Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental measurement of the Berry curvature from anomalous transport

Abstract

The geometric properties of energy bands underlie fascinating phenomena in many systems, including solid-state, ultracold gases and photonics. The local geometric characteristics such as the Berry curvature1 can be related to global topological invariants such as those classifying the quantum Hall states or topological insulators. Regardless of the band topology, however, any non-zero Berry curvature can have important consequences, such as in the semi-classical evolution of a coherent wavepacket. Here, we experimentally demonstrate that the wavepacket dynamics can be used to directly map out the Berry curvature. To this end, we use optical pulses in two coupled fibre loops to study the discrete time evolution of a wavepacket in a one-dimensional geometric ‘charge’ pump, where the Berry curvature leads to an anomalous displacement of the wavepacket. This is both the first direct observation of Berry curvature effects in an optical system, and a proof-of-principle demonstration that wavepacket dynamics can serve as a high-resolution tool for mapping out geometric properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of photonic mesh lattices by time multiplexing.
Figure 2: Anomalous transport of a wavepacket.
Figure 3: Experimental reconstruction of the Berry curvature.

Similar content being viewed by others

References

  1. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  2. Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    Article  ADS  Google Scholar 

  3. Thouless, D. J. Quantization of particle transport. Phys. Rev. B 27, 6083–6087 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  4. Chang, M.-C. & Niu, Q. Berry phase, hyperorbits, and the Hofstadter spectrum. Phys. Rev. Lett. 75, 1348–1351 (1995).

    Article  ADS  Google Scholar 

  5. Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  6. Bliokh, K. Y. & Bliokh, Y. P. Spin gauge fields: from Berry phase to topological spin transport and Hall effects. Ann. Phys. 319, 13–47 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  7. Price, H. M., Ozawa, T. & Carusotto, I. Quantum mechanics with a momentum-space artificial magnetic field. Phys. Rev. Lett. 113, 190403 (2014).

    Article  ADS  Google Scholar 

  8. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    Article  ADS  Google Scholar 

  9. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljacić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    Article  ADS  Google Scholar 

  10. Skirlo, S. A. et al. Experimental observation of large chern numbers in photonic crystals. Phys. Rev. Lett. 115, 253901 (2015).

    Article  ADS  Google Scholar 

  11. Lu, L. et al. Experimental observation of Weyl points. Science 349, 622–624 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  12. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    Article  ADS  Google Scholar 

  13. Kraus, Y. E., Lahini, Y., Ringel, Z., Verbin, M. & Zilberberg, O. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012).

    Article  ADS  Google Scholar 

  14. Kitagawa, T. et al. Observation of topologically protected bound states in photonic quantum walks. Nat. Commun. 3, 882 (2012).

    Article  Google Scholar 

  15. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

    Article  ADS  Google Scholar 

  16. Mittal, S., Ganeshan, S., Fan, J., Vaezi, A. & Hafezi, M. Measurement of topological invariants in a 2D photonic system. Nat. Photon. 10, 180–183 (2016).

    Article  ADS  Google Scholar 

  17. Duca, L. et al. An Aharonov-Bohm interferometer for determining Bloch band topology. Science 347, 288–292 (2015).

    Article  ADS  Google Scholar 

  18. Atala, M. et al. Direct measurement of the Zak phase in topological Bloch bands. Nat. Phys. 9, 795–800 (2013).

    Article  Google Scholar 

  19. Aidelsburger, M. et al. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys. 11, 162–166 (2014).

    Article  Google Scholar 

  20. Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    Article  ADS  Google Scholar 

  21. Mancini, M. et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349, 1510–1513 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  22. Stuhl, B. K., Lu, H.-I., Aycock, L. M., Genkina, D. & Spielman, I. B. Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science 349, 1514–1518 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  23. Lohse, M., Schweizer, C., Zilberberg, O., Aidelsburger, M. & Bloch, I. A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice. Nat. Phys. 12, 350–354 (2015).

    Article  Google Scholar 

  24. Nakajima, S. et al. Topological Thouless pumping of ultracold fermions. Nat. Phys. 12, 296–300 (2016).

    Article  Google Scholar 

  25. Lu, H.-I. et al. Geometrical pumping with a Bose-Einstein condensate. Phys. Rev. Lett. 116, 200402 (2016).

    Article  ADS  Google Scholar 

  26. Fläschner, N. et al. Experimental reconstruction of the Berry curvature in a Floquet Bloch band. Science 352, 1091–1094 (2016).

    Article  ADS  Google Scholar 

  27. Li, T. et al. Bloch state tomography using Wilson lines. Science 352, 1094–1097 (2016).

    Article  ADS  Google Scholar 

  28. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological states in photonic systems. Nat. Phys. 12, 626–629 (2016).

    Article  Google Scholar 

  29. Verbin, M., Zilberberg, O., Lahini, Y., Kraus, Y. E. & Silberberg, Y. Topological pumping over a photonic Fibonacci quasicrystal. Phys. Rev. B 91, 064201 (2015).

    Article  ADS  Google Scholar 

  30. Kraus, Y. E. & Zilberberg, O. Quasiperiodicity and topology transcend dimensions. Nat. Phys. 12, 624–626 (2016).

    Article  Google Scholar 

  31. Schreiber, A. et al. Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104, 050502 (2010).

    Article  ADS  Google Scholar 

  32. Regensburger, A. et al. Parity-time synthetic photonic lattices. Nature 488, 167–171 (2012).

    Article  ADS  Google Scholar 

  33. Miri, M.-A., Regensburger, A., Peschel, U. & Christodoulides, D. N. Optical mesh lattices with PT symmetry. Phys. Rev. A 86, 023807 (2012).

    Article  ADS  Google Scholar 

  34. Wimmer, M. et al. Optical diametric drive acceleration through action–reaction symmetry breaking. Nat. Phys. 9, 780–784 (2013).

    Article  Google Scholar 

  35. Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    Article  ADS  Google Scholar 

  36. Price, H. M. & Cooper, N. R. Mapping the Berry curvature from semiclassical dynamics in optical lattices. Phys. Rev. A 85, 033620 (2012).

    Article  ADS  Google Scholar 

  37. Regensburger, A. et al. Photon propagation in a discrete fiber network: an interplay of coherence and losses. Phys. Rev. Lett. 107, 233902 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.W. acknowledges financial support from the Erlangen Graduate School of Advanced Optical Technologies. Additionally, M.W. would like to thank M. Kremer and A. Bisianov for fruitful discussions. Furthermore, this project was supported by PE 523/14-1 and by the GRK2101 funded by the DFG. H.M.P. was supported by the EC through the H2020 Marie Sklodowska-Curie Action, Individual Fellowship Grant No. 656093 SynOptic. I.C. was funded by the EU-FET Proactive grant AQuS, Project No. 640800, and by Provincia Autonoma di Trento, partially through the project ‘On silicon chip quantum optics for quantum computing and secure communications (SiQuro)’.

Author information

Authors and Affiliations

Authors

Contributions

M.W. performed the experiments; all authors contributed to the theoretical background and the interpretation of the measurement.

Corresponding author

Correspondence to Ulf Peschel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wimmer, M., Price, H., Carusotto, I. et al. Experimental measurement of the Berry curvature from anomalous transport. Nature Phys 13, 545–550 (2017). https://doi.org/10.1038/nphys4050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4050

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing