Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electric-field sensing using single diamond spins

Abstract

The ability to sensitively detect individual charges under ambient conditions would benefit a wide range of applications across disciplines. However, most current techniques are limited to low-temperature methods such as single-electron transistors1,2, single-electron electrostatic force microscopy3 and scanning tunnelling microscopy4. Here we introduce a quantum-metrology technique demonstrating precision three-dimensional electric-field measurement using a single nitrogen-vacancy defect centre spin in diamond. An a.c. electric-field sensitivity reaching 202±6 V cm−1 Hz−1/2 has been achieved. This corresponds to the electric field produced by a single elementary charge located at a distance of 150 nm from our spin sensor with averaging for one second. The analysis of the electronic structure of the defect centre reveals how an applied magnetic field influences the electric-field-sensing properties. We also demonstrate that diamond-defect-centre spins can be switched between electric- and magnetic-field sensing modes and identify suitable parameter ranges for both detector schemes. By combining magnetic- and electric-field sensitivity, nanoscale detection and ambient operation, our study should open up new frontiers in imaging and sensing applications ranging from materials science to bioimaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the NV and the measurement scheme.
Figure 2: Theory of NV electric-field sensing and measured results.
Figure 3: Sensitivity and coherence time measurements.

Similar content being viewed by others

References

  1. Yoo, M. J. et al. Scanning single-electron transistor microscopy: Imaging individual charges. Science 276, 579–582 (1997).

    Article  Google Scholar 

  2. Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nature Phys. 4, 144–148 (2008).

    Article  ADS  Google Scholar 

  3. Schonenberger, C. & Alvarado, S. F. Observation of single charge-carriers by force microscopy. Phys. Rev. Lett. 65, 3162–3164 (1990).

    Article  ADS  Google Scholar 

  4. Schonenberger, C. Charge flow during metal-insulator contact. Phys. Rev. B 45, 3861–3864 (1992).

    Article  ADS  Google Scholar 

  5. Devoret, M. H. & Schoelkopf, R. J. Amplifying quantum signals with the single-electron transistor. Nature 406, 1039–1046 (2000).

    Article  Google Scholar 

  6. Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).

    Article  ADS  Google Scholar 

  7. Williams, C. C., Slinkman, J., Hough, W. P. & Wickramasinghe, H. K. Lateral dopant profiling with 200 nm resolution by scanning capacitance microscopy. Appl. Phys. Lett. 55, 1662–1664 (1989).

    Article  ADS  Google Scholar 

  8. Henning, A. K. et al. 2-dimensional surface dopant profiling in silicon using scanning Kelvin probe microscopy. J. Appl. Phys. 77, 1888–1896 (1995).

    Article  ADS  Google Scholar 

  9. Martin, Y., Abraham, D. W. & Wickramasinghe, H. K. High-resolution capacitance measurement and potentiometry by force microscopy. Appl. Phys. Lett. 52, 1103–1105 (1988).

    Article  ADS  Google Scholar 

  10. Jelezko, F. & Wrachtrup, J. Single defect centres in diamond: A review. Phys. Status Solidi A 203, 3207–3225 (2006).

    Article  ADS  Google Scholar 

  11. Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centres. Science 276, 2012–2014 (1997).

    Article  Google Scholar 

  12. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

    Article  ADS  Google Scholar 

  13. Meijer, J. et al. Generation of single colour centres by focused nitrogen implantation. Appl. Phys. Lett. 87, 261909 (2005).

    Article  ADS  Google Scholar 

  14. Toyli, D. M., Weis, C. D., Fuchs, G. D., Schenkel, T. & Awschalom, D. D. Chip-scale nanofabrication of single spins and spin arrays in diamond. Nano Lett. 10, 3168–3172 (2010).

    Article  ADS  Google Scholar 

  15. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    Article  ADS  Google Scholar 

  16. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Article  ADS  Google Scholar 

  17. Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    Article  ADS  Google Scholar 

  18. Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys. 4, 810–816 (2008).

    Article  ADS  Google Scholar 

  19. Steinert, S. et al. High sensitivity magnetic imaging using an array of spins in diamond. Rev. Sci. Instrum. 81, 043705 (2010).

    Article  ADS  Google Scholar 

  20. Hall, L. T., Hill, C. D., Cole, J. H. & Hollenberg, L. C. L. Ultrasensitive diamond magnetometry using optimal dynamic decoupling. Phys. Rev. B 82, 045208 (2010).

    Article  ADS  Google Scholar 

  21. Naydenov, B. et al. Dynamical decoupling of a single-electron spin at room temperature. Phys. Rev. B 83, 081201 (2011).

    Article  ADS  Google Scholar 

  22. Cole, J. H. & Hollenberg, L. C. L. Scanning quantum decoherence microscopy. Nanotechnology 20, 495401 (2009).

    Article  Google Scholar 

  23. Hall, L. T., Cole, J. H., Hill, C. D. & Hollenberg, L. C. L. Sensing of fluctuating nanoscale magnetic fields using nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 103, 220802 (2009).

    Article  ADS  Google Scholar 

  24. Hall, L. T. et al. Monitoring ion-channel function in real time through quantum decoherence. Proc. Natl Acad. Sci. USA 107, 18777–19782 (2010).

    Article  ADS  Google Scholar 

  25. Fu, C. C. et al. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl Acad. Sci. USA 104, 727–732 (2007).

    Article  ADS  Google Scholar 

  26. Chang, Y. R. et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nature Nanotech. 3, 284–288 (2008).

    Article  Google Scholar 

  27. Tamarat, P. et al. Stark shift control of single optical centres in diamond. Phys. Rev. Lett. 97, 083002 (2006).

    Article  ADS  Google Scholar 

  28. Vanoort, E. & Glasbeek, M. Electric-field-induced modulation of spin echoes of N–V centers in diamond. Chem. Phys. Lett. 168, 529–532 (1990).

    Article  ADS  Google Scholar 

  29. Naydenov, B. et al. Increasing the coherence time of single electron spins in diamond by high temperature annealing. Appl. Phys. Lett. 97, 242511 (2010).

    Article  ADS  Google Scholar 

  30. Babinec, T. M. et al. A diamond nanowire single-photon source. Nature Nanotech. 5, 195–199 (2010).

    Article  ADS  Google Scholar 

  31. de Lange, G., Wang, Z. H., Riste, D., Dobrovitski, V. V. & Hanson, R. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60–63 (2010).

    Article  ADS  Google Scholar 

  32. Hauf, M. V. et al. Chemical control of the charge state of nitrogen-vacancy centres in diamond. Phys. Rev. B 83, 081304 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank P. Neumann, B. Naydenov, R. Kolesov, C. Kim, P. Hemmer and S. Steinert for fruitful discussions and their advice. This work was supported by the EU (QAP, EQUIND, NEDQIT, SOLID), DFG(SFB/TR21, FOR730 and FOR1482), NIH, Baden-Württemberg Stiftung, BMBF (EPHQUAM, KEPHOSI),VolkswagenStiftung, and the Australian Research Council Centre of Excellence Scheme (project ID CE110001027). T.N. wishes to thank Vienna doctoral program CoQuS(Austrian Science Fund (FWF) project W1210).

Author information

Authors and Affiliations

Authors

Contributions

F.D, H.F., T.N., G.B., T.W. and F.J. carried out the experiments; M.W.D., F. Rempp, F. Reinhard and L.C.L.H developed the theory. All authors discussed the results, analysed the data and commented on the manuscript. J.W. wrote the paper and supervised the project.

Corresponding author

Correspondence to H. Fedder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 572 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolde, F., Fedder, H., Doherty, M. et al. Electric-field sensing using single diamond spins. Nature Phys 7, 459–463 (2011). https://doi.org/10.1038/nphys1969

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1969

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing