Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Guarding the frontiers: the biology of type III interferons

Abstract

Type III interferons (IFNs) or IFN-λs regulate a similar set of genes as type I IFNs, but whereas type I IFNs act globally, IFN-λs primarily target mucosal epithelial cells and protect them against the frequent viral attacks that are typical for barrier tissues. IFN-λs thereby help to maintain healthy mucosal surfaces through immune protection, without the significant immune-related pathogenic risk associated with type I IFN responses. Type III IFNs also target the human liver, with dual effects: they induce an antiviral state in hepatocytes, but specific IFN-λ4 action impairs the clearance of hepatitis C virus and could influence inflammatory responses. This constitutes a paradox that has yet to be resolved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genomic organization of the type III IFNs in mice and humans.
Figure 2: Signaling pathway of type I and type III IFNs.
Figure 3: Epithelial and immune responses to viral infection in the lung.
Figure 4: Phylogenetic tree of IFN-λ based on actual or predicted protein sequences.

Similar content being viewed by others

References

  1. Kotenko, S.V. et al. IFN-λ s mediate antiviral protection through a distinct class II cytokine receptor complex. Nat. Immunol. 4, 69–77 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Sheppard, P. et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat. Immunol. 4, 63–68 (2003). These back-to-back papers reported the discovery of IFN-λs 1–3, describe how they use the IFNλR1 and IL-10R2 receptor chains for signaling and demonstrate their antiviral activity.

    Article  CAS  PubMed  Google Scholar 

  3. Fox, B.A., Sheppard, P.O. & O'Hara, P.J. The role of genomic data in the discovery, annotation and evolutionary interpretation of the interferon-λ family. PLoS ONE 4, e4933 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Prokunina-Olsson, L. et al. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat. Genet. 45, 164–171 (2013). This article described the discovery of the IFNL4 gene and demonstrates its association with HCV clearance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dumoutier, L. et al. Role of the interleukin (IL)-28 receptor tyrosine residues for antiviral and antiproliferative activity of IL-29/interferon-λ 1: similarities with type I interferon signaling. J. Biol. Chem. 279, 32269–32274 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Zhou, Z. et al. Type III interferon (IFN) induces a type I IFN-like response in a restricted subset of cells through signaling pathways involving both the Jak-STAT pathway and the mitogen-activated protein kinases. J. Virol. 81, 7749–7758 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Doyle, S.E. et al. Interleukin-29 uses a type 1 interferon-like program to promote antiviral responses in human hepatocytes. Hepatology 44, 896–906 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Marcello, T. et al. Interferons α and λ inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. Gastroenterology 131, 1887–1898 (2006).

    Article  PubMed  Google Scholar 

  9. Crotta, S. et al. Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenza-infected airway epithelia. PLoS Pathog. 9, e1003773 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Malakhova, O.A. et al. UBP43 is a novel regulator of interferon signaling independent of its ISG15 isopeptidase activity. EMBO J. 25, 2358–2367 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. François-Newton, V. et al. USP18-based negative feedback control is induced by type I and type III interferons and specifically inactivates interferon α response. PLoS ONE 6, e22200 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Makowska, Z., Duong, F.H., Trincucci, G., Tough, D.F. & Heim, M.H. Interferon-β and interferon-λ signaling is not affected by interferon-induced refractoriness to interferon-α in vivo. Hepatology 53, 1154–1163 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Bolen, C.R., Ding, S., Robek, M.D. & Kleinstein, S.H. Dynamic expression profiling of type I and type III interferon-stimulated hepatocytes reveals a stable hierarchy of gene expression. Hepatology 59, 1262–1272 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Jilg, N. et al. Kinetic differences in the induction of interferon stimulated genes by interferon-α and interleukin 28B are altered by infection with hepatitis C virus. Hepatology 59, 1250–1261 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Burkart, C. et al. Usp18 deficient mammary epithelial cells create an antitumour environment driven by hypersensitivity to IFN-λ and elevated secretion of Cxcl10. EMBO Mol. Med. 5, 967–982 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  16. Gad, H.H. et al. Interferon-λ is functionally an interferon but structurally related to the IL-10 family. J. Biol. Chem. 284, 20869–20875 (2009). Presented the first crystal structure of an IFN-λ, here IFN-λ3, and mapped the IFNλR1 binding site by a mutagenesis approach.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miknis, Z.J. et al. Crystal structure of human interferon-λ1 in complex with its high-affinity receptor interferon-λR1. J. Mol. Biol. 404, 650–664 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mordstein, M. et al. λ interferon renders epithelial cells of the respiratory and gastrointestinal tracts resistant to viral infections. J. Virol. 84, 5670–5677 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sommereyns, C., Paul, S., Staeheli, P. & Michiels, T. IFN-λ (IFN-λ) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathog. 4, e1000017 (2008). Showed that IFN-λs primarily act on epithelial cells and suggested that they evolved to protect epithelial tissues from viral infection.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Pulverer, J.E. et al. Temporal and spatial resolution of type I and III interferon responses in vivo. J. Virol. 84, 8626–8638 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pott, J. et al. IFN-λ determines the intestinal epithelial antiviral host defense. Proc. Natl. Acad. Sci. USA 108, 7944–7949 (2011). Found that IFN-λ is required for control of rotavirus infection in mice and showed that type I IFN cannot substitute. This was the first demonstration of a unique role for IFN-λ.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hermant, P. et al. Human but not mouse hepatocytes respond to interferon-λ in vivo. PLoS ONE 9, e87906 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Hermant, P. & Michiels, T. Interferon-λ in the context of viral infections: production, response and therapeutic implications. J. Innate Immun. 6, 563–574 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Anggakusuma et al. Control of hepatitis C virus replication in mouse liver-derived cells by MAVS-dependent production of type I and type III interferons. J. Virol. 89, 3833–3845 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meager, A., Visvalingam, K., Dilger, P., Bryan, D. & Wadhwa, M. Biological activity of interleukins-28 and -29: comparison with type I interferons. Cytokine 31, 109–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Muir, A.J. et al. Phase 1b study of PEGylated interferon-λ1 with or without ribavirin in patients with chronic genotype 1 hepatitis C virus infection. Hepatology 52, 822–832 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Lauber, C. et al. Transcriptome analysis reveals a classical interferon signature induced by IFNλ4 in human primary cells. Genes Immun. doi:10.1038/gene.2015.23 (11 June 2015).

    Article  CAS  Google Scholar 

  28. Witte, K. et al. Despite IFN-λ receptor expression, blood immune cells, but not keratinocytes or melanocytes, have an impaired response to type III interferons: implications for therapeutic applications of these cytokines. Genes Immun. 10, 702–714 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Ding, S., Khoury-Hanold, W., Iwasaki, A. & Robek, M.D. Epigenetic reprogramming of the type III interferon response potentiates antiviral activity and suppresses tumor growth. PLoS Biol. 12, e1001758 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Durbin, R.K., Kotenko, S.V. & Durbin, J.E. Interferon induction and function at the mucosal surface. Immunol. Rev. 255, 25–39 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Ank, N. et al. λ interferon (IFN-λ), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. J. Virol. 80, 4501–4509 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Donnelly, R.P. & Kotenko, S.V. Interferon-λ : a new addition to an old family. J. Interferon Cytokine Res. 30, 555–564 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Coccia, E.M. et al. Viral infection and Toll-like receptor agonists induce a differential expression of type I and λ interferons in human plasmacytoid and monocyte-derived dendritic cells. Eur. J. Immunol. 34, 796–805 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Osterlund, P. et al. Gene expression and antiviral activity of α/β interferons and interleukin-29 in virus-infected human myeloid dendritic cells. J. Virol. 79, 9608–9617 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Lauterbach, H. et al. Mouse CD8α+ DCs and human BDCA3+ DCs are major producers of IFN-λ in response to poly IC. J. Exp. Med. 207, 2703–2717 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hillyer, P. et al. Expression profiles of human interferon-α and interferon-λ subtypes are ligand- and cell-dependent. Immunol. Cell Biol. 90, 774–783 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Melchjorsen, J., Siren, J., Julkunen, I., Paludan, S.R. & Matikainen, S. Induction of cytokine expression by herpes simplex virus in human monocyte-derived macrophages and dendritic cells is dependent on virus replication and is counteracted by ICP27 targeting NF-kappaB and IRF-3. J. Gen. Virol. 87, 1099–1108 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Khaitov, M.R. et al. Respiratory virus induction of α-, β- and λ-interferons in bronchial epithelial cells and peripheral blood mononuclear cells. Allergy 64, 375–386 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, J. et al. Differentiated human alveolar type II cells secrete antiviral il-29 (IFN-1) in response to influenza A infection. J. Immunol. 182, 1296–1304 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Ioannidis, I., Ye, F., McNally, B., Willette, M. & Flano, E. Toll-like receptor expression and induction of type I and type III interferons in primary airway epithelial cells. J. Virol. 87, 3261–3270 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jewell, N.A. et al. λ interferon is the predominant interferon induced by influenza A virus infection in vivo. J. Virol. 84, 11515–11522 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Osterlund, P.I., Pietila, T.E., Veckman, V., Kotenko, S.V. & Julkunen, I. IFN regulatory factor family members differentially regulate the expression of type III IFN (IFN-λ ) genes. J. Immunol. 179, 3434–3442 (2007).

    Article  PubMed  Google Scholar 

  43. Onoguchi, K. et al. Viral infections activate types I and III interferon genes through a common mechanism. J. Biol. Chem. 282, 7576–7581 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Kotenko, S.V. IFN-λs. Curr. Opin. Immunol. 23, 583–590 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thomson, S.J. et al. The role of transposable elements in the regulation of IFN-λ1 gene expression. Proc. Natl. Acad. Sci. USA 106, 11564–11569 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Siegel, R., Eskdale, J. & Gallagher, G. Regulation of IFN-λ1 promoter activity (IFN-λ1/IL-29) in human airway epithelial cells. J. Immunol. 187, 5636–5644 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Swider, A., Siegel, R., Eskdale, J. & Gallagher, G. Regulation of interferon λ-1 (IFNL1/IFN-λ1/IL-29) expression in human colon epithelial cells. Cytokine 65, 17–23 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Odendall, C. et al. Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nat. Immunol. 15, 717–726 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dixit, E. et al. Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141, 668–681 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee, H.C., Narayanan, S., Park, S.J., Seong, S.Y. & Hahn, Y.S. Transcriptional regulation of IFN-λ genes in hepatitis C virus-infected hepatocytes via IRF-3.IRF-7.NF-κB complex. J. Biol. Chem. 289, 5310–5319 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Poss, Z.C., Ebmeier, C.C. & Taatjes, D.J. The Mediator complex and transcription regulation. Crit. Rev. Biochem. Mol. Biol. 48, 575–608 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Griffiths, S.J. et al. A systematic analysis of host factors reveals a Med23-interferon-λ regulatory axis against herpes simplex virus type 1 replication. PLoS Pathog. 9, e1003514 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mahlakõiv, T., Hernandez, P., Gronke, K., Diefenbach, A. & Staeheli, P. Leukocyte-derived IFN-α/β and epithelial IFN-λ constitute a compartmentalized mucosal defense system that restricts enteric virus infections. PLoS Pathog. 11, e1004782 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Nice, T.J. et al. Interferon-λ cures persistent murine norovirus infection in the absence of adaptive immunity. Science 347, 269–273 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Baldridge, M.T. et al. Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection. Science 347, 266–269 (2015). Refs. 54 and 55 described that IFN-λ is necessary for a control of norovirus infection in mice. It was shown that recombinant IFN-λ can cure norovirus infection and thus has a significant therapeutic potential. The authors observed that sterilizing the gut by antibiotic treatment cures the persistent virus infection in a manner that requires the IFNλR1 receptor.

    Article  CAS  PubMed  Google Scholar 

  56. Ank, N. et al. An important role for type III interferon (IFN-λ/IL-28) in TLR-induced antiviral activity. J. Immunol. 180, 2474–2485 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Lazear, H.M. et al. Interferon-λ restricts West Nile virus neuroinvasion by tightening the blood-brain barrier. Sci. Transl. Med. 7, 284ra259 (2015).

    Article  CAS  Google Scholar 

  58. Mordstein, M. et al. Interferon-λ contributes to innate immunity of mice against influenza A virus but not against hepatotropic viruses. PLoS Pathog. 4, e1000151 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Muir, A.J. et al. A randomized phase 2b study of peginterferon λ-1a for the treatment of chronic hcv infection. J. Hepatol. 61, 1238–1246 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Yin, Z. et al. Type III IFNs are produced by and stimulate human plasmacytoid dendritic cells. J. Immunol. 189, 2735–2745 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Liu, B.S., Janssen, H.L. & Boonstra, A. IL-29 and IFNα differ in their ability to modulate IL-12 production by TLR-activated human macrophages and exhibit differential regulation of the IFNγ receptor expression. Blood 117, 2385–2395 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Megjugorac, N.J., Gallagher, G.E. & Gallagher, G. Modulation of human plasmacytoid DC function by IFN-λ 1 (IL-29). J. Leukoc. Biol. 86, 1359–1363 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Koltsida, O. et al. IL-28A (IFN-λ2) modulates lung DC function to promote Th1 immune skewing and suppress allergic airway disease. EMBO Mol. Med. 3, 348–361 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dring, M.M. et al. Innate immune genes synergize to predict increased risk of chronic disease in hepatitis C virus infection. Proc. Natl. Acad. Sci. USA 108, 5736–5741 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Krämer, B. et al. Do λ-IFNs IL28A and IL28B act on human natural killer cells? Proc. Natl. Acad. Sci. USA 108, E519–E520 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  66. de Groen, R.A. et al. IFN-λ-mediated IL-12 production in macrophages induces IFN-γ production in human NK cells. Eur. J. Immunol. 45, 250–259 (2015).

    Article  PubMed  CAS  Google Scholar 

  67. Souza-Fonseca-Guimaraes, F. et al. NK cells require IL-28R for optimal in vivo activity. Proc. Natl. Acad. Sci. USA 112, E2376–E2384 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Blazek, K. et al. IFN-λ resolves inflammation via suppression of neutrophil infiltration and IL-1β production. J. Exp. Med. 212, 845–853 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. McNab, F., Mayer-Barber, K., Sher, A., Wack, A. & O'Garra, A. Type I interferons in infectious disease. Nat. Rev. Immunol. 15, 87–103 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dai, J., Megjugorac, N.J., Gallagher, G.E., Yu, R.Y. & Gallagher, G. IFN-λ1 (IL-29) inhibits GATA3 expression and suppresses Th2 responses in human naive and memory T cells. Blood 113, 5829–5838 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Egli, A. et al. IL-28B is a key regulator of B- and T-cell vaccine responses against influenza. PLoS Pathog. 10, e1004556 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Edwards, M.R. & Johnston, S.L. Interferon-λ as a new approach for treatment of allergic asthma? EMBO Mol. Med. 3, 306–308 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Davidson, S., Maini, M.K. & Wack, A. Disease-promoting effects of type I interferons in viral, bacterial, and coinfections. J. Interferon Cytokine Res. 35, 252–264 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Davidson, S., Crotta, S., McCabe, T.M. & Wack, A. Pathogenic potential of interferon alphabeta in acute influenza infection. Nat. Commun. 5, 3864 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Bosinger, S.E. et al. Global genomic analysis reveals rapid control of a robust innate response in SIV-infected sooty mangabeys. J. Clin. Invest. 119, 3556–3572 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Jacquelin, B. et al. Nonpathogenic SIV infection of African green monkeys induces a strong but rapidly controlled type I IFN response. J. Clin. Invest. 119, 3544–3555 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Mandl, J.N. et al. Divergent TLR7 and TLR9 signaling and type I interferon production distinguish pathogenic and nonpathogenic AIDS virus infections. Nat. Med. 14, 1077–1087 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Micco, L. et al. Differential boosting of innate and adaptive antiviral responses during pegylated-interferon-α therapy of chronic hepatitis B. J. Hepatol. 58, 225–233 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Penna, A. et al. Peginterferon-α does not improve early peripheral blood HBV-specific T-cell responses in HBeAg-negative chronic hepatitis. J. Hepatol. 56, 1239–1246 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Teijaro, J.R. et al. Persistent LCMV infection is controlled by blockade of type I interferon signaling. Science 340, 207–211 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wilson, E.B. et al. Blockade of chronic type I interferon signaling to control persistent LCMV infection. Science 340, 202–207 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rayamajhi, M., Humann, J., Penheiter, K., Andreasen, K. & Lenz, L.L. Induction of IFN-γγ enables Listeria monocytogenes to suppress macrophage activation by IFN-γ. J. Exp. Med. 207, 327–337 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Teles, R.M. et al. Type I interferon suppresses type II interferon-triggered human anti-mycobacterial responses. Science 339, 1448–1453 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Antonelli, L.R. et al. Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J. Clin. Invest. 120, 1674–1682 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Redford, P.S. et al. Influenza A virus impairs control of Mycobacterium tuberculosis coinfection through a type I interferon receptor-dependent pathway. J. Infect. Dis. 209, 270–274 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Shepard, C.W., Finelli, L. & Alter, M.J. Global epidemiology of hepatitis C virus infection. Lancet Infect. Dis. 5, 558–567 (2005).

    Article  PubMed  Google Scholar 

  87. Ge, D. et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461, 399–401 (2009). This was the first demonstration of a clear genetic association between the IFN-λ loci and the poor treatment outcome for chronic HCV infection.

    Article  CAS  PubMed  Google Scholar 

  88. Suppiah, V. et al. IL28B is associated with response to chronic hepatitis C interferon-α and ribavirin therapy. Nat. Genet. 41, 1100–1104 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Tanaka, Y. et al. Genome-wide association of IL28B with response to PEGylated interferon-α and ribavirin therapy for chronic hepatitis C. Nat. Genet. 41, 1105–1109 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Rauch, A. et al. Genetic variation in IL28B is associated with chronic hepatitis C and treatment failure: a genome-wide association study. Gastroenterology 138, 1338–1345 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Thomas, D.L. et al. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 461, 798–801 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Urban, T.J. et al. IL28B genotype is associated with differential expression of intrahepatic interferon-stimulated genes in patients with chronic hepatitis C. Hepatology 52, 1888–1896 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Terczyn´ska-Dyla, E. et al. Reduced IFN-λ4 activity is associated with improved HCV clearance and reduced expression of interferon-stimulated genes. Nat. Commun. 5, 5699 (2014). This article provided the first direct connection between the activity of the IFN-λ4 protein, the high expression of interferon stimulated genes in the liver and poor clearance rate of chronic HCV.

    Article  CAS  Google Scholar 

  94. Smith, K.R. et al. Identification of improved IL28B SNPs and haplotypes for prediction of drug response in treatment of hepatitis C using massively parallel sequencing in a cross-sectional European cohort. Genome Med. 3, 57 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ahlenstiel, G., Booth, D.R. & George, J. Will IL28B polymorphisms remain relevant to direct-acting antiviral treatment paradigms? Antivir. Ther. 17, 1163–1170 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Holmes, J.A., Desmond, P.V. & Thompson, A.J. Does IL28B genotyping still have a role in the era of direct-acting antiviral therapy for chronic hepatitis C infection? J. Viral Hepat. 19, 677–684 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Meissner, E.G. et al. IFNL4-ΔG genotype is associated with slower viral clearance in hepatitis C, genotype-1 patients treated with sofosbuvir and ribavirin. J. Infect. Dis. 209, 1700–1704 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Muir, A.J. IL28B in the era of direct-acting antivirals for hepatitis C. J. Clin. Gastroenterol. 47, 222–227 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Zeuzem, S. et al. Faldaprevir and deleobuvir for HCV genotype 1 infection. N. Engl. J. Med. 369, 630–639 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Bibert, S. et al. The IFNL3/4 ΔG variant increases susceptibility to cytomegalovirus retinitis among HIV-infected patients. AIDS 28, 1885–1889 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Manuel, O. et al. Influence of IFNL3/4 polymorphisms on the incidence of cytomegalovirus infection after solid-organ transplantation. J. Infect. Dis. 211, 906–914 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Hamming, O.J. et al. Interferon-λ4 signals via the IFN-λ receptor to regulate antiviral activity against HCV and coronaviruses. EMBO J. 32, 3055–3065 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bochud, P.Y. et al. IL28B alleles associated with poor hepatitis C virus (HCV) clearance protect against inflammation and fibrosis in patients infected with non-1 HCV genotypes. Hepatology 55, 384–394 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Eslam, M. et al. Interferon-λ rs12979860 genotype and liver fibrosis in viral and non-viral chronic liver disease. Nat. Commun. 6, 6422 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Petta, S. et al. IL28B and PNPLA3 polymorphisms affect histological liver damage in patients with non-alcoholic fatty liver disease. J. Hepatol. 56, 1356–1362 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Noureddin, M. et al. Association of IL28B genotype with fibrosis progression and clinical outcomes in patients with chronic hepatitis C: a longitudinal analysis. Hepatology 58, 1548–1557 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Jouvin-Marche, E. et al. Lymphocytes degranulation in liver in hepatitis C virus carriers is associated with IFNL4 polymorphisms and ALT levels. J. Infect. Dis. 209, 1907–1915 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Key, F.M. et al. Selection on a variant associated with improved viral clearance drives local, adaptive pseudogenization of interferon-λ4 (IFNL4). PLoS Genet. 10, e1004681 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Manry, J. et al. Evolutionary genetic dissection of human interferons. J. Exp. Med. 208, 2747–2759 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kindler, E. et al. Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential. MBio 4, e00611–e00612 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Heilesen, H.H. Gad and S. Davidson for critical reading of this manuscript and help with figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rune Hartmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wack, A., Terczyńska-Dyla, E. & Hartmann, R. Guarding the frontiers: the biology of type III interferons. Nat Immunol 16, 802–809 (2015). https://doi.org/10.1038/ni.3212

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3212

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing