Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum error correction beyond qubits

Abstract

Quantum computation and communication rely on the ability to manipulate quantum states robustly and with high fidelity. To protect fragile quantum-superposition states from corruption through so-called decoherence noise, some form of error correction is needed. Therefore, the discovery of quantum error correction1,2 (QEC) was a key step to turn the field of quantum information from an academic curiosity into a developing technology. Here, we present an experimental implementation of a QEC code for quantum information encoded in continuous variables, based on entanglement among nine optical beams3. This nine-wave-packet adaptation of Shor’s original nine-qubit scheme1 enables, at least in principle, full quantum error correction against an arbitrary single-beam error.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram for the nine-wave-packet quantum error-correction code operation (ref. 3) for correcting an arbitrary error occurring in any one of the nine channels.
Figure 2: Experimental set-up of the nine-wave-packet quantum error correction.
Figure 3: Error syndrome measurement results.
Figure 4: Results of quantum-error-correction procedure.

Similar content being viewed by others

References

  1. Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995).

    Article  ADS  Google Scholar 

  2. Steane, A. M. Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  3. Braunstein, S. L. Quantum error correction for communication with linear optics. Nature 394, 47–49 (1998).

    Article  ADS  Google Scholar 

  4. Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).

    Article  ADS  Google Scholar 

  5. Niset, J., Fiurás̆ek, J. & Cerf, N. J. No-go theorem for Gaussian quantum error correction. Phys. Rev. Lett. 102, 120501 (2009).

    Article  ADS  Google Scholar 

  6. Cory, D. G. et al. Experimental quantum error correction. Phys. Rev. Lett. 81, 2152–2155 (1998).

    Article  ADS  Google Scholar 

  7. Leung, D. et al. Experimental realization of a two-bit phase damping quantum code. Phys. Rev. A 60, 1924–1943 (1999).

    Article  ADS  Google Scholar 

  8. Knill, E. et al. Benchmarking quantum computers: The five-qubit error correcting code. Phys. Rev. Lett. 86, 5811–5814 (2001).

    Article  ADS  Google Scholar 

  9. Boulant, N. et al. Experimental implementation of a concatenated quantum error-correcting code. Phys. Rev. Lett. 94, 130501 (2005).

    Article  ADS  Google Scholar 

  10. Chiaverini, J. et al. Realization of quantum error correction. Nature 432, 602–605 (2004).

    Article  ADS  Google Scholar 

  11. O’Brien, J. L. et al. High-fidelity Z-measurement error encoding of optical qubits. Phys. Rev. A 71, 060303 (2005).

    Article  ADS  Google Scholar 

  12. Lu, C.-Y. et al. Experimental quantum coding against qubit loss error. Proc. Natl Acad. Sci. USA 105, 11050–11054 (2008).

    Article  ADS  Google Scholar 

  13. Braunstein, S. L. Error correction for continuous quantum variables. Phys. Rev. Lett. 80, 4084–4087 (1998).

    Article  ADS  Google Scholar 

  14. Lloyd, S. & Slotine, J.-J. E. Analog quantum error correction. Phys. Rev. Lett. 80, 4088–4091 (1998).

    Article  ADS  Google Scholar 

  15. Yonezawa, H., Aoki, T. & Furusawa, A. Demonstration of a quantum teleportation network for continuous variables. Nature 431, 430–433 (2004).

    Article  ADS  Google Scholar 

  16. van Loock, P. A note on quantum error correction with continuous variables. Preprint at <http://arxiv.org/abs/0811.3616> (2008).

  17. Heersink, J. et al. Distillation of squeezing from non-Gaussian quantum states. Phys. Rev. Lett. 96, 253601 (2006).

    Article  ADS  Google Scholar 

  18. Dong, R. et al. Experimental entanglement distillation of mesoscopic quantum states. Nature Phys. 4, 919–923 (2008).

    Article  ADS  Google Scholar 

  19. Hage, B. et al. Preparation of distilled and purified continuous-variable entangled states. Nature Phys. 4, 915–918 (2008).

    Article  ADS  Google Scholar 

  20. Niset, J., Andersen, U. L. & Cerf, N. J. Experimentally feasible quantum erasure-correcting code for continuous variables. Phys. Rev. Lett. 101, 130503 (2008).

    Article  ADS  Google Scholar 

  21. Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).

    Article  ADS  Google Scholar 

  22. Braunstein, S. L. et al. Quantum versus classical domains for teleportation with continuous variables. Phys. Rev. A 64, 022321 (2001).

    Article  ADS  Google Scholar 

  23. Hammerer, K. et al. Quantum benchmark for storage and transmission of coherent states. Phys. Rev. Lett. 94, 150503 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by SCF, GIA, G-COE and PFN commissioned by the MEXT of Japan, and the Research Foundation for Opto-Science and Technology. S.L.B. appreciated discussions with Netta Cohen. P.v.L. acknowledges the DFG for financial support under the Emmy Noether programme. A.F. acknowledges Y. Takeno for preparing the figures. P.v.L. thanks Gerd Leuchs for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Project planning: T.A., A.F. Experimental work: T.A., G.T., T.K., J.Y. Theoretical work: S.L.B., P.v.L., A.F.

Corresponding author

Correspondence to Akira Furusawa.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1917 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aoki, T., Takahashi, G., Kajiya, T. et al. Quantum error correction beyond qubits. Nature Phys 5, 541–546 (2009). https://doi.org/10.1038/nphys1309

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1309

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing