Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Light induces chromatin modification in cells of the mammalian circadian clock

Abstract

The mammalian circadian clock resides in neurons of the hypothalamic suprachiasmatic nucleus (SCN). Light entrains phase resetting of the clock using the retino-hypothalamic tract, via release of glutamate. Nighttime light exposure causes rapid, transient induction of clock and immediate–early genes implicated in phase-shifting the pacemaker. Here we show that a nighttime light pulse caused phosphorylation of Ser10 in histone H3's tail, in SCN clock cells. The effect of light was specific, and the kinetics of H3 phosphorylation were characteristic of the early response, paralleling c-fos and Per1 induction. Using fos-lacZ transgenic mice, we found that H3 phosphorylation and Fos induction occurRed in the same SCN neurons. Systemic treatment with the GABAB receptor agonist baclofen prevented light-induced c-fos and Per1 expression and H3 phosphorylation, indicating that one signaling pathway governs both events. Our results suggest that dynamic chromatin remodeling in the SCN occurs in response to a physiological stimulus in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time- and light-dependent phosphorylation of histone H3 in the suprachiasmatic nucleus.
Figure 2: Photic stimulation did not induce H3 phosphorylation in the pineal gland and in the retina.
Figure 3: Timing correlation of histone H3 phosphorylation and c-fos induction in the SCN.
Figure 4: Baclofen inhibits light-induced phosphorylation of histone H3 and induction of c-fos and Per1 gene expression in the SCN.
Figure 5: Baclofen induces histone H3 phosphorylation and c-fos expression in the supraoptic nuclei (SON) in a light-independent manner.

Similar content being viewed by others

References

  1. Klein, D., Moore, R. Y. & Reppert, S. M. Suprachiasmatic Nucleus: The Mind's Clock (Oxford Univ. Press, New York, 1991).

    Google Scholar 

  2. Dunlap, J. C. Molecular bases for circadian clocks. Cell 96, 271–290 (1999).

    Article  CAS  Google Scholar 

  3. Cermakian, N. & Sassone-Corsi, P. Multilevel regulation of the circadian clock. Nat. Reviews Mol. Cell Biol. 1, 59–67 (2000).

    Article  CAS  Google Scholar 

  4. Daan, S. & Pittendrigh, C. S. A functional analysis of circadian pacemakers in nocturnal rodents. II. The variability of phase response curves. J. Comp. Physiol. 106, 253–266 (1976).

    Article  Google Scholar 

  5. Moore, R. Y. & Lenn, N. Y. A retinohypothalamic projection in the rat. J. Comp. Neurol. 146, 1–14 (1972).

    Article  CAS  Google Scholar 

  6. Ding, J. M. et al. Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 266, 1713–1717 (1994).

    Article  CAS  Google Scholar 

  7. Card, J. P. & Moore, R. Y. Organization of lateral geniculate-hypothalamic connections in the rat. J. Comp. Neurol. 284, 135–147 (1989).

    Article  CAS  Google Scholar 

  8. Moore, R. Y. & Speh, J. C. GABA is the principal neurotransmitter of the circadian system. Neurosci. Lett. 150, 112–116 (1993).

    Article  CAS  Google Scholar 

  9. Pickard, G. E. & Rea, M. A. Serotonergic innervation of the hypothalamic suprachiasmatic nucleus and photic regulation of circadian rhythms. Biol. Cell 89, 513–523 (1997).

    Article  CAS  Google Scholar 

  10. Johnson, R. F., Moore, R. Y. & Morin, L. P. Loss of entrainment and anatomical plasticity after lesions of the hamster retinohypothalamic tract. Brain Res. 460, 297–313 (1988).

    Article  CAS  Google Scholar 

  11. Harrington, M. E. & Rusak, B. Lesions of the thalamic intergeniculate leaflet alter hamster circadian rhythms. J. Biol. Rhythms. 1, 309–325 (1986).

    Article  CAS  Google Scholar 

  12. Albrecht, U., Sun, Z. S., Eichele, G. & Lee, C. C. A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91, 1055–1064 (1997).

    Article  CAS  Google Scholar 

  13. Shearman, L. P., Zylka, M. J., Weaver, D. R., Kolakowski, L. F. Jr. & Reppert, S. M. Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19, 1261–1269 (1997).

    Article  CAS  Google Scholar 

  14. Kornhauser, J. M., Nelson, D. E., Mayo, K. E. & Takahashi, J. S. Photic and circadian regulation of c-fos gene expression in the hamster suprachiasmatic nucleus. Neuron 5, 127–134 (1990).

    Article  CAS  Google Scholar 

  15. Morris, M. E., Viswanathan, N., Kuhlman, S., Davis, F. C. & Weitz, C. J. A screen for genes induced in the suprachiasmatic nucleus by light. Science 279, 1544–1547 (1998).

    Article  CAS  Google Scholar 

  16. Wollnik, F. et al. Block of c-Fos and JunB expression by antisense oligonucleotides inhibits light-induced phase shifts of the mammalian circadian clock. Eur. J. Neurosci. 7, 388–393 (1995).

    Article  CAS  Google Scholar 

  17. Akiyama, M. et al. Inhibition of light- or glutamate-induced mPer1 expression represses the phase shifts into the mouse circadian locomotor and suprachiasmatic firing rhythms. J. Neurosci. 19, 1115–1121 (1999).

    Article  CAS  Google Scholar 

  18. Obrietan, K., Impey, S. & Storm, D. R. Light and circadian rhythmicity regulate MAP kinase activation in the suprachiasmatic nuclei. Nat. Neurosci. 1, 693–700 (1998).

    Article  CAS  Google Scholar 

  19. Ginty, D. D. et al. Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 260, 238–241 (1993).

    Article  CAS  Google Scholar 

  20. De Cesare, D., Fimia, G. M. & Sassone-Corsi, P. Signaling routes to CREM and CREB: plasticity in transcriptional activation. Trends Biochem. Sci. 24, 281–285 (1999).

    Article  CAS  Google Scholar 

  21. Belvin, M. P., Zhou, H. & Yin, J. C. The Drosophila dCREB2 gene affects the circadian clock. Neuron 22, 777–787 (1999).

    Article  CAS  Google Scholar 

  22. Obrietan, K., Impey, S., Smith, D., Athos, J. & Storm, D. R. Circadian regulation of cAMP response element-mediated gene expression in the suprachiasmatic nuclei. J. Biol. Chem. 274, 17748–17756 (1999).

    Article  CAS  Google Scholar 

  23. Cheung, P., Allis, C. D. & Sassone-Corsi, P. Signaling to chromatin through histone modifications. Cell 103, 263–271 (2000).

    Article  CAS  Google Scholar 

  24. Workman, J. L. & Kingston, R. E. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67, 545–579 (1998).

    Article  CAS  Google Scholar 

  25. Sassone-Corsi, P. et al. Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science 285, 886–891 (1999).

    Article  CAS  Google Scholar 

  26. Thomson, S. et al. The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. EMBO J. 18, 4779–4793 (1999).

    Article  CAS  Google Scholar 

  27. De Cesare, D., Jacquot, S., Hanauer, A. & Sassone-Corsi, P. Rsk-2 activity is necessary for epidermal growth factor-induced phosphorylation of CREB protein and transcription of c-fos gene. Proc. Natl. Acad. Sci. USA 95, 12202–12207 (1998).

    Article  CAS  Google Scholar 

  28. Cheung, P. et al. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor. Mol. Cell 5, 905–915 (2000).

    Article  CAS  Google Scholar 

  29. Colwell, C. S., Kaufman, C. M. & Menaker, M. Photic induction of Fos in the hamster suprachiasmatic nucleus is inhibited by baclofen but not by diazepam or bicucullin. Neurosci. Lett. 163, 177–181 (1993).

    Article  CAS  Google Scholar 

  30. Gillespie, C. F. et al. GABAergic regulation of light-induced c-Fos immunoreactivity within the suprachiasmatic nucleus. J. Comp. Neurol. 411, 683–692 (1999).

    Article  CAS  Google Scholar 

  31. Hendzel, M. J. et al. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106, 348–360 (1997).

    Article  CAS  Google Scholar 

  32. Silver, R. et al. Multiple regulatory elements result in regional specificity in circadian rhythms of neuropeptide expression in mouse SCN. Neuroreport 10, 3165–3174 (1999).

    Article  CAS  Google Scholar 

  33. Robertson, L. M. et al. Regulation of c-fos expression in transgenic mice requires multiple interdependent transcription control elements. Neuron 14, 241–252 (1995).

    Article  CAS  Google Scholar 

  34. Cui, L. N., Saeb-Parsy, K. & Dyball, R. E. Neurones in the supraoptic nucleus of the rat are regulated by a projection from the suprachiasmatic nucleus. J. Physiol. (Lond.) 502, 149–159 (1997).

    Article  CAS  Google Scholar 

  35. Cui, L. N., Coderre, E. & Renaud, L. P. GABA(B) presynaptically modulates suprachiasmatic input to hypothalamic paraventricular magnocellular neurons. Am. J. Physiol. 278, R1210–1216 (2000).

    CAS  Google Scholar 

  36. Wang, K., Guldenaar, S. E. & McCabe, J. T. Fos and Jun expression in rat supraoptic nucleus neurons after acute vs. repeated osmotic stimulation. Brain Res. 746, 117–125 (1997).

    Article  CAS  Google Scholar 

  37. Berquin, P., Bodineau, L., Gros, F. & Larnicol, N. Brainstem and hypothalamic areas involved in respiratory chemoreflexes: a Fos study in adult rats. Brain Res. 857, 30–40 (2000).

    Article  CAS  Google Scholar 

  38. Honrado, G. I. et al. The circadian system of c-fos deficient mice. J. Comp. Physiol. A 178, 563–570 (1996).

    Article  CAS  Google Scholar 

  39. Colwell, C. S., Kaufman, C. M. & Menaker, M. Phase-shifting mechanisms in the mammalian circadian system: new light on the carbachol paradox. J. Neurosci. 13, 1454–1459 (1993).

    Article  CAS  Google Scholar 

  40. Weber, E. T., Gannon, R. L., Michel, A. M., Gillette, M. U. & Rea, M. A. Nitric oxide synthase inhibitor blocks light-induced phase shifts of the circadian activity rhythm, but not c-fos expression in the suprachiasmatic nucleus of the Syrian hamster. Brain Res. 692, 137–142 (1995).

    Article  CAS  Google Scholar 

  41. Xing, J., Ginty, D. D. & Greenberg, M. E. Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 273, 959–963 (1996).

    Article  CAS  Google Scholar 

  42. Hollmann, M. & Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108 (1994).

    Article  CAS  Google Scholar 

  43. Bormann, J. The 'ABC' of GABA receptors. Trends Pharmacol. Sci. 21, 16–19 (2000).

    Article  CAS  Google Scholar 

  44. Bourque, C. W. & Oliet, S. H. Osmoreceptors in the central nervous system. Annu. Rev. Physiol. 59, 601–619 (1997).

    Article  CAS  Google Scholar 

  45. Liu, C. & Reppert, S. M. GABA synchronizes clock cells within the suprachiasmatic circadian clock. Neuron 25, 123–128 (2000).

    Article  CAS  Google Scholar 

  46. Shinohara, K., Hiruma, H., Funabashi, T. & Kimura, F. GABAergic modulation of gap junction communication in slice cultures of the rat suprachiasmatic nucleus. Neuroscience 96, 591–596 (2000).

    Article  CAS  Google Scholar 

  47. Shibata, K., Inagaki, M. & Ajiro, K. Mitosis-specific histone H3 phosphorylation in vitro in nucleosome structures. Eur. J. Biochem. 192, 87–93 (1990).

    Article  CAS  Google Scholar 

  48. Ceriani, M. F. et al. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science 285, 553–556 (1999).

    Article  CAS  Google Scholar 

  49. van der Horst, G. T. et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398, 627–630 (1999).

    Article  CAS  Google Scholar 

  50. Whitmore, D., Foulkes, N. S. & Sassone-Corsi, P. Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature 404, 87–91 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Curran for the fos-lacZ transgenic mouse line. We thank H. Tei for the mPer1 cDNA, J. L. Vonesch for advice with confocal microscopy, E. Borrelli for reading the manuscript and E. Heitz and M. Rastegar for technical assistance. We thank Z. Travnickova, D. Whitmore, N. Foulkes, M. Pando and all members of the Sassone-Corsi laboratory for discussions and help. C.C. is supported by a postdoctoral fellowship from the European Community and N.C. by a Human Frontier Science Program long-term fellowship and a Canadian Institutes of Health Research postdoctoral fellowship. This work was supported by grants from Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire Régional, Fondation de la Recherche Médicale, Université Louis Pasteur, Human Frontier Science Program, Organon (Akzo/Nobel) and Association pour la Recherche sur le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Sassone-Corsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crosio, C., Cermakian, N., Allis, C. et al. Light induces chromatin modification in cells of the mammalian circadian clock. Nat Neurosci 3, 1241–1247 (2000). https://doi.org/10.1038/81767

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/81767

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing