Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neutrophils at work

Abstract

In this Review we discuss data demonstrating recently recognized aspects of neutrophil homeostasis in the steady state, granulopoiesis in 'emergency' conditions and interactions of neutrophils with the adaptive immune system. We explore in vivo observations of the recruitment of neutrophils from blood to tissues in models of blood-borne infections versus bacterial invasion through epithelial linings. We examine data on novel aspects of the activation of NADPH oxidase and the heterogeneity of phagosomes and, finally, consider the importance of two neutrophil-derived biological agents: neutrophil extracellular traps and ectosomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tissue-specific recruitment of neutrophils.
Figure 2: Interfaces between neutrophils and elements of adaptive immunity.
Figure 3: Neutrophil ectosomes provide long-range signaling to modulate inflammation.

Similar content being viewed by others

References

  1. Ding, L., Saunders, T.L., Enikolopov, G. & Morrison, S.J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481, 457–462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ding, L. & Morrison, S.J. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495, 231–235 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bachelerie, F. et al. International Union of Pharmacology. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol. Rev. 66, 1–79 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hopman, R.K. & Dipersio, J.F. Advances in stem cell mobilization. Blood Rev. 28, 31–40 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tittel, A.P. et al. Functionally relevant neutrophilia in CD11c diphtheria toxin receptor transgenic mice. Nat. Methods 9, 385–390 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Jiao, J. et al. Central role of conventional dendritic cells in regulation of bone marrow release and survival of neutrophils. J. Immunol. 192, 3374–3382 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Autenrieth, S.E. et al. Depletion of dendritic cells enhances innate anti-bacterial host defense through modulation of phagocyte homeostasis. PLoS Pathog. 8, e1002552 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Efron, P.A. et al. Characterization of the systemic loss of dendritic cells in murine lymph nodes during polymicrobial sepsis. J. Immunol. 173, 3035–3043 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Bugl, S., Wirths, S., Muller, M.R., Radsak, M.P. & Kopp, H.G. Current insights into neutrophil homeostasis. Ann. NY Acad. Sci. 1266, 171–178 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Strydom, N. & Rankin, S.M. Regulation of circulating neutrophil numbers under homeostasis and in disease. J. Innate Immun. 5, 304–314 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gonzalez, N. et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31, 245–258 (2009).

    Article  CAS  Google Scholar 

  12. Stark, M.A. et al. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22, 285–294 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. von Vietinghoff, S. & Ley, K. IL-17A controls IL-17F production and maintains blood neutrophil counts in mice. J. Immunol. 183, 865–873 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Hirai, H. et al. C/EBPbeta is required for 'emergency' granulopoiesis. Nat. Immunol. 7, 732–739 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Hirai, H. et al. Cyclic AMP responsive element binding proteins are involved in 'emergency' granulopoiesis through the upregulation of CCAAT/enhancer binding protein beta. PLoS ONE 8, e54862 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim, M.H. et al. Neutrophil survival and c-kit+-progenitor proliferation in Staphylococcus aureus-infected skin wounds promote resolution. Blood 117, 3343–3352 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bugl, S. et al. Steady-state neutrophil homeostasis is dependent on TLR4/TRIF signaling. Blood 121, 723–733 (2013).Neutropenia induces a rise in G-CSF that is independent of the IL-23–IL-17 axis but is dependent on TLR4 signaling via the adaptor TRIF but not via MyD88.

    Article  CAS  PubMed  Google Scholar 

  18. Manz, M.G. & Boettcher, S. Emergency granulopoiesis. Nat. Rev. Immunol. 14, 302–314 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Casanova-Acebes, M. et al. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 153, 1025–1035 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Scheiermann, C. et al. Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity 37, 290–301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weisel, K.C. et al. Modulation of CXC chemokine receptor expression and function in human neutrophils during aging in vitro suggests a role in their clearance from circulation. Mediators Inflamm. 2009, 790174 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pillay, J. et al. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J. Clin. Invest. 122, 327–336 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Sapey, E. et al. Phosphoinositide 3-kinase inhibition restores neutrophil accuracy in the elderly: toward targeted treatments for immunosenescence. Blood 123, 239–248 (2014).Neutrophils from elderly humans fail to focus direction during chemotaxis and secrete excess proteases due to uniform increases in the lipid kinase PI(3)K; this can be reverted to normal by inhibitors of PI(3)K.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Athens, J.W. et al. Leukokinetic studies. IV. The total blood, circulating and marginal granulocyte pools and the granulocyte turnover rate in normal subjects. J. Clin. Invest. 40, 989–995 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boxer, L.A., Allen, J.M. & Baehner, R.L. Diminished polymorphonuclear leukocyte adherence. Function dependent on release of cyclic AMP by endothelial cells after stimulation of beta-receptors by epinephrine. J. Clin. Invest. 66, 268–274 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bierman, H.R., Kelly, K.H., King, F.W. & Petrakis, N.L. The pulmonary circulation as a source of leucocytes and platelets in man. Science 114, 276–277 (1951).

    Article  CAS  PubMed  Google Scholar 

  27. Bierman, H.R. et al. The release of leukocytes and platelets from the pulmonary circulation by epinephrine. Blood 7, 683–692 (1952).

    Article  CAS  PubMed  Google Scholar 

  28. Kreisel, D. et al. In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. Proc. Natl. Acad. Sci. USA 107, 18073–18078 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Devi, S. et al. Neutrophil mobilization via plerixafor-mediated CXCR4 inhibition arises from lung demargination and blockade of neutrophil homing to the bone marrow. J. Exp. Med. 210, 2321–2336 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Misselwitz, B., Bachli, E.B., Kaiser, P., Fehr, J. & Goede, J.S. Diagnosis of hypersplenism with the epinephrine stimulation test - 23 years of experience at a tertiary care hospital. Swiss Med. Wkly. 141, w13324 (2012).

    PubMed  Google Scholar 

  31. Schramm, R. & Thorlacius, H. Neutrophil recruitment in mast cell-dependent inflammation: inhibitory mechanisms of glucocorticoids. Inflamm. Res. 53, 644–652 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Sundd, P. et al. 'Slings' enable neutrophil rolling at high shear. Nature 488, 399–403 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ramachandran, V., Williams, M., Yago, T., Schmidtke, D.W. & McEver, R.P. Dynamic alterations of membrane tethers stabilize leukocyte rolling on P-selectin. Proc. Natl. Acad. Sci. USA 101, 13519–13524 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nourshargh, S., Hordijk, P.L. & Sixt, M. Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. Nat. Rev. Mol. Cell Biol. 11, 366–378 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Woodfin, A., Voisin, M.B. & Nourshargh, S. Recent developments and complexities in neutrophil transmigration. Curr. Opin. Hematol. 17, 9–17 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Allingham, M.J., van Buul, J.D. & Burridge, K. ICAM-1-mediated, Src- and Pyk2-dependent vascular endothelial cadherin tyrosine phosphorylation is required for leukocyte transendothelial migration. J. Immunol. 179, 4053–4064 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Borregaard, N. Neutrophils, from marrow to microbes. Immunity 33, 657–670 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Broermann, A. et al. Dissociation of VE-PTP from VE-cadherin is required for leukocyte extravasation and for VEGF-induced vascular permeability in vivo. J. Exp. Med. 208, 2393–2401 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Woodfin, A. et al. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nat. Immunol. 12, 761–769 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, G. et al. ICAM-1-activated Src and eNOS signaling increase endothelial cell surface PECAM-1 adhesivity and neutrophil transmigration. Blood 120, 1942–1952 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hirschi, K.K. & D'Amore, P.A. Pericytes in the microvasculature. Cardiovasc. Res. 32, 687–698 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Proebstl, D. et al. Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J. Exp. Med. 209, 1219–1234 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stark, K. et al. Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and 'instruct' them with pattern-recognition and motility programs. Nat. Immunol. 14, 41–51 (2013).A subset of pericytes direct extravasated neutrophils as they migrate through interstitium to the focus of inflammation; this finding assigns an important role to these pericytes in coordinated phagocyte migration in host defense.

    Article  CAS  PubMed  Google Scholar 

  45. Rossaint, J. & Zarbock, A. Tissue-specific neutrophil recruitment into the lung, liver, and kidney. J. Innate Immun. 5, 348–357 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. De Filippo, K. et al. Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood 121, 4930–4937 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Schiwon, M. et al. Crosstalk between sentinel and helper macrophages permits neutrophil migration into infected uroepithelium. Cell 156, 456–468 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hyun, Y.M. et al. Uropod elongation is a common final step in leukocyte extravasation through inflamed vessels. J. Exp. Med. 209, 1349–1362 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Briheim, G., Coble, B., Stendahl, O. & Dahlgren, C. Exudate polymorphonuclear leukocytes isolated from skin chambers are primed for enhanced response to subsequent stimulation with chemoattractant f-Met-Leu-Phe and C3-opsonized yeast particles. Inflammation 12, 141–152 (1988).

    Article  CAS  PubMed  Google Scholar 

  50. Christenson, K. et al. In vivo-transmigrated human neutrophils are resistant to antiapoptotic stimulation. J. Leukoc. Biol. 90, 1055–1063 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Kuhns, D.B. & Gallin, J.I. Increased cell-associated IL-8 in human exudative and A23187-treated peripheral blood neutrophils. J. Immunol. 154, 6556–6562 (1995).

    CAS  PubMed  Google Scholar 

  52. Theilgaard-Mönch, K., Knudsen, S., Follin, P. & Borregaard, N. The transcriptional activation program of human neutrophils in skin lesions supports their important role in wound healing. J. Immunol. 172, 7684–7693 (2004).

    Article  PubMed  Google Scholar 

  53. Mantovani, A., Cassatella, M.A., Costantini, C. & Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 11, 519–531 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. van de Vijver, E., van den Berg, T.K. & Kuijpers, T.W. Leukocyte adhesion deficiencies. Hematol. Oncol. Clin. North Am. 27, 101–116 (2013).

    Article  PubMed  Google Scholar 

  55. Harris, E.S., Weyrich, A.S. & Zimmerman, G.A. Lessons from rare maladies: leukocyte adhesion deficiency syndromes. Curr. Opin. Hematol. 20, 16–25 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hanna, S. & Etzioni, A. Leukocyte adhesion deficiencies. Ann. NY Acad. Sci. 1250, 50–55 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Roller, J. et al. Direct in vivo observations of P-selectin glycoprotein ligand-1-mediated leukocyte-endothelial cell interactions in the pulmonary microvasculature in abdominal sepsis in mice. Inflamm. Res. 62, 275–282 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. McDonald, B., Jenne, C.N., Zhuo, L., Kimata, K. & Kubes, P. Kupffer cells and activation of endothelial TLR4 coordinate neutrophil adhesion within liver sinusoids during endotoxemia. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G797–G806 (2013).Lipopolysaccharide activates TLR4 on endothelial cells, which results in the generation of hyaluronan with enhanced capacity to capture neutrophils. This finding provides a paradigm for how blood-borne microorganisms recruit neutrophils to internal organs.

    Article  CAS  PubMed  Google Scholar 

  59. Yoshioka, Y. et al. Suppression of hyaluronan synthesis alleviates inflammatory responses in murine arthritis and in human rheumatoid synovial fibroblasts. Arthritis Rheum. 65, 1160–1170 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Zhuo, L. et al. SHAP potentiates the CD44-mediated leukocyte adhesion to the hyaluronan substratum. J. Biol. Chem. 281, 20303–20314 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Lesley, J., Hyman, R. & Kincade, P.W. CD44 and its interaction with extracellular matrix. Adv. Immunol. 54, 271–335 (1993).

    Article  CAS  PubMed  Google Scholar 

  62. Lesley, J. et al. Requirements for hyaluronic acid binding by CD44: a role for the cytoplasmic domain and activation by antibody. J. Exp. Med. 175, 257–266 (1992).

    Article  CAS  PubMed  Google Scholar 

  63. Jenne, C.N. et al. Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe 13, 169–180 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Lämmermann, T. et al. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498, 371–375 (2013).Neutrophil-generated leukotrienes serve to relay stimulatory signals that engage and recruit neutrophils from as far as 200 mm from the initial site of tissue injury.

    Article  CAS  PubMed  Google Scholar 

  65. Beauvillain, C. et al. CCR7 is involved in the migration of neutrophils to lymph nodes. Blood 117, 1196–1204 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Yang, C.W., Strong, B.S., Miller, M.J. & Unanue, E.R. Neutrophils influence the level of antigen presentation during the immune response to protein antigens in adjuvants. J. Immunol. 185, 2927–2934 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Yang, C.W. & Unanue, E.R. Neutrophils control the magnitude and spread of the immune response in a thromboxane A2-mediated process. J. Exp. Med. 210, 375–387 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Klebanoff, S.J., Kettle, A.J., Rosen, H., Winterbourn, C.C. & Nauseef, W.M. Myeloperoxidase: a front-line defender against phagocytosed microorganisms. J. Leukoc. Biol. 93, 185–198 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Odobasic, D. et al. Neutrophil myeloperoxidase regulates T-cell-driven tissue inflammation in mice by inhibiting dendritic cell function. Blood 121, 4195–4204 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Blomgran, R. & Ernst, J.D. Lung neutrophils facilitate activation of naive antigen-specific CD4+ T cells during Mycobacterium tuberculosis infection. J. Immunol. 186, 7110–7119 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Puga, I. et al. B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat. Immunol. 13, 170–180 (2012).

    Article  CAS  Google Scholar 

  72. Duffy, D. et al. Neutrophils transport antigen from the dermis to the bone marrow, initiating a source of memory CD8+ T cells. Immunity 37, 917–929 (2012).Neutrophils homing back from the epidermis to the bone marrow carry antigen to support generation of memory T cells, bypassing local DCs and lymph nodes.

    Article  CAS  PubMed  Google Scholar 

  73. Geng, S. et al. Emergence, origin, and function of neutrophil-dendritic cell hybrids in experimentally induced inflammatory lesions in mice. Blood 121, 1690–1700 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Matsushima, H. et al. Neutrophil differentiation into a unique hybrid population exhibiting dual phenotype and functionality of neutrophils and dendritic cells. Blood 121, 1677–1689 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Peters, J.H. et al. Signals required for differentiating dendritic cells from human monocytes in vitro. Adv. Exp. Med. Biol. 329, 275–280 (1993).

    Article  CAS  PubMed  Google Scholar 

  76. Müller, I., Munder, M., Kropf, P. & Hansch, G.M. Polymorphonuclear neutrophils and T lymphocytes: strange bedfellows or brothers in arms? Trends Immunol. 30, 522–530 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Jaeger, B.N. et al. Neutrophil depletion impairs natural killer cell maturation, function, and homeostasis. J. Exp. Med. 209, 565–580 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nauseef, W.M. Biological roles for the NOX family NADPH oxidases. J. Biol. Chem. 283, 16961–16965 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wientjes, F.B., Hsuan, J.J., Totty, N.F. & Segal, A.W. p40phox, a third cytosolic component of the activation complex of the NADPH oxidase to contain src homology 3 domains. Biochem. J. 296, 557–561 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Papayannopoulos, V., Metzler, K.D., Hakkim, A. & Zychlinsky, A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol. 191, 677–691 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kanai, F. et al. The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nat. Cell Biol. 3, 675–678 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Bissonnette, S.A. et al. Phosphatidylinositol 3-phosphate-dependent and -independent functions of p40phox in activation of the neutrophil NADPH oxidase. J. Biol. Chem. 283, 2108–2119 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Ellson, C., Davidson, K., Anderson, K., Stephens, L.R. & Hawkins, P.T. PtdIns3P binding to the PX domain of p40phox is a physiological signal in NADPH oxidase activation. EMBO J. 25, 4468–4478 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ellson, C.D. et al. PtdIns3P regulates the neutrophil oxidase complex by binding to the PX domain of p40phox. Nat. Cell Biol. 3, 679–682 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Ellson, C.D. et al. Neutrophils from p40phox−/− mice exhibit severe defects in NADPH oxidase regulation and oxidant-dependent bacterial killing. J. Exp. Med. 203, 1927–1937 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vieira, O.V. et al. Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J. Cell Biol. 155, 19–25 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Matute, J.D. et al. A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40phox and selective defects in neutrophil NADPH oxidase activity. Blood 114, 3309–3315 (2009).The first patient identified with CGD due to dysfunctional p40phox demonstrates the specialized role for p40phox in targeting nascent phagosomes for the assembly and activity of NADPH oxidase. In addition, the clinical phenotype differs markedly from that typical of CGD, as infections were not a dominant feature, and the underlying abnormality, a mutation resulting in a substitution in the PX domain, represents the first such mutation to result in clinical disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Holland, S.M. Chronic granulomatous disease. Hematol. Oncol. Clin. North Am. 27, 89–99 (2013).

    Article  PubMed  Google Scholar 

  89. Conway, K.L. et al. p40phox expression regulates neutrophil recruitment and function during the resolution phase of intestinal inflammation. J. Immunol. 189, 3631–3640 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Winkelstein, J.A. et al. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore) 79, 155–169 (2000).

    Article  CAS  Google Scholar 

  91. Marks, D.J. et al. Inflammatory bowel disease in CGD reproduces the clinicopathological features of Crohn's disease. Am. J. Gastroenterol. 104, 117–124 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Campbell, E.L. et al. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity 40, 66–77 (2014).This study ties the consumption of oxygen by neutrophils, rather than their oxidant production, to the integrity of the gut epithelial barrier. These novel findings may provide insight into the widely recognized association of CGD and inflammatory colitis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Voetman, A.A. et al. Phagocytosing human neutrophils inactivate their own granular enzymes. J. Clin. Invest. 67, 1541–1549 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jankowski, A. & Grinstein, S. A noninvasive fluorimetric procedure for measurement of membrane potential. Quantification of the NADPH oxidase-induced depolarization in activated neutrophils. J. Biol. Chem. 274, 26098–26104 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. DeCoursey, T.E., Morgan, D. & Cherny, V.V. The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels. Nature 422, 531–534 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. DeCoursey, T.E. Voltage-gated proton channels: molecular biology, physiology, and pathophysiology of the H(V) family. Physiol. Rev. 93, 599–652 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Petheo, G.L. et al. Molecular and functional characterization of Hv1 proton channel in human granulocytes. PLoS ONE 5, e14081 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Okochi, Y., Sasaki, M., Iwasaki, H. & Okamura, Y. Voltage-gated proton channel is expressed on phagosomes. Biochem. Biophys. Res. Commun. 382, 274–279 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Ramsey, I.S., Ruchti, E., Kaczmarek, J.S. & Clapham, D.E. Hv1 proton channels are required for high-level NADPH oxidase-dependent superoxide production during the phagocyte respiratory burst. Proc. Natl. Acad. Sci. USA 106, 7642–7647 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  100. El Chemaly, A. et al. VSOP/Hv1 proton channels sustain calcium entry, neutrophil migration, and superoxide production by limiting cell depolarization and acidification. J. Exp. Med. 207, 129–139 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. El Chemaly, A., Nunes, P., Jimaja, W., Castelbou, C. & Demaurex, N. Hv1 proton channels differentially regulate the pH of neutrophil and macrophage phagosomes by sustaining the production of phagosomal ROS that inhibit the delivery of vacuolar ATPases. J. Leukoc. Biol (2014).

  102. Aiken, M.L., Painter, R.G., Zhou, Y. & Wang, G. Chloride transport in functionally active phagosomes isolated from Human neutrophils. Free Radic. Biol. Med. 53, 2308–2317 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Painter, R.G. et al. CFTR-mediated halide transport in phagosomes of human neutrophils. J. Leukoc. Biol. 87, 933–942 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Painter, R.G. et al. CFTR expression in human neutrophils and the phagolysosomal chlorination defect in cystic fibrosis. Biochemistry 45, 10260–10269 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Moreland, J.G., Davis, A.P., Bailey, G., Nauseef, W.M. & Lamb, F.S. Anion channels, including ClC-3, are required for normal neutrophil oxidative function, phagocytosis, and transendothelial migration. J. Biol. Chem. 281, 12277–12288 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Sun, Y.T., Shieh, C.C., Delpire, E. & Shen, M.R.K. +-Cl- cotransport mediates the bactericidal activity of neutrophils by regulating NADPH oxidase activation. J. Physiol. (Lond.) 590, 3231–3243 (2012).

    Article  CAS  Google Scholar 

  107. Moriceau, S., Lenoir, G. & Witko-Sarsat, V. In cystic fibrosis homozygotes and heterozygotes, neutrophil apoptosis is delayed and modulated by diamide or roscovitine: evidence for an innate neutrophil disturbance. J. Innate Immun. 2, 260–266 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Hayes, E., Pohl, K., McElvaney, N.G. & Reeves, E.P. The cystic fibrosis neutrophil: a specialized yet potentially defective cell. Arch. Immunol. Ther. Exp. (Warsz.) 59, 97–112 (2011).

    Article  Google Scholar 

  109. Dewitt, S., Laffafian, I. & Hallett, M.B. Phagosomal oxidative activity during β2 integrin (CR3)-mediated phagocytosis by neutrophils is triggered by a non-restricted Ca2+ signal: Ca2+ controls time not space. J. Cell Sci. 116, 2857–2865 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Jaconi, M.E. et al. Cytosolic free calcium elevation mediates the phagosome-lysosome fusion during phagocytosis in human neutrophils. J. Cell Biol. 110, 1555–1564 (1990).

    Article  CAS  PubMed  Google Scholar 

  111. Sawyer, D.W., Sullivan, J.A. & Mandell, G.L. Intracellular free calcium localization in neutrophils during phagocytosis. Science 230, 663–666 (1985).

    Article  CAS  PubMed  Google Scholar 

  112. Roos, J. et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol. 169, 435–445 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Berna-Erro, A., Woodard, G.E. & Rosado, J.A. Orais and STIMs: physiological mechanisms and disease. J. Cell. Mol. Med. 16, 407–424 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Nunes, P. et al. STIM1 juxtaposes ER to phagosomes, generating Ca2+ hotspots that boost phagocytosis. Curr. Biol. 22, 1990–1997 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Zhang, H. et al. The STIM1 calcium sensor is required for activation of the phagocyte oxidase during inflammation and host defense. Blood 123, 2238–2249 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Steinckwich, N., Schenten, V., Melchior, C., Brechard, S. & Tschirhart, E.J. An essential role of STIM1, Orai1, and S100A8–A9 proteins for Ca2+ signaling and FcγR-mediated phagosomal oxidative activity. J. Immunol. 186, 2182–2191 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Feske, S., Skolnik, E.Y. & Prakriya, M. Ion channels and transporters in lymphocyte function and immunity. Nat. Rev. Immunol. 12, 532–547 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Griffiths, G. On phagosome individuality and membrane signalling networks. Trends Cell Biol. 14, 343–351 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Schwartz, J., Leidal, K.G., Femling, J.K., Weiss, J.P. & Nauseef, W.M. Neutrophil bleaching of GFP-expressing staphylococci: probing the intraphagosomal fate of individual bacteria. J. Immunol. 183, 2632–2641 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Schlam, D. et al. Diacylglycerol kinases terminate diacylglycerol signaling during the respiratory burst leading to heterogeneous phagosomal NADPH oxidase activation. J. Biol. Chem. 288, 23090–23104 (2013).This sophisticated application of fluorescent biosensors to investigate the biochemical basis of the heterogeneity among phagosomes demonstrates a critical link between local production of diacylglycerol and NADPH oxidase activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Greenlee-Wacker, M.C. et al. Phagocytosis of Staphylococcus aureus by human neutrophils prevents macrophage efferocytosis and induces programmed necrosis. J. Immunol. 192, 4709–4717 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Miyake, Y. & Yamasaki, S. Sensing necrotic cells. Adv. Exp. Med. Biol. 738, 144–152 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Fuchs, T.A. et al. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176, 231–241 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang, Y. et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J. Cell Biol. 184, 205–213 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Li, P. et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 207, 1853–1862 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Metzler, K.D. et al. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood 117, 953–959 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hakkim, A. et al. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat. Chem. Biol. 7, 75–77 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Bianchi, M. et al. Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood 114, 2619–2622 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Stasia, M.J. et al. Functional and genetic characterization of two extremely rare cases of Williams-Beuren syndrome associated with chronic granulomatous disease. Eur. J. Hum. Genet. 21, 1079–1084 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Haneke, E. The Papillon-Lefevre syndrome: keratosis palmoplantaris with periodontopathy. Report of a case and review of the cases in the literature. Hum. Genet. 51, 1–35 (1979).

    Article  CAS  PubMed  Google Scholar 

  132. McDonald, B., Urrutia, R., Yipp, B.G., Jenne, C.N. & Kubes, P. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe 12, 324–333 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Urban, C.F., Reichard, U., Brinkmann, V. & Zychlinsky, A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell. Microbiol. 8, 668–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Saitoh, T. et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe 12, 109–116 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Menegazzi, R., Decleva, E. & Dri, P. Killing by neutrophil extracellular traps: fact or folklore? Blood 119, 1214–1216 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Parker, H., Albrett, A.M., Kettle, A.J. & Winterbourn, C.C. Myeloperoxidase associated with neutrophil extracellular traps is active and mediates bacterial killing in the presence of hydrogen peroxide. J. Leukoc. Biol. 91, 369–376 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Kaplan, M.J. Role of neutrophils in systemic autoimmune diseases. Arthritis Res. Ther. 15, 219 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sangaletti, S. et al. Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloid dendritic cells toward ANCA induction and associated autoimmunity. Blood 120, 3007–3018 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Zandman-Goddard, G. & Shoenfeld, Y. Infections and SLE. Autoimmunity 38, 473–485 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Clark, S.R. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 13, 463–469 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Saffarzadeh, M. et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS ONE 7, e32366 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rossaint, J. et al. Synchronized integrin engagement and chemokine activation is crucial in neutrophil extracellular trap-mediated sterile inflammation. Blood 123, 2573–2584 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Yipp, B.G. et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat. Med. 18, 1386–1393 (2012).Neutrophils ingesting complement-activated bacteria by phagocytosis extrude DNA to form NETs but maintain cellular integrity as anuclear cells able to migrate and undertake phagocytosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yipp, B.G. & Kubes, P. NETosis: how vital is it? Blood 122, 2784–2794 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Roos, D., Voetman, A.A. & Meerhof, L.J. Functional activity of enucleated human polymorphonuclear leukocytes. J. Cell Biol. 97, 368–377 (1983).

    Article  CAS  PubMed  Google Scholar 

  146. Malawista, S.E. & de Boisfleury, C.A. The cytokineplast: purified, stable, and functional motile machinery from human blood polymorphonuclear leukocytes. J. Cell Biol. 95, 960–973 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Eken, C., Sadallah, S., Martin, P.J., Treves, S. & Schifferli, J.A. Ectosomes of polymorphonuclear neutrophils activate multiple signaling pathways in macrophages. Immunobiology 218, 382–392 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Sadallah, S., Eken, C. & Schifferli, J.A. Ectosomes as modulators of inflammation and immunity. Clin. Exp. Immunol. 163, 26–32 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hess, C., Sadallah, S., Hefti, A., Landmann, R. & Schifferli, J.A. Ectosomes released by human neutrophils are specialized functional units. J. Immunol. 163, 4564–4573 (1999).

    CAS  PubMed  Google Scholar 

  150. Gasser, O. & Schifferli, J.A. Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood 104, 2543–2548 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Angelillo-Scherrer, A. Leukocyte-derived microparticles in vascular homeostasis. Circ. Res. 110, 356–369 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Gasser, O. et al. Characterisation and properties of ectosomes released by human polymorphonuclear neutrophils. Exp. Cell Res. 285, 243–257 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Dalli, J. et al. Heterogeneity in neutrophil microparticles reveals distinct proteome and functional properties. Mol. Cell. Proteomics 12, 2205–2219 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mesri, M. & Altieri, D.C. Leukocyte microparticles stimulate endothelial cell cytokine release and tissue factor induction in a JNK1 signaling pathway. J. Biol. Chem. 274, 23111–23118 (1999).

    Article  CAS  PubMed  Google Scholar 

  155. Watanabe, J. et al. Endotoxins stimulate neutrophil adhesion followed by synthesis and release of platelet-activating factor in microparticles. J. Biol. Chem. 278, 33161–33168 (2003).

    Article  CAS  PubMed  Google Scholar 

  156. Pluskota, E. et al. Expression, activation, and function of integrin αMβ2 (Mac-1) on neutrophil-derived microparticles. Blood 112, 2327–2335 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Dalli, J. et al. Annexin 1 mediates the rapid anti-inflammatory effects of neutrophil-derived microparticles. Blood 112, 2512–2519 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. Eken, C. et al. Ectosomes released by polymorphonuclear neutrophils induce a MerTK-dependent anti-inflammatory pathway in macrophages. J. Biol. Chem. 285, 39914–39921 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Dengler, V., Downey, G.P., Tuder, R.M., Eltzschig, H.K. & Schmidt, E.P. Neutrophil intercellular communication in acute lung injury. Emerging roles of microparticles and gap junctions. Am. J. Respir. Cell Mol. Biol. 49, 1–5 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Pliyev, B.K., Kalintseva, M.V., Abdulaeva, S.V., Yarygin, K.N. & Savchenko, V.G. Neutrophil microparticles modulate cytokine production by natural killer cells. Cytokine 65, 126–129 (2014).

    Article  CAS  PubMed  Google Scholar 

  161. Dalli, J. et al. Microparticle α2-macroglobulin enhances pro-resolving responses and promotes survival in sepsis. EMBO Mol. Med. 6, 27–42 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Timár, C.I. et al. Antibacterial effect of microvesicles released from human neutrophilic granulocytes. Blood 121, 510–518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by grants from The Danish Medical Research Council (N.B.), the US National Institutes of Health (AI070958 and AI044642 to W.M.N.), the Merit Review program and use of facilities at the Iowa City Department of Veterans Affairs Medical Center (the Nauseef laboratory).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to William M Nauseef or Niels Borregaard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nauseef, W., Borregaard, N. Neutrophils at work. Nat Immunol 15, 602–611 (2014). https://doi.org/10.1038/ni.2921

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2921

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing