Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phagocytosis of apoptotic cells in homeostasis

Abstract

Human bodies collectively turn over about 200 billion to 300 billion cells every day. Such turnover is an integral part of embryonic and postnatal development, as well as routine tissue homeostasis. This process involves the induction of programmed cell death in specific cells within the tissues and the specific recognition and removal of dying cells by a clearance 'crew' composed of professional, non-professional and specialized phagocytes. In the past few years, considerable progress has been made in identifying many features of apoptotic cell clearance. Some of these new observations challenge the way dying cells themselves are viewed, as well as how healthy cells interact with and respond to dying cells. Here we focus on the homeostatic removal of apoptotic cells in tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Homeostatic clearance of apoptotic cells via different phagocytes.
Figure 2: Steps during phagocytosis of apoptotic cells.
Figure 3: Signaling pathways elicited by three PtdSer-recognition receptors.
Figure 4: Additional and non-obvious functions of apoptotic cells.

Similar content being viewed by others

References

  1. Nagata, S., Hanayama, R. & Kawane, K. Autoimmunity and the clearance of dead cells. Cell 140, 619–630 (2010).

    CAS  PubMed  Google Scholar 

  2. Poon, I.K., Lucas, C.D., Rossi, A.G. & Ravichandran, K.S. Apoptotic cell clearance: basic biology and therapeutic potential. Nat. Rev. Immunol. 14, 166–180 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Monks, J. et al. Epithelial cells as phagocytes: apoptotic epithelial cells are engulfed by mammary alveolar epithelial cells and repress inflammatory mediator release. Cell Death Differ. 12, 107–114 (2005).

    CAS  PubMed  Google Scholar 

  4. Nagata, S. Autoimmune diseases caused by defects in clearing dead cells and nuclei expelled from erythroid precursors. Immunol. Rev. 220, 237–250 (2007).

    CAS  PubMed  Google Scholar 

  5. Metchnikoff, E. in Lectures on the Comparative Pathology of Inflammation (Dover, New York, 1968).

  6. van Furth, R. et al. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull. World Health Organ. 46, 845–852 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lavin, Y. & Merad, M. Macrophages: gatekeepers of tissue integrity. Cancer Immunol. Res. 1, 201–209 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Epelman, S., Lavine, K.J. & Randolph, G.J. Origin and functions of tissue macrophages. Immunity 41, 21–35 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gomez Perdiguero, E. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518, 547–551 (2015).

    PubMed  Google Scholar 

  10. Hoeffel, G. et al. C-myb+ erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42, 665–678 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dini, L., Pagliara, P. & Carla, E.C. Phagocytosis of apoptotic cells by liver: a morphological study. Microsc. Res. Tech. 57, 530–540 (2002).

    PubMed  Google Scholar 

  12. Bilimoria, P.M. & Stevens, B. Microglia function during brain development: New insights from animal models. Brain Res. 1617, 7–17 (2015).

    CAS  PubMed  Google Scholar 

  13. Uderhardt, S. et al. 12/15-lipoxygenase orchestrates the clearance of apoptotic cells and maintains immunologic tolerance. Immunity 36, 834–846 (2012).

    CAS  PubMed  Google Scholar 

  14. Wood, W. et al. Mesenchymal cells engulf and clear apoptotic footplate cells in macrophageless PU.1 null mouse embryos. Development 127, 5245–5252 (2000).

    CAS  PubMed  Google Scholar 

  15. Juncadella, I.J. et al. Apoptotic cell clearance by bronchial epithelial cells critically influences airway inflammation. Nature 493, 547–551 (2013).

    CAS  PubMed  Google Scholar 

  16. Elliott, M.R. et al. Unexpected requirement for ELMO1 in clearance of apoptotic germ cells in vivo. Nature 467, 333–337 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lysiak, J.J., Turner, S.D. & Turner, T.T. Molecular pathway of germ cell apoptosis following ischemia/reperfusion of the rat testis. Biol. Reprod. 63, 1465–1472 (2000).

    CAS  PubMed  Google Scholar 

  18. Burstyn-Cohen, T. et al. Genetic dissection of TAM receptor-ligand interaction in retinal pigment epithelial cell phagocytosis. Neuron 76, 1123–1132 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Elliott, M.R. et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461, 282–286 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gude, D.R. et al. Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal. FASEB J. 22, 2629–2638 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lauber, K. et al. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113, 717–730 (2003).

    CAS  PubMed  Google Scholar 

  22. Peter, C., Wesselborg, S., Herrmann, M. & Lauber, K. Dangerous attraction: phagocyte recruitment and danger signals of apoptotic and necrotic cells. Apoptosis 15, 1007–1028 (2010).

    PubMed  Google Scholar 

  23. Truman, L.A. et al. CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood 112, 5026–5036 (2008).

    CAS  PubMed  Google Scholar 

  24. Miksa, M., Amin, D., Wu, R., Ravikumar, T.S. & Wang, P. Fractalkine-induced MFG-E8 leads to enhanced apoptotic cell clearance by macrophages. Mol. Med. 13, 553–560 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Darland-Ransom, M. et al. Role of C. elegans TAT-1 protein in maintaining plasma membrane phosphatidylserine asymmetry. Science 320, 528–531 (2008).

    CAS  PubMed  Google Scholar 

  26. Fadok, V.A. et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 148, 2207–2216 (1992).

    CAS  PubMed  Google Scholar 

  27. Balasubramanian, K. & Schroit, A.J. Aminophospholipid asymmetry: A matter of life and death. Annu. Rev. Physiol. 65, 701–734 (2003).

    CAS  PubMed  Google Scholar 

  28. Suzuki, J., Denning, D.P., Imanishi, E., Horvitz, H.R. & Nagata, S. Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science 341, 403–406 (2013).

    CAS  PubMed  Google Scholar 

  29. Segawa, K. et al. Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science 344, 1164–1168 (2014).

    CAS  PubMed  Google Scholar 

  30. Suzuki, J., Umeda, M., Sims, P.J. & Nagata, S. Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468, 834–838 (2010).

    CAS  PubMed  Google Scholar 

  31. Lauber, K., Blumenthal, S.G., Waibel, M. & Wesselborg, S. Clearance of apoptotic cells: getting rid of the corpses. Mol. Cell 14, 277–287 (2004).

    CAS  PubMed  Google Scholar 

  32. Brown, S. et al. Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment. Nature 418, 200–203 (2002).

    CAS  PubMed  Google Scholar 

  33. Simhadri, V.R. et al. Human CD300a binds to phosphatidylethanolamine and phosphatidylserine, and modulates the phagocytosis of dead cells. Blood 119, 2799–2809 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Barclay, A.N. & Van den Berg, T.K. The interaction between signal regulatory protein α (SIRP α) and CD47: structure, function, and therapeutic target. Annu. Rev. Immunol. 32, 25–50 (2014).

    CAS  PubMed  Google Scholar 

  35. Hamann, J. et al. International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors. Pharmacol. Rev. 67, 338–367 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Duman, J.G. et al. The adhesion-GPCR BAI1 regulates synaptogenesis by controlling the recruitment of the Par3/Tiam1 polarity complex to synaptic sites. J Neurosci. 33, 6964–6978 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hochreiter-Hufford, A.E. et al. Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion. Nature 497, 263–267 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kaur, B., Brat, D.J., Devi, N.S. & Van Meir, E.G. Vasculostatin, a proteolytic fragment of brain angiogenesis inhibitor 1, is an antiangiogenic and antitumorigenic factor. Oncogene 24, 3632–3642 (2005).

    CAS  PubMed  Google Scholar 

  39. Park, D. et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450, 430–434 (2007).

    CAS  PubMed  Google Scholar 

  40. Zhu, D. et al. BAI1 regulates spatial learning and synaptic plasticity in the hippocampus. J. Clin. Invest. 125, 1497–1508 (2015).

    PubMed  PubMed Central  Google Scholar 

  41. Fond, A.M., Lee, C.S., Schulman, I.G., Kiss, R.S. & Ravichandran, K.S. Apoptotic cells trigger a membrane-initiated pathway to increase ABCA1. J. Clin. Invest. 125, 2748–2758 (2015).

    PubMed  PubMed Central  Google Scholar 

  42. Freeman, G.J., Casasnovas, J.M., Umetsu, D.T. & DeKruyff, R.H. TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol. Rev. 235, 172–189 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Miyanishi, M. et al. Identification of Tim4 as a phosphatidylserine receptor. Nature 450, 435–439 (2007).

    CAS  PubMed  Google Scholar 

  44. Kobayashi, N. et al. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity 27, 927–940 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Park, D., Hochreiter-Hufford, A. & Ravichandran, K.S. The phosphatidylserine receptor TIM-4 does not mediate direct signaling. Curr. Biol. 19, 346–351 (2009).

    PubMed  Google Scholar 

  46. Flannagan, R.S., Canton, J., Furuya, W., Glogauer, M. & Grinstein, S. The phosphatidylserine receptor TIM4 utilizes integrins as coreceptors to effect phagocytosis. Mol. Biol. Cell 25, 1511–1522 (2014).

    PubMed  PubMed Central  Google Scholar 

  47. Mazaheri, F. et al. Distinct roles for BAI1 and TIM-4 in the engulfment of dying neurons by microglia. Nat. Commun. 5, 4046 (2014).

    CAS  PubMed  Google Scholar 

  48. Rodriguez-Manzanet, R. et al. T and B cell hyperactivity and autoimmunity associated with niche-specific defects in apoptotic body clearance in TIM-4-deficient mice. Proc. Natl. Acad. Sci. USA 107, 8706–8711 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wong, K. et al. Phosphatidylserine receptor Tim-4 is essential for the maintenance of the homeostatic state of resident peritoneal macrophages. Proc. Natl. Acad. Sci. USA 107, 8712–8717 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Miyanishi, M., Segawa, K. & Nagata, S. Synergistic effect of Tim4 and MFG-E8 null mutations on the development of autoimmunity. Int. Immunol. 24, 551–559 (2012).

    CAS  PubMed  Google Scholar 

  51. Albacker, L.A. et al. TIM-4, a receptor for phosphatidylserine, controls adaptive immunity by regulating the removal of antigen-specific T cells. J. Immunol. 185, 6839–6849 (2010).

    CAS  PubMed  Google Scholar 

  52. Lemke, G. Biology of the TAM receptors. Cold Spring Harb. Perspect. Biol. 5, a009076 (2013).

    PubMed  PubMed Central  Google Scholar 

  53. Lew, E.D. et al. Differential TAM receptor-ligand-phospholipid interactions delimit differential TAM bioactivities. eLife 10, 7554 (2014).

    Google Scholar 

  54. Zagórska, A., Traves, P.G., Lew, E.D., Dransfield, I. & Lemke, G. Diversification of TAM receptor tyrosine kinase function. Nat. Immunol. 15, 920–928 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Gautier, E.L. et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13, 1118–1128 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lu, Q. et al. Tyro-3 family receptors are essential regulators of mammalian spermatogenesis. Nature 398, 723–728 (1999).

    CAS  PubMed  Google Scholar 

  57. Duncan, J.L. et al. An RCS-like retinal dystrophy phenotype in mer knockout mice. Invest. Ophthalmol. Vis. Sci. 44, 826–838 (2003).

    PubMed  Google Scholar 

  58. Rothlin, C.V., Ghosh, S., Zuniga, E.I., Oldstone, M.B. & Lemke, G. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131, 1124–1136 (2007).

    CAS  PubMed  Google Scholar 

  59. Mukundan, L. et al. PPAR-δ senses and orchestrates clearance of apoptotic cells to promote tolerance. Nat. Med. 15, 1266–1272 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. N, A.G. et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31, 245–258 (2009).

    Google Scholar 

  61. Roszer, T. et al. Autoimmune kidney disease and impaired engulfment of apoptotic cells in mice with macrophage peroxisome proliferator-activated receptor gamma or retinoid X receptor α deficiency. J. Immunol. 186, 621–631 (2011).

    CAS  PubMed  Google Scholar 

  62. Park, D. et al. Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein. Nature 477, 220–224 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Yoshida, H. et al. Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells. Nature 437, 754–758 (2005).

    CAS  PubMed  Google Scholar 

  64. Toda, S., Segawa, K. & Nagata, S. MerTK-mediated engulfment of pyrenocytes by central macrophages in erythroblastic islands. Blood 123, 3963–3971 (2014).

    CAS  PubMed  Google Scholar 

  65. Kawane, K. et al. Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science 292, 1546–1549 (2001).

    CAS  PubMed  Google Scholar 

  66. Yoshida, H., Okabe, Y., Kawane, K., Fukuyama, H. & Nagata, S. Lethal anemia caused by interferon-β produced in mouse embryos carrying undigested DNA. Nat. Immunol. 6, 49–56 (2005).

    CAS  PubMed  Google Scholar 

  67. Kawane, K. et al. Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages. Nature 443, 998–1002 (2006).

    CAS  PubMed  Google Scholar 

  68. Marcel, Y.L., Ouimet, M. & Wang, M.D. Regulation of cholesterol efflux from macrophages. Curr. Opin. Lipidol. 19, 455–461 (2008).

    CAS  PubMed  Google Scholar 

  69. Oram, J.F. & Heinecke, J.W. ATP-binding cassette transporter A1: a cell cholesterol exporter that protects against cardiovascular disease. Physiol. Rev. 85, 1343–1372 (2005).

    CAS  PubMed  Google Scholar 

  70. Kiss, R.S., Elliott, M.R., Ma, Z., Marcel, Y.L. & Ravichandran, K.S. Apoptotic cells induce a phosphatidylserine-dependent homeostatic response from phagocytes. Curr. Biol. 16, 2252–2258 (2006).

    CAS  PubMed  Google Scholar 

  71. Janko, C. et al. CRP/anti-CRP antibodies assembly on the surfaces of cell remnants switches their phagocytic clearance toward inflammation. Frontiers in immunology 2, 70 (2011).

    PubMed  PubMed Central  Google Scholar 

  72. Poon, I.K., Hulett, M.D. & Parish, C.R. Molecular mechanisms of late apoptotic/necrotic cell clearance. Cell Death Differ. 17, 381–397 (2010).

    CAS  PubMed  Google Scholar 

  73. Zhang, Y., Brenner, M., Yang, W.L. & Wang, P. Recombinant human MFG-E8 ameliorates colon damage in DSS- and TNBS-induced colitis in mice. Lab. Invest. 95, 480–490 (2015).

    CAS  PubMed  Google Scholar 

  74. Gatza, E. et al. Extracorporeal photopheresis reverses experimental graft-versus-host disease through regulatory T cells. Blood 112, 1515–1521 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Pasparakis, M. & Vandenabeele, P. Necroptosis and its role in inflammation. Nature 517, 311–320 (2015).

    CAS  PubMed  Google Scholar 

  76. Remijsen, Q. et al. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ. 18, 581–588 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Schauer, C. et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat. Med. 20, 511–517 (2014).

    CAS  PubMed  Google Scholar 

  78. Fan, Y. & Bergmann, A. Apoptosis-induced compensatory proliferation. The Cell is dead. Long live the Cell!. Trends Cell Biol. 18, 467–473 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Chera, S. et al. Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration. Dev. Cell 17, 279–289 (2009).

    CAS  PubMed  Google Scholar 

  80. Tseng, A.S., Adams, D.S., Qiu, D., Koustubhan, P. & Levin, M. Apoptosis is required during early stages of tail regeneration in Xenopus laevis. Dev. Biol. 301, 62–69 (2007).

    CAS  PubMed  Google Scholar 

  81. Fuchs, Y. & Steller, H. Programmed cell death in animal development and disease. Cell 147, 742–758 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Vlaskalin, T., Wong, C.J. & Tsilfidis, C. Growth and apoptosis during larval forelimb development and adult forelimb regeneration in the newt (Notophthalmus viridescens). Dev. Genes Evol. 214, 423–431 (2004).

    PubMed  Google Scholar 

  83. Li, F. et al. Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration. Sci. Signal. 3, ra13 (2010).

    PubMed  PubMed Central  Google Scholar 

  84. Rongvaux, A. et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159, 1563–1577 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ravichandran, K.S. Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. J. Exp. Med. 207, 1807–1817 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Elliott, J.I. et al. Membrane phosphatidylserine distribution as a non-apoptotic signalling mechanism in lymphocytes. Nat. Cell Biol. 7, 808–816 (2005).

    CAS  PubMed  Google Scholar 

  87. Carrera Silva, E.A. et al. T cell-derived protein S engages TAM receptor signaling in dendritic cells to control the magnitude of the immune response. Immunity 39, 160–170 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Martin, S. et al. Immunologic stimulation of mast cells leads to the reversible exposure of phosphatidylserine in the absence of apoptosis. Int. Arch. Allergy Immunol. 123, 249–258 (2000).

    CAS  PubMed  Google Scholar 

  89. Frasch, S.C. et al. Phospholipid flip-flop and phospholipid scramblase 1 (PLSCR1) co-localize to uropod rafts in formylated Met-Leu-Phe-stimulated neutrophils. J. Biol. Chem. 279, 17625–17633 (2004).

    CAS  PubMed  Google Scholar 

  90. van den Eijnde, S.M. et al. Transient expression of phosphatidylserine at cell-cell contact areas is required for myotube formation. J. Cell Sci. 114, 3631–3642 (2001).

    CAS  PubMed  Google Scholar 

  91. Hamoud, N., Tran, V., Croteau, L.P., Kania, A. & Cote, J.F. G-protein coupled receptor BAI3 promotes myoblast fusion in vertebrates. Proc. Natl. Acad. Sci. USA 111, 3745–3750 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wanderley, J.L., Moreira, M.E., Benjamin, A., Bonomo, A.C. & Barcinski, M.A. Mimicry of apoptotic cells by exposing phosphatidylserine participates in the establishment of amastigotes of Leishmania (L) amazonensis in mammalian hosts. J. Immunol. 176, 1834–1839 (2006).

    CAS  PubMed  Google Scholar 

  93. Seabra, S.H., de Souza, W. & Damatta, R.A. Toxoplasma gondii exposes phosphatidylserine inducing a TGF-β1 autocrine effect orchestrating macrophage evasion. Biochem. Biophys. Res. Commun. 324, 744–752 (2004).

    CAS  PubMed  Google Scholar 

  94. Damatta, R.A. et al. Trypanosoma cruzi exposes phosphatidylserine as an evasion mechanism. FEMS Microbiol. Lett. 266, 29–33 (2007).

    CAS  PubMed  Google Scholar 

  95. Mercer, J. & Helenius, A. Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320, 531–535 (2008).

    CAS  PubMed  Google Scholar 

  96. Callahan, M.K. et al. Phosphatidylserine on HIV envelope is a cofactor for infection of monocytic cells. J. Immunol. 170, 4840–4845 (2003).

    CAS  PubMed  Google Scholar 

  97. Brindley, M.A. et al. Tyrosine kinase receptor Axl enhances entry of Zaire ebolavirus without direct interactions with the viral glycoprotein. Virology 415, 83–94 (2011).

    CAS  PubMed  Google Scholar 

  98. Hunt, C.L., Kolokoltsov, A.A., Davey, R.A. & Maury, W. The Tyro3 receptor kinase Axl enhances macropinocytosis of Zaire ebolavirus. J. Virol. 85, 334–347 (2011).

    CAS  PubMed  Google Scholar 

  99. Meertens, L. et al. The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe 12, 544–557 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Morizono, K. & Chen, I.S. Role of phosphatidylserine receptors in enveloped virus infection. J. Virol. 88, 4275–4290 (2014).

    PubMed  PubMed Central  Google Scholar 

  101. Chen, Y.H. et al. Phosphatidylserine vesicles enable efficient en bloc transmission of enteroviruses. Cell 160, 619–630 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Das, S. et al. Brain angiogenesis inhibitor 1 (BAI1) is a pattern recognition receptor that mediates macrophage binding and engulfment of Gram-negative bacteria. Proc. Natl. Acad. Sci. USA 108, 2136–2141 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. N'Diaye, E.N. et al. TREM-2 (triggering receptor expressed on myeloid cells 2) is a phagocytic receptor for bacteria. J. Cell Biol. 184, 215–223 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Adachi, H. & Tsujimoto, M. FEEL-1, a novel scavenger receptor with in vitro bacteria-binding and angiogenesis-modulating activities. J. Biol. Chem. 277, 34264–34270 (2002).

    CAS  PubMed  Google Scholar 

  105. Means, T.K. et al. Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. J. Exp. Med. 206, 637–653 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Henson, P.M. Dampening inflammation. Nat. Immunol. 6, 1179–1181 (2005).

    CAS  PubMed  Google Scholar 

  107. Colegio, O.R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Chung, W.S. et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504, 394–400 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Gaultier, A. et al. Low-density lipoprotein receptor-related protein 1 is an essential receptor for myelin phagocytosis. J. Cell Sci. 122, 1155–1162 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Tasdemir-Yilmaz, O.E. & Freeman, M.R. Astrocytes engage unique molecular programs to engulf pruned neuronal debris from distinct subsets of neurons. Genes Dev. 28, 20–33 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Lu, Z. et al. Phagocytic activity of neuronal progenitors regulates adult neurogenesis. Nat. Cell Biol. 13, 1076–1083 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. García, M. & Vecino, E. Role of Muller glia in neuroprotection and regeneration in the retina. Histol. Histopathol. 18, 1205–1218 (2003).

    PubMed  Google Scholar 

  113. Kevany, B.M. & Palczewski, K. Phagocytosis of retinal rod and cone photoreceptors. Physiology (Bethesda) 25, 8–15 (2010).

    CAS  Google Scholar 

  114. Wu, Y., Singh, S., Georgescu, M.M. & Birge, R.B. A role for Mer tyrosine kinase in alphavbeta5 integrin-mediated phagocytosis of apoptotic cells. J. Cell Sci. 118, 539–553 (2005).

    CAS  PubMed  Google Scholar 

  115. Todt, J.C., Hu, B. & Curtis, J.L. The receptor tyrosine kinase MerTK activates phospholipase C gamma2 during recognition of apoptotic thymocytes by murine macrophages. J. Leukoc. Biol. 75, 705–713 (2004).

    CAS  PubMed  Google Scholar 

  116. Ji, H. et al. T-cell immunoglobulin and mucin domain 4 (TIM-4) signaling in innate immune-mediated liver ischemia-reperfusion injury. Hepatology 60, 2052–2064 (2014).

    CAS  PubMed  Google Scholar 

  117. Karikoski, M. et al. Clever-1/stabilin-1 controls cancer growth and metastasis. Clin. Cancer Res. 20, 6452–6464 (2014).

    CAS  PubMed  Google Scholar 

  118. Hirose, Y. et al. Inhibition of Stabilin-2 elevates circulating hyaluronic acid levels and prevents tumor metastasis. Proc. Natl. Acad. Sci. USA 109, 4263–4268 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Schledzewski, K. et al. Deficiency of liver sinusoidal scavenger receptors stabilin-1 and -2 in mice causes glomerulofibrotic nephropathy via impaired hepatic clearance of noxious blood factors. J. Clin. Invest. 121, 703–714 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Englert, J.M. et al. A role for the receptor for advanced glycation end products in idiopathic pulmonary fibrosis. Am. J. Pathol. 172, 583–591 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Englert, J.M. et al. Paradoxical function for the receptor for advanced glycation end products in mouse models of pulmonary fibrosis. Int. J. Clin. Exp. Pathol. 4, 241–254 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. He, M. et al. The role of the receptor for advanced glycation end-products in lung fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 293, L1427–L1436 (2007).

    CAS  PubMed  Google Scholar 

  123. He, M. et al. Receptor for advanced glycation end products binds to phosphatidylserine and assists in the clearance of apoptotic cells. EMBO Rep. 12, 358–364 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Liliensiek, B. et al. Receptor for advanced glycation end products (RAGE) regulates sepsis but not the adaptive immune response. J. Clin. Invest. 113, 1641–1650 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Tian, L. et al. p85α recruitment by the CD300f phosphatidylserine receptor mediates apoptotic cell clearance required for autoimmunity suppression. Nat. Commun. 5, 3146 (2014).

    PubMed  Google Scholar 

  126. Cantoni, C. et al. TREM2 regulates microglial cell activation in response to demyelination in vivo. Acta Neuropathol. 129, 429–447 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Jay, T.R. et al. TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer's disease mouse models. J. Exp. Med. 212, 287–295 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Poliani, P.L. et al. TREM2 sustains microglial expansion during aging and response to demyelination. J. Clin. Invest. 125, 2161–2170 (2015).

    PubMed  PubMed Central  Google Scholar 

  129. Wang, Y. et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model. Cell 160, 1061–1071 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Bosurgi, L. et al. Paradoxical role of the proto-oncogene Axl and Mer receptor tyrosine kinases in colon cancer. Proc. Natl. Acad. Sci. USA 110, 13091–13096 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Camenisch, T.D., Koller, B.H., Earp, H.S. & Matsushima, G.K. A novel receptor tyrosine kinase, Mer, inhibits TNF-alpha production and lipopolysaccharide-induced endotoxic shock. J. Immunol. 162, 3498–3503 (1999).

    CAS  PubMed  Google Scholar 

  132. D'Cruz, P.M. et al. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum. Mol. Genet. 9, 645–651 (2000).

    CAS  PubMed  Google Scholar 

  133. Lu, Q. & Lemke, G. Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro 3 family. Science 293, 306–311 (2001).

    CAS  PubMed  Google Scholar 

  134. Neher, J.J. et al. Phagocytosis executes delayed neuronal death after focal brain ischemia. Proc. Natl. Acad. Sci. USA 110, E4098–E4107 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Prasad, D. et al. TAM receptor function in the retinal pigment epithelium. Mol. Cell. Neurosci. 33, 96–108 (2006).

    CAS  PubMed  Google Scholar 

  136. Scott, R.S. et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411, 207–211 (2001).

    CAS  PubMed  Google Scholar 

  137. Weinger, J.G. et al. Loss of the receptor tyrosine kinase Axl leads to enhanced inflammation in the CNS and delayed removal of myelin debris during experimental autoimmune encephalomyelitis. J. Neuroinflammation 8, 49 (2011).

    PubMed  PubMed Central  Google Scholar 

  138. Acharya, M. et al. αv Integrin expression by DCs is required for Th17 cell differentiation and development of experimental autoimmune encephalomyelitis in mice. J. Clin. Invest. 120, 4445–4452 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Lacy-Hulbert, A. et al. Ulcerative colitis and autoimmunity induced by loss of myeloid alphav integrins. Proc. Natl. Acad. Sci. USA 104, 15823–15828 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. McCarty, J.H. et al. Selective ablation of αV integrins in the central nervous system leads to cerebral hemorrhage, seizures, axonal degeneration and premature death. Development 132, 165–176 (2005).

    CAS  PubMed  Google Scholar 

  141. McCarty, J.H. et al. Genetic ablation of αV integrins in epithelial cells of the eyelid skin and conjunctiva leads to squamous cell carcinoma. Am. J. Pathol. 172, 1740–1747 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Nandrot, E.F. & Finnemann, S.C. Lack of αVβ5 integrin receptor or its ligand MFG-E8: distinct effects on retinal function. Ophthalmic Res. 40, 120–123 (2008).

    CAS  PubMed  Google Scholar 

  143. Aziz, M., Matsuda, A., Yang, W.L., Jacob, A. & Wang, P. Milk fat globule-epidermal growth factor-factor 8 attenuates neutrophil infiltration in acute lung injury via modulation of CXCR2. J. Immunol. 189, 393–402 (2012).

    CAS  PubMed  Google Scholar 

  144. Fricker, M. et al. MFG-E8 mediates primary phagocytosis of viable neurons during neuroinflammation. J. Neurosci. 32, 2657–2666 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Hanayama, R. et al. Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304, 1147–1150 (2004).

    CAS  PubMed  Google Scholar 

  146. Kusunoki, R. et al. Role of milk fat globule-epidermal growth factor 8 in colonic inflammation and carcinogenesis. J. Gastroenterol. http://dx.doi.org/10.1007/s00535-014-1036-x (2015).

  147. Neher, J.J., Neniskyte, U. & Brown, G.C. Primary phagocytosis of neurons by inflamed microglia: potential roles in neurodegeneration. Front. Pharmacol. 3, 27 (2012).

    PubMed  PubMed Central  Google Scholar 

  148. Peng, Y. & Elkon, K.B. Autoimmunity in MFG-E8-deficient mice is associated with altered trafficking and enhanced cross-presentation of apoptotic cell antigens. J. Clin. Invest. 121, 2221–2241 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Ait-Oufella, H. et al. Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice. Circulation 115, 2168–2177 (2007).

    CAS  PubMed  Google Scholar 

  150. Akitake-Kawano, R. et al. Inhibitory role of Gas6 in intestinal tumorigenesis. Carcinogenesis 34, 1567–1574 (2013).

    CAS  PubMed  Google Scholar 

  151. Angelillo-Scherrer, A. et al. Deficiency or inhibition of Gas6 causes platelet dysfunction and protects mice against thrombosis. Nat. Med. 7, 215–221 (2001).

    CAS  PubMed  Google Scholar 

  152. Binder, M.D. et al. Gas6 deficiency increases oligodendrocyte loss and microglial activation in response to cuprizone-induced demyelination. J. Neurosci. 28, 5195–5206 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Binder, M.D. et al. Gas6 increases myelination by oligodendrocytes and its deficiency delays recovery following cuprizone-induced demyelination. PLoS ONE 6, e17727 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Burnier, L. et al. Gas6 deficiency in recipient mice of allogeneic transplantation alleviates hepatic graft-versus-host disease. Blood 115, 3390–3397 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Llacuna, L. et al. Growth arrest-specific protein 6 is hepatoprotective against murine ischemia/reperfusion injury. Hepatology 52, 1371–1379 (2010).

    CAS  PubMed  Google Scholar 

  156. Yanagita, M. et al. Essential role of Gas6 for glomerular injury in nephrotoxic nephritis. J. Clin. Invest. 110, 239–246 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Cai, L., Wang, Z., Ji, A., Meyer, J.M. & van der Westhuyzen, D.R. Scavenger receptor CD36 expression contributes to adipose tissue inflammation and cell death in diet-induced obesity. PLoS ONE 7, e36785 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Greenberg, M.E. et al. Oxidized phosphatidylserine-CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells. J. Exp. Med. 203, 2613–2625 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Kennedy, D.J. et al. Dietary cholesterol plays a role in CD36-mediated atherogenesis in LDLR-knockout mice. Arterioscler. Thromb. Vasc. Biol. 29, 1481–1487 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Parks, B.W. et al. CD36, but not G2A, modulates efferocytosis, inflammation, and fibrosis following bleomycin-induced lung injury. J. Lipid Res. 54, 1114–1123 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Overton, C.D., Yancey, P.G., Major, A.S., Linton, M.F. & Fazio, S. Deletion of macrophage LDL receptor-related protein increases atherogenesis in the mouse. Circ. Res. 100, 670–677 (2007).

    CAS  PubMed  Google Scholar 

  162. Yancey, P.G. et al. Macrophage LRP-1 controls plaque cellularity by regulating efferocytosis and Akt activation. Arterioscler. Thromb. Vasc. Biol. 30, 787–795 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Yancey, P.G. et al. Low-density lipoprotein receptor-related protein 1 prevents early atherosclerosis by limiting lesional apoptosis and inflammatory Ly-6Chigh monocytosis: evidence that the effects are not apolipoprotein E dependent. Circulation 124, 454–464 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Subramanian, M. et al. An AXL/LRP-1/RANBP9 complex mediates DC efferocytosis and antigen cross-presentation in vivo. J. Clin. Invest. 124, 1296–1308 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Ramirez-Ortiz, Z.G. et al. The scavenger receptor SCARF1 mediates the clearance of apoptotic cells and prevents autoimmunity. Nat. Immunol. 14, 917–926 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Bhatia, V.K. et al. Complement C1q reduces early atherosclerosis in low-density lipoprotein receptor-deficient mice. Am. J. Pathol. 170, 416–426 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Bossi, F. et al. C1q as a unique player in angiogenesis with therapeutic implication in wound healing. Proc. Natl. Acad. Sci. USA 111, 4209–4214 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Botto, M. et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat. Genet. 19, 56–59 (1998).

    CAS  PubMed  Google Scholar 

  169. Chu, Y. et al. Enhanced synaptic connectivity and epilepsy in C1q knockout mice. Proc. Natl. Acad. Sci. USA 107, 7975–7980 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the Ravichandran laboratory, as well as colleagues in the field, for comments and discussions. Supported by the US National Institutes of Health (NIGMS GM064709, HD074981, GM107848, HL120840 and MH096484).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kodi S Ravichandran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arandjelovic, S., Ravichandran, K. Phagocytosis of apoptotic cells in homeostasis. Nat Immunol 16, 907–917 (2015). https://doi.org/10.1038/ni.3253

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3253

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing