Abstract
Quantum computation and communication rely on the ability to manipulate quantum states robustly and with high fidelity. To protect fragile quantum-superposition states from corruption through so-called decoherence noise, some form of error correction is needed. Therefore, the discovery of quantum error correction1,2 (QEC) was a key step to turn the field of quantum information from an academic curiosity into a developing technology. Here, we present an experimental implementation of a QEC code for quantum information encoded in continuous variables, based on entanglement among nine optical beams3. This nine-wave-packet adaptation of Shor’s original nine-qubit scheme1 enables, at least in principle, full quantum error correction against an arbitrary single-beam error.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995).
Steane, A. M. Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996).
Braunstein, S. L. Quantum error correction for communication with linear optics. Nature 394, 47–49 (1998).
Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).
Niset, J., Fiurás̆ek, J. & Cerf, N. J. No-go theorem for Gaussian quantum error correction. Phys. Rev. Lett. 102, 120501 (2009).
Cory, D. G. et al. Experimental quantum error correction. Phys. Rev. Lett. 81, 2152–2155 (1998).
Leung, D. et al. Experimental realization of a two-bit phase damping quantum code. Phys. Rev. A 60, 1924–1943 (1999).
Knill, E. et al. Benchmarking quantum computers: The five-qubit error correcting code. Phys. Rev. Lett. 86, 5811–5814 (2001).
Boulant, N. et al. Experimental implementation of a concatenated quantum error-correcting code. Phys. Rev. Lett. 94, 130501 (2005).
Chiaverini, J. et al. Realization of quantum error correction. Nature 432, 602–605 (2004).
O’Brien, J. L. et al. High-fidelity Z-measurement error encoding of optical qubits. Phys. Rev. A 71, 060303 (2005).
Lu, C.-Y. et al. Experimental quantum coding against qubit loss error. Proc. Natl Acad. Sci. USA 105, 11050–11054 (2008).
Braunstein, S. L. Error correction for continuous quantum variables. Phys. Rev. Lett. 80, 4084–4087 (1998).
Lloyd, S. & Slotine, J.-J. E. Analog quantum error correction. Phys. Rev. Lett. 80, 4088–4091 (1998).
Yonezawa, H., Aoki, T. & Furusawa, A. Demonstration of a quantum teleportation network for continuous variables. Nature 431, 430–433 (2004).
van Loock, P. A note on quantum error correction with continuous variables. Preprint at <http://arxiv.org/abs/0811.3616> (2008).
Heersink, J. et al. Distillation of squeezing from non-Gaussian quantum states. Phys. Rev. Lett. 96, 253601 (2006).
Dong, R. et al. Experimental entanglement distillation of mesoscopic quantum states. Nature Phys. 4, 919–923 (2008).
Hage, B. et al. Preparation of distilled and purified continuous-variable entangled states. Nature Phys. 4, 915–918 (2008).
Niset, J., Andersen, U. L. & Cerf, N. J. Experimentally feasible quantum erasure-correcting code for continuous variables. Phys. Rev. Lett. 101, 130503 (2008).
Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).
Braunstein, S. L. et al. Quantum versus classical domains for teleportation with continuous variables. Phys. Rev. A 64, 022321 (2001).
Hammerer, K. et al. Quantum benchmark for storage and transmission of coherent states. Phys. Rev. Lett. 94, 150503 (2005).
Acknowledgements
This work was partly supported by SCF, GIA, G-COE and PFN commissioned by the MEXT of Japan, and the Research Foundation for Opto-Science and Technology. S.L.B. appreciated discussions with Netta Cohen. P.v.L. acknowledges the DFG for financial support under the Emmy Noether programme. A.F. acknowledges Y. Takeno for preparing the figures. P.v.L. thanks Gerd Leuchs for useful discussions.
Author information
Authors and Affiliations
Contributions
Project planning: T.A., A.F. Experimental work: T.A., G.T., T.K., J.Y. Theoretical work: S.L.B., P.v.L., A.F.
Corresponding author
Supplementary information
Supplementary Information
Supplementary Information (PDF 1917 kb)
Rights and permissions
About this article
Cite this article
Aoki, T., Takahashi, G., Kajiya, T. et al. Quantum error correction beyond qubits. Nature Phys 5, 541–546 (2009). https://doi.org/10.1038/nphys1309
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys1309