Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Measles

Abstract

Measles is an infectious disease in humans caused by the measles virus (MeV). Before the introduction of an effective measles vaccine, virtually everyone experienced measles during childhood. Symptoms of measles include fever and maculopapular skin rash accompanied by cough, coryza and/or conjunctivitis. MeV causes immunosuppression, and severe sequelae of measles include pneumonia, gastroenteritis, blindness, measles inclusion body encephalitis and subacute sclerosing panencephalitis. Case confirmation depends on clinical presentation and results of laboratory tests, including the detection of anti-MeV IgM antibodies and/or viral RNA. All current measles vaccines contain a live attenuated strain of MeV, and great progress has been made to increase global vaccination coverage to drive down the incidence of measles. However, endemic transmission continues in many parts of the world. Measles remains a considerable cause of childhood mortality worldwide, with estimates that >100,000 fatal cases occur each year. Case fatality ratio estimates vary from <0.01% in industrialized countries to >5% in developing countries. All six WHO regions have set goals to eliminate endemic transmission of MeV by achieving and maintaining high levels of vaccination coverage accompanied by a sensitive surveillance system. Because of the availability of a highly effective and relatively inexpensive vaccine, the monotypic nature of the virus and the lack of an animal reservoir, measles is considered a candidate for eradication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: History of measles virus infection and elimination programmes.
Figure 2: Global reported measles cases and estimated coverage with the first and second dose of measles-containing vaccine by year (1980–2014).
Figure 3: The number of estimated measles deaths globally by year (2000–2014).
Figure 4: Measles virus and the viral life cycle.
Figure 5: Measles virus infection and transmission.
Figure 6: Pathogenesis of measles.
Figure 7: Detection of the global distribution of measles virus genotypes and incidence in 2015.

Similar content being viewed by others

References

  1. Griffin, D. E. in Fields Virology (eds Fields, B. N., Howley, P. M., Cohen, J. I. & Knipe, D. M. ) 1042–1069 (Wolters Kluver/Lippincott Williams & Wilkins, 2013).

    Google Scholar 

  2. Chen, R. T., Goldbaum, G. M., Wassilak, S. G., Markowitz, L. E. & Orenstein, W. A. An explosive point-source measles outbreak in a highly vaccinated population. Modes of transmission and risk factors for disease. Am. J. Epidemiol. 129, 173–182 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Bloch, A. B. et al. Measles outbreak in a pediatric practice: airborne transmission in an office setting. Pediatrics 75, 676–683 (1985).

    CAS  PubMed  Google Scholar 

  4. Wolfson, L. J. et al. Has the 2005 measles mortality reduction goal been achieved? A natural history modelling study. Lancet 369, 191–200 (2007).

    Article  PubMed  Google Scholar 

  5. Mina, M. J., Metcalf, C. J., de Swart, R. L., Osterhaus, A. D. & Grenfell, B. T. Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality. Science 348, 694–699 (2015). Using statistical analysis of population data, this study demonstrates that measles has long-lasting (2–3 years) immunological effects that result in increased childhood mortality.

  6. Imdad, A. et al. Impact of vitamin A supplementation on infant and childhood mortality. BMC Public Health 11 (Suppl. 3), S20 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Perry, R. et al. Progress toward regional measles elimination — worldwide, 2000–2014. MMWR Morb. Mortal. Wkly Rep. 64, 1246–1251 (2015).

    Article  PubMed  Google Scholar 

  8. World Health Organization. Progress towards regional measles elimination, worldwide, 2000–2014. Wkly Epidemiol. Rec. 90, 623–631 (2015).

    Google Scholar 

  9. [No authors listed.] Global vaccine action plan. Decade of vaccine collaboration. Vaccine 31 (Suppl. 2), B5–B31 (2013).

  10. World Health Organization. Framework for verifying elimination of measles and rubella. Wkly Epidemiol. Rec. 88, 89–99 (2013).

    Google Scholar 

  11. Simons, E. et al. Assessment of the 2010 global measles mortality reduction goal: results from a model of surveillance data. Lancet 379, 2173–2178 (2012). A description of the model used to derive global measles mortality estimates.

    Article  PubMed  Google Scholar 

  12. Perry, R. et al. Progress toward regional measles elimination — worldwide, 2000–2013. MMWR Morb. Mortal. Wkly Rep. 63, 1034–1038 (2014).

    PubMed  PubMed Central  Google Scholar 

  13. Mulders, M. et al. Global measles and rubella laboratory network support for elimination goals, 2010–2015. MMWR Morb. Mortal. Wkly Rep. 65, 438–442 (2016).

    Article  PubMed  Google Scholar 

  14. Fine, P. E. & Clarkson, J. A. Measles in England and Wales — I: an analysis of factors underlying seasonal patterns. Int. J. Epidemiol. 11, 5–14 (1982).

    Article  CAS  PubMed  Google Scholar 

  15. Ferrari, M. J. et al. The dynamics of measles in sub-Saharan Africa. Nature 451, 679–684 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Bharti, N. et al. Explaining seasonal fluctuations of measles in Niger using nighttime lights imagery. Science 334, 1424–1427 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McLean, A. R. & Anderson, R. M. Measles in developing countries. Part, I. Epidemiological parameters and patterns. Epidemiol. Infect. 100, 111–133 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McLean, A. R. & Anderson, R. M. Measles in developing countries. Part, II. The predicted impact of mass vaccination. Epidemiol. Infect. 100, 419–442 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smith, P. J., Marcuse, E. K., Seward, J. F., Zhao, Z. & Orenstein, W. A. Children and adolescents unvaccinated against measles: geographic clustering, parents' beliefs, and missed opportunities. Public Health Rep. 130, 485–504 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wallinga, J., Heijne, J. C. & Kretzschmar, M. A measles epidemic threshold in a highly vaccinated population. PLoS Med. 2, e316 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sutcliffe, P. A. & Rea, E. Outbreak of measles in a highly vaccinated secondary school population. CMAJ 155, 1407–1413 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Thompson, K. M. Evolution and use of dynamic transmission models for measles and rubella risk and policy analysis. Risk Anal.http://dx.doi.org/10.1111/risa.12637 (2016).

  23. Wolfson, L. J., Grais, R. F., Luquero, F. J., Birmingham, M. E. & Strebel, P. M. Estimates of measles case fatality ratios: a comprehensive review of community-based studies. Int. J. Epidemiol. 38, 192–205 (2009).

    Article  PubMed  Google Scholar 

  24. Salama, P. et al. Malnutrition, measles, mortality, and the humanitarian response during a famine in Ethiopia. JAMA 286, 563–571 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Caceres, V. M., Strebel, P. M. & Sutter, R. W. Factors determining prevalence of maternal antibody to measles virus throughout infancy: a review. Clin. Infect. Dis. 31, 110–119 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Waaijenborg, S. et al. Waning of maternal antibodies against measles, mumps, rubella, and varicella in communities with contrasting vaccination coverage. J. Infect. Dis. 208, 10–16 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leuridan, E. & Van Damme, P. Passive transmission and persistence of naturally acquired or vaccine-induced maternal antibodies against measles in newborns. Vaccine 25, 6296–6304 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Scott, S. et al. The influence of HIV-1 exposure and infection on levels of passively acquired antibodies to measles virus in Zambian infants. Clin. Infect. Dis. 45, 1417–1424 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Moss, W. J. et al. Prospective study of measles in hospitalized, human immunodeficiency virus (HIV)-infected and HIV-uninfected children in Zambia. Clin. Infect. Dis. 35, 189–196 (2002).

    Article  PubMed  Google Scholar 

  30. Permar, S. R. et al. Prolonged measles virus shedding in human immunodeficiency virus-infected children, detected by reverse transcriptase-polymerase chain reaction. J. Infect. Dis. 183, 532–538 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Dossetor, J., Whittle, H. C. & Greenwood, B. M. Persistent measles infection in malnourished children. Br. Med. J. 1, 1633–1635 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Garenne, M. Sex differences in measles mortality: a world review. Int. J. Epidemiol. 23, 632–642 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Haralambieva, I. H., Kennedy, R. B., Ovsyannikova, I. G., Whitaker, J. A. & Poland, G. A. Variability in humoral immunity to measles vaccine: new developments. Trends Mol. Med. 21, 789–801 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Udem, S. A. Measles virus: conditions for the propagation and purification of infectious virus in high yield. J. Virol. Methods 8, 123–136 (1984).

    Article  CAS  PubMed  Google Scholar 

  35. Tatsuo, H., Ono, N., Tanaka, K. & Yanagi, Y. SLAM (CDw150) is a cellular receptor for measles virus. Nature 406, 893–897 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. van der Vlist, M. et al. Human Langerhans cells capture measles virus through Langerin and present viral antigens to CD4+ T cells but are incapable of cross-presentation. Eur. J. Immunol. 41, 2619–2631 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Cannons, J. L., Tangye, S. G. & Schwartzberg, P. L. SLAM family receptors and SAP adaptors in immunity. Annu. Rev. Immunol. 29, 665–705 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Noyce, R. S. et al. Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. PLoS Pathog. 7, e1002240 (2011). This paper describes the identification of the MeV receptor on epithelial cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Muhlebach, M. D. et al. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature 480, 530–533 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. van der Vlist, M. et al. Human Langerhans cells capture measles virus through Langerin and present viral antigens to CD4+ T cells but are incapable of cross-presentation. Eur. J. Immunol. 41, 2619–2631 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. de Witte, L., Abt, M., Schneider-Schaulies, S., van Kooyk, Y. & Geijtenbeek, T. B. Measles virus targets DC-SIGN to enhance dendritic cell infection. J. Virol. 80, 3477–3486 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dorig, R. E., Marcil, A., Chopra, A. & Richardson, C. D. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75, 295–305 (1993).

    Article  CAS  Google Scholar 

  43. Yanagi, Y., Takeda, M., Ohno, S. & Hashiguchi, T. Measles virus receptors. Curr. Top. Microbiol. Immunol. 329, 13–30 (2009).

    CAS  PubMed  Google Scholar 

  44. de Swart, R. L. et al. Predominant infection of CD150+ lymphocytes and dendritic cells during measles virus infection of Macaques. PLoS Pathog. 3, e178 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. de Vries, R. D. & de Swart, R. L. Measles immune suppression: functional impairment or numbers game? PLoS Pathog. 10, e1004482 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. de Vries, R. D. et al. In vivo tropism of attenuated and pathogenic measles virus expressing green fluorescent protein in macaques. J. Virol. 84, 4714–4724 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. de Witte, L. et al. DC-SIGN and CD150 have distinct roles in transmission of measles virus from dendritic cells to T-lymphocytes. PLoS Pathog. 4, e1000049 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lemon, K. et al. Early target cells of measles virus after aerosol infection of non-human primates. PLoS Pathog. 7, e1001263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Leonard, V. H., Hodge, G., Reyes-Del Valle, J., McChesney, M. B. & Cattaneo, R. Measles virus selectively blind to signaling lymphocytic activation molecule (SLAM; CD150) is attenuated and induces strong adaptive immune responses in rhesus monkeys. J. Virol. 84, 3413–3420 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Leonard, V. H. et al. Measles virus blind to its epithelial cell receptor remains virulent in rhesus monkeys but cannot cross the airway epithelium and is not shed. J. Clin. Invest. 118, 2448–2458 (2008). This paper describes the roles of the MeV epithelial receptor (nectin 4) in virus pathogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ludlow, M. et al. Wild-type measles virus infection of primary epithelial cells occurs via the basolateral surface without syncytium formation or release of infectious virus. J. Gen. Virol. 91, 971–979 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Frenzke, M. et al. Nectin-4-dependent measles virus spread to the cynomolgus monkey tracheal epithelium: role of infected immune cells infiltrating the lamina propria. J. Virol. 87, 2526–2534 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Baxby, D. The diagnosis of the invasion of measles from a study of the exanthema as it appears on the buccal mucous membrane By Henry Koplik, M.D. Reproduced from Arch. Paed. 13, 918–922 (1886). Rev. Med. Virol. 7, 71–74 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Singh, B. K. et al. The nectin-4/afadin protein complex and intercellular membrane pores contribute to rapid spread of measles virus in primary human airway epithelia. J. Virol. 89, 7089–7096 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Singh, B. K. et al. Cell-to-cell contact and nectin-4 govern spread of measles virus from primary human myeloid cells to primary human airway epithelial cells. J. Virol. 18 May 2016 [epub ahead of print].

  56. de Vries, R. D., Mesman, A. W., Geijtenbeek, T. B., Duprex, W. P. & de Swart, R. L. The pathogenesis of measles. Curr. Opin. Virol. 2, 248–255 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Ikegame, S. et al. Both RIG-I and MDA5 RNA helicases contribute to the induction of alpha/beta interferon in measles virus-infected human cells. J. Virol. 84, 372–379 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Plumet, S. et al. Cytosolic 5′-triphosphate ended viral leader transcript of measles virus as activator of the RIG I-mediated interferon response. PLoS ONE 2, e279 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yoneyama, M., Onomoto, K., Jogi, M., Akaboshi, T. & Fujita, T. Viral RNA detection by RIG-I-like receptors. Curr. Opin. Immunol. 32, 48–53 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Parisien, J. P. et al. A shared interface mediates paramyxovirus interference with antiviral RNA helicases MDA5 and LGP2. J. Virol. 83, 7252–7260 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sparrer, K. M., Pfaller, C. K. & Conzelmann, K. K. Measles virus C protein interferes with beta interferon transcription in the nucleus. J. Virol. 86, 796–805 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nakatsu, Y. et al. Measles virus circumvents the host interferon response by different actions of the C and V proteins. J. Virol. 82, 8296–8306 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Caignard, G. et al. Inhibition of IFN-α/β signaling by two discrete peptides within measles virus V protein that specifically bind STAT1 and STAT2. Virology 383, 112–120 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Ohno, S., Ono, N., Takeda, M., Takeuchi, K. & Yanagi, Y. Dissection of measles virus V protein in relation to its ability to block alpha/beta interferon signal transduction. J. Gen. Virol. 85, 2991–2999 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Shaffer, J. A., Bellini, W. J. & Rota, P. A. The C protein of measles virus inhibits the type I interferon response. Virology 315, 389–397 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Nakatsu, Y., Takeda, M., Ohno, S., Koga, R. & Yanagi, Y. Translational inhibition and increased interferon induction in cells infected with C protein-deficient measles virus. J. Virol. 80, 11861–11867 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Takeuchi, K., Kadota, S. I., Takeda, M., Miyajima, N. & Nagata, K. Measles virus V protein blocks interferon (IFN)-α/β but not IFN-γ signaling by inhibiting STAT1 and STAT2 phosphorylation. FEBS Lett. 545, 177–182 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Devaux, P., Hodge, G., McChesney, M. B. & Cattaneo, R. Attenuation of V- or C-defective measles viruses: infection control by the inflammatory and interferon responses of rhesus monkeys. J. Virol. 82, 5359–5367 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ryon, J. J., Moss, W. J., Monze, M. & Griffin, D. E. Functional and phenotypic changes in circulating lymphocytes from hospitalized zambian children with measles. Clin. Diagn. Lab. Immunol. 9, 994–1003 (2002).

    PubMed  PubMed Central  Google Scholar 

  70. Vuorinen, T., Peri, P. & Vainionpaa, R. Measles virus induces apoptosis in uninfected bystander T cells and leads to granzyme B and caspase activation in peripheral blood mononuclear cell cultures. Eur. J. Clin. Invest. 33, 434–442 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Fugier-Vivier, I. et al. Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells. J. Exp. Med. 186, 813–823 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Manchester, M., Smith, K. A., Eto, D. S., Perkin, H. B. & Torbett, B. E. Targeting and hematopoietic suppression of human CD34+ cells by measles virus. J. Virol. 76, 6636–6642 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tamashiro, V. G., Perez, H. H. & Griffin, D. E. Prospective study of the magnitude and duration of changes in tuberculin reactivity during uncomplicated and complicated measles. Pediatr. Infect. Dis. J. 6, 451–454 (1987).

    Article  CAS  PubMed  Google Scholar 

  74. Griffin, D. E. & Ward, B. J. Differential CD4 T cell activation in measles. J. Infect. Dis. 168, 275–281 (1993).

    Article  CAS  PubMed  Google Scholar 

  75. Ferreira, C. S. et al. Measles virus infection of alveolar macrophages and dendritic cells precedes spread to lymphatic organs in transgenic mice expressing human signaling lymphocytic activation molecule (SLAM, CD150). J. Virol. 84, 3033–3042 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Coughlin, M. M., Bellini, W. J. & Rota, P. A. Contribution of dendritic cells to measles virus induced immunosuppression. Rev. Med. Virol. 23, 126–138 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Hahm, B., Arbour, N. & Oldstone, M. B. Measles virus interacts with human SLAM receptor on dendritic cells to cause immunosuppression. Virology 323, 292–302 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Servet-Delprat, C. et al. Measles virus induces abnormal differentiation of CD40 ligand-activated human dendritic cells. J. Immunol. 164, 1753–1760 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Hahm, B., Cho, J. H. & Oldstone, M. B. Measles virus–dendritic cell interaction via SLAM inhibits innate immunity: selective signaling through TLR4 but not other TLRs mediates suppression of IL-12 synthesis. Virology 358, 251–257 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Hirsch, R. L. et al. Cellular immune responses during complicated and uncomplicated measles virus infections of man. Clin. Immunol. Immunopathol. 31, 1–12 (1984).

    Article  CAS  PubMed  Google Scholar 

  81. Erlenhoefer, C. et al. CD150 (SLAM) is a receptor for measles virus but is not involved in viral contact-mediated proliferation inhibition. J. Virol. 75, 4499–4505 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Griffin, D. E., Ward, B. J., Jauregui, E., Johnson, R. T. & Vaisberg, A. Immune activation in measles. N. Engl. J. Med. 320, 1667–1672 (1989).

    Article  CAS  PubMed  Google Scholar 

  83. de Vries, R. D. et al. Measles immune suppression: lessons from the macaque model. PLoS Pathog. 8, e1002885 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bankamp, B. et al. Wild-type measles viruses with non-standard genome lengths. PLoS ONE 9, e95470 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rota, J. S. et al. Molecular epidemiology of measles virus: identification of pathways of transmission and implications for measles elimination. J. Infect. Dis. 173, 32–37 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Tamin, A. et al. Antigenic analysis of current wild type and vaccine strains of measles virus. J. Infect. Dis. 170, 795–801 (1994).

    Article  CAS  PubMed  Google Scholar 

  87. Shi, J. et al. Measles incidence rate and a phylogenetic study of contemporary genotype H1 measles strains in China: is an improved measles vaccine needed? Virus Genes 43, 319–326 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Santibanez, S. et al. Probing neutralizing-antibody responses against emerging measles viruses (MVs): immune selection of MV by H protein-specific antibodies? J. Gen. Virol. 86, 365–374 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Kuhne, M., Brown, D. W. & Jin, L. Genetic variability of measles virus in acute and persistent infections. Infect. Genet. Evol. 6, 269–276 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Finsterbusch, T. et al. Measles viruses of genotype H1 evade recognition by vaccine-induced neutralizing antibodies targeting the linear haemagglutinin noose epitope. J. Gen. Virol. 90, 2739–2745 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Tahara, M. et al. The receptor-binding site of the measles virus hemagglutinin protein itself constitutes a conserved neutralizing epitope. J. Virol. 87, 3583–3586 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tahara, M. et al. Functional and structural characterization of neutralizing epitopes of measles virus hemagglutinin protein. J. Virol. 87, 666–675 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Beaty, S. M. & Lee, B. Constraints on the genetic and antigenic variability of measles virus. Viruses 8, 109 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xu, S. et al. Evolutionary genetics of genotype H1 measles viruses in China from 1993 to 2012. J. Gen. Virol. 95, 1892–1899 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang, Y. et al. Monitoring progress toward measles elimination by genetic diversity analysis of measles viruses in China 2009–2010. Clin. Microbiol. Infect. 20, O566–O577 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Bellini, W. J. & Rota, P. A. Biological feasibility of measles eradication. Virus Res. 162, 72–79 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. de Swart, R. L. et al. Measles in a Dutch hospital introduced by an immunocompromised infant from Indonesia infected with a new genotype virus. Lancet 355, 201–202 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Markowitz, L. E. et al. Fatal measles pneumonia without rash in a child with AIDS. J. Infect. Dis. 158, 480–483 (1988).

    Article  CAS  PubMed  Google Scholar 

  99. Featherstone, D., Brown, D. & Sanders, R. Development of the Global Measles Laboratory Network. J. Infect. Dis. 187, S264–S269 (2003).

    Article  PubMed  Google Scholar 

  100. Griffin, D. E. Measles virus and the nervous system. Handb. Clin. Neurol. 123, 577–590 (2014).

    Article  PubMed  Google Scholar 

  101. Cutts, F. T., Henderson, R. H., Clements, C. J., Chen, R. T. & Patriarca, P. A. Principles of measles control. Bull. World Health Organ. 69, 1–7 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. van den Hof, S., Conyn-van Spaendonck, M. A. & van Steenbergen, J. E. Measles epidemic in the Netherlands, 1999–2000. J. Infect. Dis. 186, 1483–1486 (2002).

    Article  PubMed  Google Scholar 

  103. Atmar, R. L., Englund, J. A. & Hammill, H. Complications of measles during pregnancy. Clin. Infect. Dis. 14, 217–226 (1992).

    Article  CAS  PubMed  Google Scholar 

  104. Siegel, M. & Fuerst, H. T. Low birth weight and maternal virus diseases. A prospective study of rubella, measles, mumps, chickenpox, and hepatitis. JAMA 197, 680–684 (1966).

    Article  CAS  PubMed  Google Scholar 

  105. Ogbuanu, I. U. et al. Maternal, fetal, and neonatal outcomes associated with measles during pregnancy: Namibia, 2009–2010. Clin. Infect. Dis. 58, 1086–1092 (2014).

    Article  PubMed  Google Scholar 

  106. Helfand, R. F. et al. Diagnosis of measles with an IgM capture EIA: the optimal timing of specimen collection after rash onset. J. Infect. Dis. 175, 195–199 (1997).

    Article  CAS  PubMed  Google Scholar 

  107. Rota, P. A. et al. Improving global virologic surveillance for measles and rubella. J. Infect. Dis. 204, S506–S513 (2011).

    Article  PubMed  Google Scholar 

  108. Van Binnendijk, R. S. et al. Evaluation of serological and virological tests in the diagnosis of clinical and subclinical measles virus infections during an outbreak of measles in the Netherlands. J. Infect. Dis. 188, 898–903 (2003). The authors compared diagnostic assays on clinical specimens that were collected before or after the onset of rash, and demonstrate the strength of the combination of IgM serology and RT-PCR on non-invasively collected oral fluid samples.

    Article  PubMed  Google Scholar 

  109. Kobune, F., Sakata, H. & Sugiura, A. Marmoset lymphoblastoid cells as a sensitive host for isolation of measles virus. J. Virol. 64, 700–705 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ono, N. et al. Measles viruses on throat swabs from measles patients use signaling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. J. Virol. 75, 4399–4401 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Afzal, M. A. et al. Comparative evaluation of measles virus-specific RT-PCR methods through an international collaborative study. J. Med. Virol. 70, 171–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. World Health Organization. Measles and rubella laboratory network: 2007 meeting on use of alternative sampling techniques for surveillance. Wkly Epidemiol. Rec. 83, 229–232 (2008).

    Google Scholar 

  113. De Swart, R. L. et al. Combination of reverse transcriptase PCR analysis and immunoglobulin M detection on filter paper blood samples allows diagnostic and epidemiological studies of measles. J. Clin. Microbiol. 39, 270–273 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Samuel, D. et al. Development of a measles specific IgM ELISA for use with serum and oral fluid samples using recombinant measles nucleoprotein produced in Saccharomyces cerevisiae. J. Clin. Virol. 28, 121–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Jin, L., Vyse, A. & Brown, D. W. The role of RT-PCR assay of oral fluid for diagnosis and surveillance of measles, mumps and rubella. Bull. World Health Organ. 80, 76–77 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Ludlow, M. et al. Infection of lymphoid tissues in the macaque upper respiratory tract contributes to the emergence of transmissible measles virus. J. Gen. Virol. 94, 1933–1944 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Ludlow, M., McQuaid, S., Milner, D., de Swart, R. L. & Duprex, W. P. Pathological consequences of systemic measles virus infection. J. Pathol. 235, 253–265 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Rota, P. A. et al. Global distribution of measles genotypes and measles molecular epidemiology. J. Infect. Dis. 204, S514–S523 (2011).

    Article  PubMed  Google Scholar 

  119. Greenwood, K. P., Hafiz, R., Ware, R. S. & Lambert, S. B. A systematic review of human-to-human transmission of measles vaccine virus. Vaccine 34, 2531–2536 (2016).

    Article  PubMed  Google Scholar 

  120. Kutty, P. et al. VPD Surveillance Manual, 6th Edition Chapter 7: Measles. CDChttps://stacks.cdc.gov/View/cdc/35640 (2013).

  121. [No authors listed.] Genetic diversity of wild-type measles viruses and the global measles nucleotide surveillance database (MeaNS). Wkly Epidemiol. Rec. 90, 373–380 (2015).

  122. Santibanez, S. et al. Long-term transmission of measles virus in Central and continental Western Europe. Virus Genes 50, 2–11 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Nic Lochlainn, L. et al. A unique measles B3 cluster in the United Kingdom and the Netherlands linked to air travel and transit at a large international airport, February to April 2014. Euro Surveill. 21, 30177 (2016).

    Article  Google Scholar 

  124. Shulga, S. V. et al. Genetic variability of wild-type measles viruses, circulating in the Russian Federation during the implementation of the National Measles Elimination Program, 2003–2007. Clin. Microbiol. Infect. 15, 528–537 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Takashima, Y. et al. Progress toward measles elimination — Philippines, 1998–2014. MMWR Morb. Mortal. Wkly Rep. 64, 357–362 (2015).

    PubMed  PubMed Central  Google Scholar 

  126. Harvala, H. et al. Role of sequencing the measles virus hemagglutinin gene and hypervariable region in the measles outbreak investigations in Sweden during 2013–2014. J. Infect. Dis. 213, 592–599 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Penedos, A. R., Myers, R., Hadef, B., Aladin, F. & Brown, K. E. Assessment of the utility of whole genome sequencing of measles virus in the characterisation of outbreaks. PLoS ONE 10, e0143081 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gardy, J. L. et al. Whole-genome sequencing of measles virus genotypes H1 and D8 during outbreaks of infection following the 2010 Olympic winter games reveals viral transmission routes. J. Infect. Dis. 212, 1574–1578 (2015).

    Article  PubMed  Google Scholar 

  129. Strebel, P. M., Papania, M. J., Fiebelkorn, A. P. & Halsey, N. A. in Vaccines: Expert Consult 6th edn (eds Plotkin, S. A., Orenstein, W. A., & Offit, P. A. ) 352–387 (Elsevier Saunders, 2012).

    Google Scholar 

  130. Forni, A. L., Schluger, N. W., & Roberts, R. B. Severe measles pneumonitis in adults: evaluation of clinical characteristics and therapy with intravenous ribavirin. Clin. Infect. Dis. 19, 454–462 (1994).

    Article  CAS  PubMed  Google Scholar 

  131. Krasinski, K. & Borkowsky, W. Measles and measles immunity in children infected with human immunodeficiency virus. JAMA 261, 2512–2516 (1989).

    Article  CAS  PubMed  Google Scholar 

  132. World Health Organization. Vitamin A Supplements: A Guide to Their Use in the Treatment and Prevention of Vitamin A Deficiency and Xerophthalmia 2nd edn (WHO Press, 1997).

  133. Rumore, M. M. Vitamin A as an immunomodulating agent. Clin. Pharm. 12, 506–514 (1993).

    CAS  PubMed  Google Scholar 

  134. Perry, R. T. & Halsey, N. A. The clinical significance of measles: a review. J. Infect. Dis. 189, S4–S16 (2004).

    Article  PubMed  Google Scholar 

  135. Hussey, G. D. & Clements, C. J. Clinical problems in measles case management. Ann. Trop. Paediatr. 16, 307–317 (1996).

    Article  CAS  PubMed  Google Scholar 

  136. Thompson, K. M. & Odahowski, C. L. The costs and valuation of health impacts of measles and rubella risk management policies. Risk Anal.http://dx.doi.org/10.1111/risa.12459 (2015). This paper synthesizes available evidence about the costs and disability-adjusted life years associated with MeV infection.

  137. van den Ent, M. M., Brown, D. W., Hoekstra, E. J., Christie, A. & Cochi, S. L. Measles mortality reduction contributes substantially to reduction of all cause mortality among children less than five years of age, 1990–2008. J. Infect. Dis. 204, S18–S23 (2011).

    Article  PubMed  Google Scholar 

  138. Keller-Stanislawski, B. et al. Safety of immunization during pregnancy: a review of the evidence of selected inactivated and live attenuated vaccines. Vaccine 32, 7057–7064 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Moss, W. J. & Strebel, P. Biological feasibility of measles eradication. J. Infect. Dis. 204, S47–S53 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Okwo-Bele, J. M. & Cherian, T. The expanded programme on immunization: a lasting legacy of smallpox eradication. Vaccine 29, D74–D79 (2011).

    Article  PubMed  Google Scholar 

  141. Robbins, F. C. Prospects for worldwide control of measles: discussion I. Clin. Infect. Dis. 5, 619–620 (1983).

    Article  Google Scholar 

  142. Dowdle, W. & Cochi, S. The principles and feasibility of disease eradication. Vaccine 29, D70–D73 (2011).

    Article  PubMed  Google Scholar 

  143. Strebel, P. M. et al. A world without measles. J. Infect. Dis. 204, S1–S3 (2011). The authors describe the milestones and progress of measles control since measles vaccine became available in 1963, and articulate the vision statement for measles eradication and a clarion call to global partners to take action to eradicate measles.

    Article  PubMed  Google Scholar 

  144. World Health Organization. Global measles and rubella strategic plan 2012–2020. WHOhttp://apps.who.int/iris/bitstream/10665/44855/1/9789241503396_eng.pdf (2012).

  145. Choe, Y. J., Jee, Y., Oh, M.-d. & Lee, J.-K. Measles elimination activities in the Western Pacific region: experience from the Republic of Korea. J. Korean Med. Sci. 30, S115–S121 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Goodson, J. L. et al. Research priorities for global measles and rubella control and eradication. Vaccine 30, 4709–4716 (2012).

    Article  PubMed  Google Scholar 

  147. Edens, C., Collins, M. L., Goodson, J. L., Rota, P. A. & Prausnitz, M. R. A microneedle patch containing measles vaccine is immunogenic in non-human primates. Vaccine 33, 4712–4718 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Larson, H. J., Jarrett, C., Eckersberger, E., Smith, D. M. & Paterson, P. Understanding vaccine hesitancy around vaccines and vaccination from a global perspective: a systematic review of published literature, 2007–2012. Vaccine 32, 2150–2159 (2014).

    Article  PubMed  Google Scholar 

  149. Smits, G. P., van Gageldonk, P. G., Schouls, L. M., van der Klis, F. R. & Berbers, G. A. Development of a bead-based multiplex immunoassay for simultaneous quantitative detection of IgG serum antibodies against measles, mumps, rubella, and varicella-zoster virus. Clin. Vaccine Immunol. 19, 396–400 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Shonhai, A. et al. Investigation of a measles outbreak in Zimbabwe, 2010: potential of a point of care test to replace laboratory confirmation of suspected cases. Epidemiol. Infect. 143, 3442–3450 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Lam, E. et al. Development of a district-level programmatic assessment tool for risk of measles virus transmission. Risk Anal.http://dx.doi.org/10.1111/risa.12409 (2015).

  152. Duintjer Tebbens, R. J. et al. Characterizing poliovirus transmission and evolution: insights from modeling experiences with wild and vaccine-related polioviruses. Risk Anal. 33, 703–749 (2013).

    Article  PubMed  Google Scholar 

  153. Polack, F. P. Atypical measles and enhanced respiratory syncytial virus disease (ERD) made simple. Pediatr. Res. 62, 111–115 (2007).

    Article  PubMed  Google Scholar 

  154. Stittelaar, K. J., De Swart, R. L. & Osterhaus, A. D. M. E. Vaccination against measles: a neverending story. Expert Rev. Vaccines 1, 151–159 (2002).

    Article  CAS  PubMed  Google Scholar 

  155. Griffin, D. E. & Pan, C. H. Measles: old vaccines, new vaccines. Curr. Top. Microbiol. Immunol. 330, 191–212 (2009).

    CAS  PubMed  Google Scholar 

  156. Griffin, D. E. Current progress in pulmonary delivery of measles vaccine. Expert Rev. Vaccines 13, 751–759 (2014).

    Article  CAS  PubMed  Google Scholar 

  157. Lin, W. H. et al. Successful respiratory immunization with dry powder live-attenuated measles virus vaccine in rhesus macaques. Proc. Natl Acad. Sci. USA 108, 2987–2992 (2011).

    Article  PubMed  Google Scholar 

  158. Low, N. et al. A randomized, controlled trial of an aerosolized vaccine against measles. N. Engl. J. Med. 372, 1519–1529 (2015).

    Article  PubMed  Google Scholar 

  159. Malczyk, A. H. et al. A highly immunogenic and protective middle east respiratory syndrome coronavirus vaccine based on a recombinant measles virus vaccine platform. J. Virol. 89, 11654–11667 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ramsauer, K. et al. Immunogenicity, safety, and tolerability of a recombinant measles-virus-based chikungunya vaccine: a randomised, double-blind, placebo-controlled, active-comparator, first-in-man trial. Lancet Infect. Dis. 15, 519–527 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Lorin, C. et al. A single injection of recombinant measles virus vaccines expressing human immunodeficiency virus (HIV) type 1 clade B envelope glycoproteins induces neutralizing antibodies and cellular immune responses to HIV. J. Virol. 78, 146–157 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. World Health Organization. Measles surveillance. WHOhttp://www.who.int/immunization/monitoring_surveillance/burden/vpd/surveillance_type/active/measles_standards/en/ (2003).

  163. Goodson, J. L. & Seward, J. F. Measles 50 years after use of measles vaccine. Infect. Dis. Clin. North Am. 29, 725–743 (2015).

    Article  PubMed  Google Scholar 

  164. Hinman, A., Orenstein, W. & Papania, M. Evolution of measles elimination strategies in the United States. J. Infect. Dis. 189, S17–S22 (2004).

    Article  PubMed  Google Scholar 

  165. Atkinson, W. L., Orenstein, W. A. & Krugman, S. The resurgence of measles in the United States, 1989–1990. Annu. Rev. Med. 43, 451–463 (1992).

    Article  CAS  PubMed  Google Scholar 

  166. Papania, M. J. et al. Epidemiology of measles in the United States, 1997–2001. J. Infect. Dis. 189, S61–S68 (2004).

    Article  PubMed  Google Scholar 

  167. Papania, M. J. et al. Elimination of endemic measles, rubella, and congenital rubella syndrome from the western hemisphere: the US Experience. JAMA Pediatr. 168, 148–155 (2014).

    Article  PubMed  Google Scholar 

  168. Clemmons, N., Gastanaduy, P., Fiebelkorn, A., Redd, S. & Wallace, G. Measles — United States, January 4–April 2, 2015. MMWR Morb. Mortal. Wkly Rep. 64, 373–376 (2015).

    PubMed  PubMed Central  Google Scholar 

  169. Smith, P. J. et al. Children and adolescents unvaccinated against measles: geographic clustering, parents' beliefs, and missed opportunities. Public Health Rep. 130, 485–504 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  170. de Swart, R. L., Duprex, W. P. & Osterhaus, A. D. Rinderpest eradication: lessons for measles eradication? Curr. Opin. Virol. 2, 330–334 (2012).

    Article  PubMed  Google Scholar 

  171. Barrett, T. Morbillivirus infections, with special emphasis on morbilliviruses of carnivores. Vet. Microbiol. 69, 3–13 (1999).

    Article  CAS  PubMed  Google Scholar 

  172. Weiss, R. A. The Leeuwenhoek Lecture 2001. Animal origins of human infectious disease. Phil. Trans. R. Soc. Lond. B Biol. Sci. 356, 957–977 (2001).

    Article  CAS  Google Scholar 

  173. McNeill, W. H. Plagues and Peoples (Anchor, 1977).

  174. Morens, D. M. & Taubenberger, J. K. A forgotten epidemic that changed medicine: measles in the US Army, 1917–18. Lancet Infect. Dis. 15, 852–861 (2015). A description of a well-documented measles outbreak in the US army in the era before the availability of antibiotics, showing the huge clinical impact of the combination of MeV and bacterial co-infection.

    Article  PubMed  Google Scholar 

  175. World Health Organization. WHO/UNICEF estimates of national immunization coverage. WHOhttp://www.who.int/immunization/monitoring_surveillance/data/en (2016).

  176. World Health Organization. The number of global measles cases reported to WHO. WHOhttp://apps.who.int/immunization_monitoring/globalsummary/timeseries/tsincidencemeasles.html (2016).

  177. Hashiguchi, T. et al. Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM. Nat. Struct. Mol. Biol. 18, 135–141 (2011). This paper describes the structures of the MeV H protein complexed with SLAM.

    Article  CAS  PubMed  Google Scholar 

  178. Nakatsu, Y. et al. Intracellular transport of the measles virus ribonucleoprotein complex is mediated by Rab11A-positive recycling endosomes and drives virus release from the apical membrane of polarized epithelial cells. J. Virol. 87, 4683–4693 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wakimoto, H. et al. F-actin modulates measles virus cell–cell fusion and assembly by altering the interaction between the matrix protein and the cytoplasmic tail of hemagglutinin. J. Virol. 87, 1974–1984 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Tahara, M., Takeda, M. & Yanagi, Y. Altered interaction of the matrix protein with the cytoplasmic tail of hemagglutinin modulates measles virus growth by affecting virus assembly and cell–cell fusion. J. Virol. 81, 6827–6836 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

P.A.R. and J.L.G.: the findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the US Centers for Disease Control and Prevention. M.T. receives funding from the Research Program on Emerging and Re-emerging Infectious Diseases, Japan Agency for Medical Research and Development (AMED).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (P.A.R.); Epidemiology (W.J.M. and J.L.G.); Mechanisms/pathophysiology (M.T. and R.L.d.S.); Diagnosis, screening and prevention (P.A.R. and R.L.d.S.); Management (K.M.T.); Quality of life (K.M.T.); Outlook (J.L.G.); Overview of Primer (P.A.R.).

Corresponding author

Correspondence to Paul A. Rota.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Syncytium formation by measles virus (MeV).

Vero/hSLAM cells were infected with an EGFP-expressing wild-type MeV strain (IC323-EGFP). Non-fluorescence time-lapse images are shown. Video courtesy of Y. Nakatsu, National Institute of Infectious Diseases, Tokyo, Japan. (MOV 3698 kb)

Syncytium formation by measles virus (MeV).

Vero/hSLAM cells were infected with an EGFP-expressing wild-type MeV strain (IC323-EGFP). Time-lapse images with eGFP signals are shown. Video courtesy of Y. Nakatsu, National Institute of Infectious Diseases, Tokyo, Japan. (MOV 3778 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rota, P., Moss, W., Takeda, M. et al. Measles. Nat Rev Dis Primers 2, 16049 (2016). https://doi.org/10.1038/nrdp.2016.49

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2016.49

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology