google Scholar, 2045–57.
Jaques, A. and Green, D. (1980) Anhydrous melting of peridotite at 0–15 Kb pressure and the genesis of tholeitic basalts. Contrib. Mineral. Petrol., 73 CrossRef | Google Scholar, 287–310.
Menzies, M., Rogers, N., Zindle, A. and Hawkesworth, C. (1987) In Mantle Metasomatism, ed. Menzies, M. A.New York Google Scholar, Academic Press.
Nataf, H.-C., Nakanishi, I. and Anderson, D. L. (1986) Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy. Part III, Inversion. J. Geophys. Res., 91 CrossRef | Google Scholar, 7261–307.
O'Hara, M. J. (1968) The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rock. Earth Sci. Rev., 4 CrossRef | Google Scholar, 69–133.
Rigden, S. S., Ahrens, T. J. and Stolper, E. M. (1984) Densities of liquid silicates at high pressures. Science, 226 CrossRef | Google Scholar | PubMed, 1071–4.
Ringwood, A. E. ((1962) Mineralogical constitution of the deep mantle. J. Geophys. Res., 67 CrossRef | Google Scholar, 4005–10.
Ringwood, A. E. (1966) Mineralogy of the mantle. In Advances in Earth Science.Cambridge, MA Google Scholar, MIT Press, pp. 357–99.
Ringwood, A. E. (1979) Origin of the Earth and Moon.New York CrossRef | Google Scholar, Springer-Verlag.
Smyth, J. R., McCorrnick, T. and Caporuscio, F. (1984) Petrology of a suite of eclogite inclusions from the Bobbejaan Kimberlite; I, Two unusual corundum-bearing kyanite eclogites. In Kimberlites, ed. Kornprobst, J.Amsterdam, Google ScholarElsevier, pp. 109–19.
Walck, M. C. (1984) The P-wave upper mantle structure beneath an active spreading center; the Gulf of California. Geophys. J. Roy. Astron. Soc., 76 CrossRef | Google Scholar, 697–723.
Chapter 16. Noble gas isotopes
References
Anderson, D. L. (1998a) The helium paradoxes. Proc. Nat. Acad. Sci., 95 CrossRef | Google Scholar, 4822–7.
Anderson, D. L. (1998b) A model to explain the various paradoxes associated with mantle noble gas geochemistry. Proc. Nat. Acad. Sci., 95 CrossRef | Google Scholar, 9087–92.
Anderson, D. L. (2000a) The statistics of helium isotopes along the global spreading ridge system and the central limit theorem. Geophys. Res. Lett., 27 CrossRef | Google Scholar, 2401–4.
Anderson, D. L. (2000b) The statistics and distribution of helium in the mantle. Int. Geology Rev., 42 CrossRef | Google Scholar, 289–311.
Javoy, M. and Pineau, F. (1991) The volatiles record of a “popping” rock from the mid-Atlantic ridge at 14 N: Chemical and isotopic composition of gas trapped in the vesicles. Earth Planet. Sci. Lett., 107 CrossRef | Google Scholar, 598–611.
Sarda, P. and Graham, D. (1990) Mid-ocean ridge popping rocks: implications for degassing at ridge crests. Earth Planet. Sci. Lett., 97 CrossRef | Google Scholar, 268–89.
Seta, A., Matsumoto, T. and Matsuda, J.-I. (2001) Concurrent evolution of 3He/4He ratio in the Earth's mantle reservoirs for the first 2 Ga. Earth Planet. Sci. Lett., 188 CrossRef | Google Scholar, 211–19.
Staudacher, T., Sarda, P., Richardson, S. H., Allegre, C. J., Sagna, I. and Dmitriev, L. V. (1989) Noble gases in basalt glasses from a Mid-Atlantic Ridge topographic high at 14∘N: geodynamic consequences. Earth Planet. Sci. Lett., 96 CrossRef | Google Scholar, 119–33.
Further reading
Meibom, A., Anderson, D. L., Sleep, N., Frei, R., Chamberlain, C., Hren, M. and Wooden, J. (2003) Are high 3He/4He ratios in oceanic basalts an indicator of deep-mantle plume components?Earth Planet. Sci. Lett., 208 CrossRef | Google Scholar, 197–204.
Moreira, M., and Sarda, P. (2000) Noble gas constraints on degassing processes. Earth Planet. Sci. Lett., 176 CrossRef | Google Scholar, 375–86.
Chapter 17. The other isotopes
References
Chase, C. G. (1981) Oceanic island Pb; two-stage histories and mantle evolution. Earth Planet. Sci. Lett., 52 CrossRef | Google Scholar, 277–84.
Dalrymple, G. B. (2001) The age of the Earth in the twentieth century – a problem (mostly) solved. In The Age of the Earth – from 4004 BC to AD 2002, eds. Lewis, C. L. E. and Knell, S. J.London Google Scholar, The Geological Society, Special Publication 190, pp. 205–21.
Eiler, J. M. (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. In Stable Isotope Geochemistry, eds. Valley, J. W. and Cole, D. R.Rev. Mineral., 43 CrossRef | Google Scholar, 319–64.
Eiler, J. M., Farley, K. A., Valley, J. W., Hauri, E., Craig, H., Hart, S. R. and Stolper, E. M. (1997) Oxygen isotope variations in ocean island basalt phenocrysts. Geochim. Cosmochim. Acta, 61 CrossRef | Google Scholar, 2281–93.
Eiler, J. M., Valley, J. and Stolper, E. (1996a) Oxygen isotope ratios in olivine from the Hawaiian Scientific Drilling Project. J. Geophys. Res., 101 CrossRef | Google Scholar, 11807–13.
Eiler, J. M., Farley, K., Valley, J., Hofmann, A. and Stolper, E. (1996b) Oxygen isotope constraints on the sources of Hawaiian volcanism. Earth Planet. Sci. Lett., 144 CrossRef | Google Scholar, 453–68.
Meibom, A., Sleep, N. H., Chamberlain, C. P., Coleman, R. G., Frei, R., Hren, M. T., and Wooden, J. L. (2002) Re–Os isotopic evidence for long-lived heterogeneity and euilibration processes in the Earth's upper mantle. Nature, 418 CrossRef | Google Scholar, 705–8.
Patterson, C. (1956) Age of meteorites and the Earth. Geochim. Cosmochim. Acta, 10 CrossRef | Google Scholar, 230–7.
Roy-Barman, M. and Allegre, C. J. (1994) 187Os/186Os ratios of midocean ridge basalts and abyssal peridotites. Geochim. Cosmochim. Acta, 58 CrossRef | Google Scholar, 5043–54.
Shirey, S. B. and Walker, R. J. (1998) The Re–Os isotope system in cosmochemistry and high-temperature geochemistry. Ann. Rev. Earth Planet. Sci., 26 CrossRef | Google Scholar, 423–500.
Smith, A. D. (2003) Critical evaluation of Re–Os and Pt–Os isotopic evidence on the origin of intraplate volcanism. J. Geodyn., 36 CrossRef | Google Scholar, 469–84.
Mantle geochemistry
Armstrong, R. L. (1981) Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth. Phil. Trans. R. Soc. Lond. A, 301 CrossRef | Google Scholar, 443–72.
Chase, C. G. (1981) Oceanic island Pb: two-stage histories and mantle evolution. Earth Planet. Sci. Lett., 52 CrossRef | Google Scholar, 277–84.
Clarke, W. B., Beg, M. and Craig, H. (1969) Excess 3He in sea: evidence for terrestrial primordial helium. Earth Planet. Sci. Lett., 6 CrossRef | Google Scholar, 213–20.
Craig, H. and Lupton, J. (1976) Primordial neon, helium, and hydrogen in oceanic basalts. Earth Planet. Sci. Lett., 31 CrossRef | Google Scholar, 369–85.
Gast, P. W. (1968) Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochim. Cosmochim. Acta, 32 CrossRef | Google Scholar, 1057–86.
Further reading
Anderson, D. L. (1981) Hotspots, basalts, and the evolution of the mantle. Science, 213 CrossRef | Google Scholar | PubMed, 82–9.
Garlick, G., MacGregor, I. and Vogel, D. (1971) Oxygen isotope ratios in eclogites from kimberlites. Science, 171 CrossRef | Google Scholar, 1025–7.
Gregory, R. T. and Taylor, H. P. Jr. (1981) An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman. J. Geophys. Res., 86 CrossRef | Google Scholar, 2737–55.
Dalrymple, G. B. (1991) The Age of the Earth. Stanford, CA Google Scholar, Stanford University Press.
Hofmeister, A. M. (1999). Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science, 283 CrossRef | Google Scholar | PubMed, 1699–706.
Ishii, M. and Tromp, J. (1999) Normal mode and free-air gravity constraints on lateral variations in velocity and density of Earth's mantle. Science, 285 CrossRef | Google Scholar | PubMed, 1231–6.
Meibom, A. and Anderson, D. L. (2003) The Statistical Upper Mantle Assemblage. Earth Planet. Sci. Lett., 217 CrossRef | Google Scholar, 123–39.
Meibom, A., Sleep, N. H., Zahnle, K. and Anderson, D. L. (2005) Models for noble gases in mantle geochemistry: Some observations and alternatives. In Plates, Plumes, and Paradigms, eds. Foulger, G. R., Natland, J. H., Presnall, D. C. and Anderson, D. L. Boulder, CO, Geological Society of America, Special Paper 388, pp. 347–63. CrossRef | Google Scholar
Reisberg, L. and Zindler, A. (1986) Extreme isotopic variations in the upper mantle; evidence from Ronda. Earth and Planetary Science Letters, 81 CrossRef | Google Scholar, 29–45.
Chapter 18. Elasticity and solid state physics
Further reading
Duffy, T. S. and Anderson, D. L. (1989) Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J. Geophys. Res., 94 CrossRef | Google Scholar, 1895–912.
Dziewonski, A. M. and Anderson, D. L. (1981) Preliminary reference Earth model. Phys. Earth Planet. Inter., 25 CrossRef | Google Scholar, 297–356.
Ishii, M. and Tromp, J. (2004). Constraining large-scale mantle heterogeneity using mantle and inner-core sensitive modes. Phys. Earth Planet. Inter., 146 CrossRef | Google Scholar, 113–24.
Karki, B. B., Stixrude, L. and Wentzcovitch, R. (2001) High-pressure elastic properties of major materials of Earth's mantle from first principles. Rev. Geophys., 39 CrossRef | Google Scholar, 507–34.
Nakanishi, I. and Anderson, D. L. (1982) World-wide distribution of group velocity of mantle Rayleigh waves as determined by spherical harmonic inversion. Bull. Seis. Soc. Am., 72 Google Scholar, 1185–94.
Nataf, H.-C., Nakanishi, I. and Anderson, D. L. (1984) Anisotropy and shear-velocity heterogeneities in the upper mantle. Geophys. Res. Lett., 11 CrossRef | Google Scholar, 109–12.
Nataf, H.-C., Nakanishi, I. and Anderson, D. L. (1986) Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy. Part 111, Inversion. J. Geophys. Res., 91 CrossRef | Google Scholar, 7261–307.
Trampert, J., Deschamps, F., Resovsky, J. and Yuen, D. (2004) Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science, 306 CrossRef | Google Scholar | PubMed, 853–6.
Chapter 19. Dissipation
References
Anderson, D. L. and Given, J. (1982) Absorption band Q model for the Earth. J. Geophys. Res., 87 CrossRef | Google Scholar, 3893–904.
Kanamori, H. and Anderson, D. L. (1977) Importance of physical dispersion in surface wave and free oscillation problems. Rev. Geophys. Planet. Sci., 15 CrossRef | Google Scholar, 105–12.
Minster, J. B. and Anderson, D. L. (1981) A model of dislocation controlled rheology for the mantle. Phil. Trans. Roy. Soc. London, 299 CrossRef | Google Scholar, 319–56.
Spetzler, H. and Anderson, D. L. (1968) The effect of temperature and partial melting on velocity and attenuation in a simple binary system. J. Geophys. Res., 73 CrossRef | Google Scholar, 6051–60.
Selected reading
Anderson, D. L., Ben-Menahem, A. and Archambeau, C. B. (1965) Attenuation of seismic energy in the upper mantle. J. Geophys. Res., 70 CrossRef | Google Scholar, 1441–8.
O'Connell, R. J. and Budiansky, B. (1978) Measures of dissipation in viscoelastic media. Geophys. Res. Lett., 5 CrossRef | Google Scholar, 5–8.
Chapter 20. Fabric of the mantle
References
Anderson, D. L. and Dziewonski, A. M. (1982) Upper mantle anisotropy; evidence from free oscillations. Geophys. J. Royal Astr. Soc., 69 CrossRef | Google Scholar, 383–404.
Anderson, D. L., Minster, J. B. and Cole, D. (1974) The effect of oriented cracks on seismic velocities. J. Geophys. Res., 79 CrossRef | Google Scholar, 4011–15.
Ando, M. Y., Ishikawa and Yamazaki, F. (1983) Shear wave polarization anisotropy in the upper mantle beneath Honshu, Japan. J. Geophys. Res., 10 CrossRef | Google Scholar, 5850–64.
Babuska, V. (1981) Anisotropy of Vp and Vs in rock-forming minerals, J. Geophys., 50 Google Scholar, 1–6.
Backus, G. E. (1962). Long-wave elastic anisotropy produced by horizontal layering. J. Geophys. Res., 67 CrossRef | Google Scholar, 4427–40.
Christensen, N. I. and Lundquist, S. (1982) Pyroxene orientation within the upper mantle. Bull. Geol. Soc. Am., 93 CrossRef | Google Scholar, 279–88.
Christensen, N. I. and Salisbury, M. (1979) Seismic anisotropy in the upper mantle: Evidence from the Bay of Islands ophiolite complex. J. Geophys. Res., 84 CrossRef | Google Scholar, B9, 4601–10.
Dziewonski, A. M. and Anderson, D. L. (1981) Preliminary reference Earth model. Phys. Earth Planet. Inter., 25 CrossRef | Google Scholar, 297–356.
Fukao, Y. (1984) Evidence from core-reflected shear waves for anisotropy in the Earth's mantle. Nature, 309 CrossRef | Google Scholar, 695–8.
Hager, B. H. and O'Connell, R. J. (1979) Kinematic models of large-scale flow in the Earth's mantle. J. Geophys. Res., 84 CrossRef | Google Scholar, 1031–48
Montagner, J.-P. (2002) Upper mantle low anisotropy channels below the Pacific plate. Earth Planet. Sci. Lett., 202 CrossRef | Google Scholar, 263–74.
Montagner, J.-P. and Nataf, H.-C. (1986) A simple method for inverting the azimuthal anisotropy of surface waves, J. Geophys. Res., 91 CrossRef | Google Scholar, 511–20.
Nataf, H.-C., Nakanishi, I. and Anderson, D. L. (1986) Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy, Part III. Inversion, J. Geophys. Res., 91 CrossRef | Google Scholar, 72161–3070.
Nicolas, A. and Christensen, N. I. (1987) Formation of anisotropy in upper mantle peridotites. In Composition, Structure and Dynamics of the Lithosphere/Asthenosphere System, eds. Fuchs, K. and Froidevaux, C.Washington, DC Google Scholar, American Geophysical Union, pp. 111–23.
Regan, J. and Anderson, D. L. (1984) Anisotropic models of the upper mantle. Phys. Earth Planet. Inter., 35 CrossRef | Google Scholar, 227–63.
Sawamoto, H., Weidner, D. J., Sasaki, S. and Kumazawa, M. (1984) Single-crystal elastic properties of the modified spinel phase of magnesium orthosilicate, Science, 224 CrossRef | Google Scholar | PubMed, 749–51.
Tanimoto, T. and Anderson, D. L. (1984) Mapping convection in the mantle. Geophys. Res. Lett., 11 CrossRef | Google Scholar, 287–90.
Further reading
Christensen, N. I. and Crosson, R. (1968) Seismic anisotropy in the upper mantle. Tectonophysics, 6 CrossRef | Google Scholar, 93–107.
Gilvarry, J. J. (1956) The Lindemann and Grüneisen Laws. Phys. Rev., 102 CrossRef | Google Scholar, 308–16.
Morris, E. M., Raitt, R. and Shor, G. (1969) Velocity anisotropy and delay times of the mantle near Hawaii. J. Geophys. Res., 74 CrossRef | Google Scholar, 4300–16.
Raitt, R. W., Shor, G., Francis, T. and Morris, G. (1969) Anisotropy of the Pacific upper mantle. J. Geophys. Res., 74 CrossRef | Google Scholar, 3095–109.
Chapter 21. Nonelastic and transport properties
References
Freer, R. (1981) Diffusion in silicate minerals: a data digest and guide to the literature. Contrib. Mineral. Petrol., 76 CrossRef | Google Scholar, 440–54.
Horai, K. (1971) Thermal conductivity of rock-forming minerals. J. Geophys. Res., 76 CrossRef | Google Scholar, 1278–308.
Horai, K. and Simmons, G. (1970) An empirical relationship between thermal conductivity and Debye temperature for silicates. J. Geophys. Res., 75 CrossRef | Google Scholar, 678–82.
Gilvarry, J. J. (1956) The Lindemann and Grüneisen Laws. Phys. Rev., 102 CrossRef | Google Scholar, 308–16.
Keyes, R. (1963) Continuum models of the effect of pressure on activated processes. In Solid under Pressure, eds. Paul, W. and Warschauer, D. M.New York Google Scholar, McGraw-Hill, pp. 71–99.
Kobayzshigy, A. (1974). Anisotropy of thermal diffusivity in olivine, pyroxene and dunite. J. Phys. Earth, 22 Google Scholar, 359–73.
Further reading
Minster, J. B. and Anderson, D. L. ((1981) A model of dislocation controlled rheology for the mantle. Phil. Trans. R. Soc. London A, 299 CrossRef | Google Scholar, 319–56.
Ohtani, E. (1983) Melting temperature distribution and fractionation in the lower mantle. Phys. Earth Planet. Int., 33 CrossRef | Google Scholar, 12–25.
Schatz, J. F. and Simmons, G. (1972) Thermal conductivities of Earth materials at high temperatures. J. Geophys. Res., 77 CrossRef | Google Scholar, 6966–83.
Chapter 22. Squeezing: phase changes and mantle mineralogy
References
Presnall, D. C. (1995) Phase diagrams of Earth-forming minerals. In Handbook of Physical Constants, Mineral Physics and Crystallography, ed. Ahrens, T. J. Washington, DC, American Geophysical Union, AGU Reference Shelf 2. Google Scholar
Further reading
Akaogi, M. and Akimoto, S. (1977) Pyroxene-garnet solid solution equilibrium. Phys. Earth Planet. Inter. 15 CrossRef | Google Scholar, 90–106.
Akimoto, S. (1972) The system MgO-FeO-SiO2 at high pressure and temperature. Tectonophysics, 13 CrossRef | Google Scholar, 161–87.
Ito, E. and Yamada, H. (1982) Stability relations of silicate spinels, ilmenite and perovskites. In High-Pressure Research in Geophysics, eds. Akimoto, S. and Manghnam, M.Dordrecht Google Scholar, Reidel, pp. 405–19.
Kato, T. and Kumazawa, M. (1985) Garnet phase of MgSiO, filling the pyroxene-ilmenite gap at very high temperature. Nature, 316 CrossRef | Google Scholar, 803–5.
Kuskov, O. L. and Galimzyanov, R. (1986) Thermodynamics of stable mineral assemblages of the mantle transition zone. In Chemistry and Physics of the Terrestrial Planets, ed. Saxena, S. K.New York Google Scholar, Springer-Verlag, pp. 310–61.
Litasov, K., Ohtani, E., Suzuki, A., Kawazoe, T. and Funakoshi, K. (2004) Absence of density crossover between basalt and peridotite in the cold slabs passing through 660 km discontinuity. Geophys. Res. Lett., 31 CrossRef | Google Scholar (24) doi:10.1029/2004GL021306.
Ohtani, E. (1983) Melting temperature distribution and fractionation in the lower mantle. Phys. Earth Planet. Inter., 33 CrossRef | Google Scholar, 12–25.
Ono, S., Ohishi, Y., Isshiki, M. and Watanuki, T. (2005) In situ X-ray observations of phase assemblages in peridotite and basalt compositions at lower mantle conditions: Implications for density of subducted oceanic plate. J. Geophys. Res., 110 CrossRef | Google Scholar, B02208, doi: 10.1029/2004JB003196.
Chapter 23. The upper mantle
References
Anderson, D. L. (1967) Phase changes in the upper mantle. Science, 157 CrossRef | Google Scholar | PubMed, 1165–73.
Anderson, D. L. (1989) www.caltechbook.library.caltech.edu/14/ Google Scholar
Donnelly, K. E., Goldsteina, S. L., Langmuir, C. H. and Spiegelman, M. (2004) Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth Planet. Sci. Lett., 226 CrossRef | Google Scholar, 347–66.
Escrig, S, Capmas, F, Dupré, B. and Allègre, C. J. (2004) Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts. Nature, 431 CrossRef | Google Scholar | PubMed, 59–63.
Escrig, S., Doucelance, R., Moreira, M. and Allegre, C. J. (2005) Os isotope systematics in Fogo Island: Evidence for lower continental crust fragments under the Cape Verde Southern Islands. Chem. Geol., 219 CrossRef | Google Scholar, 93–113.
Gao, S., Rudnick, R. L., Yuan, H.-L., Liu, X.-M., Liu, Y.-S., Ling, W.-L., Ayers, J. and Wang, X.-C. (2004) Recycling lower continental crust in the North China craton. Nature, 432 CrossRef | Google Scholar | PubMed, 892–7.
Meibom, A. and Anderson, D. L. (2003) The statistical upper mantle assemblage. Earth Planet. Sci. Lett., 217 CrossRef | Google Scholar, 123–39.
Salters, V. J. M. and Stracke, A. (2004) Composition of the depleted mantle. Geochem. Geophys. Geosyst., 5 CrossRef | Google Scholar, Q05004, doi:10.1029/2003GC000597.#
Sobolev, A. V., Hofmann, A. W., Sobolev, S. V. and Nikogosian, I. K. (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature, 434 CrossRef | Google Scholar | PubMed, 590–7. doi:10.1038/nature03411.
Workman, R. K. & Hart, S. R. (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett., 231 CrossRef | Google Scholar, 53–63.
Chemical heterogeneity of the mantle
Birch, F. (1958) Differentiation of the mantle. Bull. Geol. Soc. Am., 69 CrossRef | Google Scholar, 483–6.
Gerlach, D. C. (1990) Eruption rates and isotopic systematics of ocean islands: further evidence for small-scale heterogeneity in the upper mantle. Tectonophysics, 172 CrossRef | Google Scholar, 273–89.
Ito, K. and Kennedy, G. C. (1971) An experimental study of the basalt-garnet granulite–ecologite transition. In The Structure and Physical Properties of the Earth's Crust, ed. Heacock, J. G. Washington, DC, American Geophysical Union. Geophys. Monogr., 14, 303–14. Google Scholar
Kay, R. W. and Kay, S. (1993) Delamination and delamination magmatism. Tectonophysics, 219 CrossRef | Google Scholar, 177–89.
Rudnick, R. L. and Gao, S. (2003) The composition of the continental crust. In The Crust, Vol. 3, Treatise on Geochemistry, vol. eds. Holland, H. D. and Turekian, K. K.Oxford Google Scholar, Elsevier, pp. 1–64.
Rudnick, R. L. and Fountain, D. M. (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophysics, 33 CrossRef | Google Scholar, 267–309.
Chapter 24. The nature and cause of mantle heterogeneity
Further reading
Hofmann, A. W. (1997) Mantle geochemistry: the message from oceanic volcanism. Nature, 385 CrossRef | Google Scholar, 219–29.
Hofmann A. W. (2003) Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. In Treatise on Geochemistry, Vol. 2, eds. Carlson, R. W., Holland, H. D. and Turekian, K. K. pp. 61–101. Google Scholar
Chapter 25. Crystallization of the mantle
References
Elthon, D. (1979) High magnesia liquids as the parental magma for ocean ridge basalts. Nature, 278 CrossRef | Google Scholar, 514–18.
Frey, F. A., Green, D. and Roy, S. (1978) Integrated models of basalts petrogenesis: a study of quartz tholeiites to olivine melilitities from southeastern Australia utilizing geochemical and experimental petrological data. J. Petrol., 19 CrossRef | Google Scholar, 463–513.
O'Hara, M. J., Saunders, A. and Mercy, E. (1975) Garnet peridotite, primary ultrabasic magma and eclogite; interpretation of upper mantle processes in kimberlite, Phys. Chem. Earth., 9 CrossRef | Google Scholar, 571–604.
Ringwood, A. E. (1975) Composition and Petrology of the Earth's Mantle. New York Google Scholar, McGraw Hill.
Further reading
Anderson, D. L. (1985) Hotspot magmas can form by fractionation and contamination of MORB. Nature, 318 CrossRef | Google Scholar, 145–9.
DePaolo, D. J. and Wasserburg, G. (1979) Neodymium isotopes in flood basalts from the Siberian Platform and inferences about their mantle sources. Proc. Natl. Acad. Sci., 76 CrossRef | Google Scholar | PubMed, 3056.
O'Hara, M. J. (1968) The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth Sci. Rev., 4 CrossRef | Google Scholar, 69–133.
Chapter 26. Terrestrial heat flow
References
McNutt, M. K. and Judge, A. (1990) The superswell and mantle dynamics beneath the South Pacific. Science, 248 CrossRef | Google Scholar | PubMed, 969–75.
Rudnick, R. L. and Fountain, D. M. (1995) Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophysics, 33 CrossRef | Google Scholar, 267–309.
Stein, C. and Stein, S. (1994) Comparison of plate and asthenospheric flow models for the evolution of oceanic lithosphere, Geophys. Res. Lett., 21 CrossRef | Google Scholar, 709–12.
Vitorello, I. and Pollack, H. N. (1980) On the variation of continental heat flow with age and the thermal evolution of continents. J. Geophys. Res., 85 CrossRef | Google Scholar, 983–95.
Selected reading
DeLaughter, J., Stein, S. and Stein, C. (1999) Extraction of a lithospheric cooling signal from oceanwide geoid data. Earth Planet. Sci. Lett., 174 CrossRef | Google Scholar, 173–81.
Gubbins, D. (1977) Energetics of the Earth's core. J. Geophys., 43 Google Scholar, 453.
Pollack, H. N., Hurter, S. and Johnson, J. (1993) Heat flow from the earth's interior: analysis of the global data set. Rev. Geophysics, 31 CrossRef | Google Scholar, 267–80.
Rudnick, R. L. and Nyblade, A. A. (1999) The composition and thickness of Archean continental roots: constraints from xenolith thermobarometry. In Mantle Petrology: Field Observations and High-Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd, eds. Fei, Y.-W., Bertka, C. M. and Mysen, B. O. Geochemical Society Special Publication 6, pp. 3–12. Google Scholar
Sclater, J., Parsons, B. and Jaupart, C. (1981) Oceans and continents: similarities and differences in the mechanism of heat transport. J Geophys. Res., 86 CrossRef | Google Scholar, 11535–52.
Stacey, F. D. & Stacey, C. H. B. (1999) Gravitational energy of core evolution: implications for thermal history and geodynamo power. Phys. Earth Planet. Inter., 110 CrossRef | Google Scholar, 83–93.
Stein, C. A. and Stein, S. A. (1994) Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J. Geophys. Res., 99 CrossRef | Google Scholar, 3081–95.
Stein, C. A. and Stein, S. A. (1992) A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359 CrossRef | Google Scholar, 123–8.
Van Schmus, W. R. (1995) Natural radioactivity of the crust and mantle. In Global Earth Physics, A Handbook of Physical Constants, ed. Ahrens, T. J. Washington, DC, American Geophysical Union, pp. 283–91. CrossRef | Google Scholar
Herzen, R., Davis, E. E., Fisher, A., Stein, C. A. and Pollack, H. N. (2005) Comments on Earth's heat fluxes. Tectonophysics Google Scholar, doi:10.1016/j.tecto.2005.08.003.
Further reading
Pollack, H., Hurter, S. and Johnson, J. (1993) Heat flow from the Earth's interior: analysis of the global data set. Rev. Geophys., 31 CrossRef | Google Scholar, 267–80.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 5273 *
Loading metrics...

Book summary page views

Total views: 12209 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 16th July 2025. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.