Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Rotavirus infection

Abstract

Rotavirus infections are a leading cause of severe, dehydrating gastroenteritis in children <5 years of age. Despite the global introduction of vaccinations for rotavirus over a decade ago, rotavirus infections still result in >200,000 deaths annually, mostly in low-income countries. Rotavirus primarily infects enterocytes and induces diarrhoea through the destruction of absorptive enterocytes (leading to malabsorption), intestinal secretion stimulated by rotavirus non-structural protein 4 and activation of the enteric nervous system. In addition, rotavirus infections can lead to antigenaemia (which is associated with more severe manifestations of acute gastroenteritis) and viraemia, and rotavirus can replicate in systemic sites, although this is limited. Reinfections with rotavirus are common throughout life, although the disease severity is reduced with repeat infections. The immune correlates of protection against rotavirus reinfection and recovery from infection are poorly understood, although rotavirus-specific immunoglobulin A has a role in both aspects. The management of rotavirus infection focuses on the prevention and treatment of dehydration, although the use of antiviral and anti-emetic drugs can be indicated in some cases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rotavirus structure.
Figure 2: Rotavirus-associated mortality in children <5 years of age in 2013.
Figure 3: The number of rotavirus-positive tests in the United States before and after vaccine introduction.
Figure 4: The rotavirus replication cycle.
Figure 5: Duodenum histology of mice with rotavirus infection.
Figure 6: Schematic model of rotavirus-induced diarrhoea and vomiting.
Figure 7: Rotavirus-mediated inhibition of interferon induction and amplification.

Similar content being viewed by others

References

  1. GBD Diarrhoeal Disease Collaborators. Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Infect. Dis. 17, 909–948 (2017).

    Google Scholar 

  2. Bishop, R. F. et al. Virus particles in epithelial cells of duodenal mucosa from children with acute non-bacterial gastroenteritis. Lancet 2, 1281–1283 (1973). This study shows visualization of rotavirus as the causative agent of viral gastroenteritis and the associated histopathology.

    Google Scholar 

  3. Flewett, T. H. et al. Letter: Virus particles in gastroenteritis. Lancet 2, 1497 (1973).

    Google Scholar 

  4. Estes, M. K. & Greenberg, H. B. in Field's Virology (eds Knipe, D. M. & Howley, P. M. ) 1347–1401 (Lippincott Williams & Wilkins, 2013).

    Google Scholar 

  5. Matthijnssens, J. et al. VP6-sequence-based cutoff values as a criterion for rotavirus species demarcation. Arch. Virol. 157, 1177–1182 (2012).

    Google Scholar 

  6. Mihalov-Kovács, E. et al. Candidate new rotavirus species in sheltered dogs, Hungary. Emerg. Infect. Dis. 21, 660–663 (2015).

    Google Scholar 

  7. Bányai, K. et al. Candidate new rotavirus species in Schreiber's bats, Serbia. Infect. Genet. Evol. 48, 19–26 (2017).

    Google Scholar 

  8. KU Leuven.Rotavirus Classification Working Group: RCWG. KU Leuven Laboratory of Viral Metagenomicshttps://rega.kuleuven.be/cev/viralmetagenomics/virus-classification/rcwg (2017).

  9. Matthijnssens, J. et al. Rotavirus disease and vaccination: impact on genotype diversity. Future Microbiol. 4, 1303–1316 (2009).

    Google Scholar 

  10. Gentsch, J. R. et al. Serotype diversity and reassortment between human and animal rotavirus strains: implications for rotavirus vaccine programs. J. Infect. Dis. 192 (Suppl. 1), S146–S159 (2005).

    Google Scholar 

  11. Santos, N. & Hoshino, Y. Global distribution of rotavirus serotypes/genotypes and its implication for the development and implementation of an effective rotavirus vaccine. Rev. Med. Virol. 15, 29–56 (2005).

    Google Scholar 

  12. Matthijnssens, J. et al. Phylodynamic analyses of rotavirus genotypes G9 and G12 underscore their potential for swift global spread. Mol. Biol. Evol. 27, 2431–2436 (2010).

    Google Scholar 

  13. Nakagomi, O. & Nakagomi, T. Genetic diversity and similarity among mammalian rotaviruses in relation to interspecies transmission of rotavirus. Arch. Virol. 120, 43–55 (1991).

    Google Scholar 

  14. Martella, V. et al. Zoonotic aspects of rotaviruses. Vet. Microbiol. 140, 246–255 (2010).

    Google Scholar 

  15. Hagbom, M. et al. Rotavirus stimulates release of serotonin (5-HT) from human enterochromaffin cells and activates brain structures involved in nausea and vomiting. PLoS Pathog. 7, e1002115 (2011). This report shows that rotavirus can stimulate 5-HT release from human enterochromaffin cells and activate the vomiting centre in the central nervous system.

    Google Scholar 

  16. Leung, A. K. & Robson, W. L. Acute gastroenteritis in children: role of anti-emetic medication for gastroenteritis-related vomiting. Paediatr. Drugs 9, 175–184 (2007).

    Google Scholar 

  17. Tate, J. E. et al. 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect. Dis. 12, 136–141 (2012). This study is the 2008 estimate of rotavirus related mortality (450,000 deaths), the benchmark by which the impact of rotavirus vaccination programmes were measured.

    Google Scholar 

  18. Tate, J. E. et al. Global, regional, and national estimates of rotavirus mortality in children &lt;5 years of age, 2000–2013. Clin. Infect. Dis. 62 (Suppl. 2), S96–S105 (2016).

    Google Scholar 

  19. Gurwith, M. et al. A prospective study of rotavirus infection in infants and young children. J. Infect. Dis. 144, 218–224 (1981).

    Google Scholar 

  20. Velazquez, F. R. et al. Rotavirus infection in infants as protection against subsequent infections. N. Engl. J. Med. 335, 1022–1028 (1996).

    Google Scholar 

  21. Parashar, U. D. et al. Global illness and deaths caused by rotavirus disease in children. Emerg. Infect. Dis. 9, 565–572 (2003).

    Google Scholar 

  22. Ramachandran, M. et al. Unusual diversity of human rotavirus G and P genotypes in India. J. Clin. Microbiol. 34, 436–439 (1996).

    Google Scholar 

  23. Sanderson, C., Clark, A., Taylor, D. & Bolanos, B. Global review of rotavirus morbidity and mortality data by age and region. WHOhttp://www.who.int/immunization/sage/meetings/2012/april/Sanderson_et_al_SAGE_April_rotavirus.pdf (2011).

  24. Patel, M. M. et al. Global seasonality of rotavirus disease. Pediatr. Infect. Dis. J. 32, e134–e147 (2013).

    Google Scholar 

  25. Burnett, E. et al. Global impact of rotavirus vaccination on childhood hospitalizations and mortality from diarrhea. J. Infect. Dis. 215, 1666–1672 (2017). This study summarizes the impact of rotavirus vaccination during the first 10 years after vaccine licensure and concludes that implementation of rotavirus vaccines substantially decreased hospitalizations from rotavirus and all-cause acute gastroenteritis.

    Google Scholar 

  26. Tate, J. E. & Parashar, U. D. Rotavirus vaccines in routine use. Clin. Infect. Dis. 59, 1291–1301 (2014).

    Google Scholar 

  27. Markkula, J. et al. Rotavirus epidemiology 5–6 years after universal rotavirus vaccination: persistent rotavirus activity in older children and elderly. Infect. Dis. 49, 388–394 (2017).

    Google Scholar 

  28. Aliabadi, N. et al. Sustained decrease in laboratory detection of rotavirus after implementation of routine vaccination-United States, 2000–2014. MMWR. Morb. Mortal. Wkly Rep. 64, 337–342 (2015).

    Google Scholar 

  29. Leshem, E. et al. Distribution of rotavirus strains and strain-specific effectiveness of the rotavirus vaccine after its introduction: a systematic review and meta-analysis. Lancet Infect. Dis. 14, 847–856 (2014).

    Google Scholar 

  30. Doro, R. et al. Review of global rotavirus strain prevalence data from six years post vaccine licensure surveillance: is there evidence of strain selection from vaccine pressure? Infect. Genet. Evol. 28, 446–461 (2014).

    Google Scholar 

  31. Correia, J. B. et al. Effectiveness of monovalent rotavirus vaccine (Rotarix) against severe diarrhea caused by serotypically unrelated G2P[4] strains in Brazil. J. Infect. Dis. 201, 363–369 (2010).

    Google Scholar 

  32. Ward, R. L. et al. Human rotavirus studies in volunteers: determination of infectious dose and serological response to infection. J. Infect. Dis. 154, 871–880 (1986).

    Google Scholar 

  33. Ansari, S. A. et al. Survival and vehicular spread of human rotaviruses: possible relation to seasonality of outbreaks. Rev. Infect. Dis. 13, 448–461 (1991).

    Google Scholar 

  34. Butz, A. M. et al. Prevalence of rotavirus on high-risk fomites in day-care facilities. Pediatrics 92, 202–205 (1993).

    Google Scholar 

  35. Lundgren, O. & Svensson, L. Pathogenesis of rotavirus diarrhea. Microbes Infect. 3, 1145–1156 (2001).

    Google Scholar 

  36. Saxena, K. et al. Human intestinal enteroids: a new model to study human rotavirus infection, host restriction, and pathophysiology. J. Virol. 90, 43–56 (2015). This study uses human intestinal enteroids to study rotavirus infections.

    Google Scholar 

  37. Lopez, S. & Arias, C. F. Multistep entry of rotavirus into cells: a Versaillesque dance. Trends Microbiol. 12, 271–278 (2004).

    Google Scholar 

  38. Arias, C. F. et al. Rotavirus entry: a deep journey into the cell with several exits. J. Virol. 89, 890–893 (2015).

    Google Scholar 

  39. Ramani, S. et al. Diversity in rotavirus-host glycan interactions: a “sweet” spectrum. Cell. Mol. Gastroenterol. Hepatol. 2, 263–273 (2016).

    Google Scholar 

  40. Nordgren, J. et al. Host genetic factors affect susceptibility to norovirus infections in Burkina Faso. PLoS ONE 8, e69557 (2013).

    Google Scholar 

  41. Ramani, S. et al. The VP8* domain of neonatal rotavirus strain G10P[11] binds to type II precursor glycans. J. Virol. 87, 7255–7264 (2013).

    Google Scholar 

  42. Morris, A. P. & Estes, M. K. Microbes and microbial toxins: paradigms for microbial-mucosal interactions. VIII. Pathological consequences of rotavirus infection and its enterotoxin. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G303–G310 (2001).

    Google Scholar 

  43. Chen, C. C. et al. Fecal calprotectin as a correlative marker in clinical severity of infectious diarrhea and usefulness in evaluating bacterial or viral pathogens in children. J. Pediatr. Gastroenterol. Nutr. 55, 541–547 (2012).

    Google Scholar 

  44. Wiegering, V. et al. Gastroenteritis in childhood: a retrospective study of 650 hospitalized pediatric patients. Int. J. Infect. Dis. 15, e401–e407 (2011).

    Google Scholar 

  45. Ball, J. M. et al. Age-dependent diarrhea induced by a rotaviral nonstructural glycoprotein. Science 272, 101–104 (1996). This report identifies NSP4 as the first enterotoxin that induces diarrhoea in mouse pups.

    Google Scholar 

  46. Holmes, I. H. et al. Infantile enteritis viruses: morphogenesis and morphology. J. Virol. 16, 937–943 (1975).

    Google Scholar 

  47. Davidson, G. P. & Barnes, G. L. Structural and functional abnormalities of the small intestine in infants and young children with rotavirus enteritis. Acta Paediatr. Scand. 68, 181–186 (1979).

    Google Scholar 

  48. Osborne, M. P. et al. Rotavirus-induced changes in the microcirculation of intestinal villi of neonatal mice in relation to the induction and persistence of diarrhea. J. Pediatr. Gastroenterol. Nutr. 12, 111–120 (1991).

    Google Scholar 

  49. Ward, L. A. et al. Pathogenesis of an attenuated and a virulent strain of group A human rotavirus in neonatal gnotobiotic pigs. J. Gen. Virol. 77, 1431–1441 (1996).

    Google Scholar 

  50. Hyser, J. M. et al. Rotavirus disrupts calcium homeostasis by NSP4 viroporin activity. mBio 1, e00265-10 (2010).

    Google Scholar 

  51. Boshuizen, J. A. et al. Changes in small intestinal homeostasis, morphology, and gene expression during rotavirus infection of infant mice. J. Virol. 77, 13005–13016 (2003).

    Google Scholar 

  52. Bhowmick, R. et al. Rotaviral enterotoxin nonstructural protein 4 targets mitochondria for activation of apoptosis during infection. J. Biol. Chem. 287, 35004–35020 (2012).

    Google Scholar 

  53. Tafazoli, F. et al. NSP4 enterotoxin of rotavirus induces paracellular leakage in polarized epithelial cells. J. Virol. 75, 1540–1546 (2001).

    Google Scholar 

  54. Boshuizen, J. A. et al. Rotavirus enterotoxin NSP4 binds to the extracellular matrix proteins laminin-β3 and fibronectin. J. Virol. 78, 10045–10053 (2004).

    Google Scholar 

  55. Svensson, L. Desselberger, U., Greenberg, H. B. & Estes, M. K. Viral gastroenteritis: molecular epidemiology and pathogenesis (Elsevier, 2016).

    Google Scholar 

  56. Seo, N. S. et al. Integrins α1β1 and α2β1 are receptors for the rotavirus enterotoxin. Proc. Natl Acad. Sci. USA 105, 8811–8818 (2008).

    Google Scholar 

  57. Ko, E. A. et al. Chloride channel inhibition by a red wine extract and a synthetic small molecule prevents rotaviral secretory diarrhoea in neonatal mice. Gut 63, 1120–1129 (2014).

    Google Scholar 

  58. Pham, T. et al. The rotavirus NSP4 viroporin domain is a calcium-conducting ion channel. Sci. Rep. 7, 43487 (2017).

    Google Scholar 

  59. Bialowas, S. et al. Rotavirus and serotonin cross-talk in diarrhoea. PLoS ONE 11, e0159660 (2016).

    Google Scholar 

  60. Istrate, C. et al. Rotavirus infection increases intestinal motility but not permeability at the onset of diarrhea. J. Virol. 88, 3161–3169 (2014).

    Google Scholar 

  61. Li, S. T. et al. Loperamide therapy for acute diarrhea in children: systematic review and meta-analysis. PLoS Med. 4, e98 (2007).

    Google Scholar 

  62. Andrews, P. L. & Horn, C. C. Signals for nausea and emesis: Implications for models of upper gastrointestinal diseases. Auton. Neurosci. 125, 100–115 (2006).

    Google Scholar 

  63. DeCamp, L. R. et al. Use of antiemetic agents in acute gastroenteritis: a systematic review and meta-analysis. Arch. Pediatr. Adolesc. Med. 162, 858–865 (2008).

    Google Scholar 

  64. Bardhan, P. K. et al. Gastric emptying of liquid in children suffering from acute rotaviral gastroenteritis. Gut 33, 26–29 (1992).

    Google Scholar 

  65. Uhnoo, I. et al. Clinical features of acute gastroenteritis associated with rotavirus, enteric adenoviruses, and bacteria. Arch. Dis. Child. 61, 732–738 (1986).

    Google Scholar 

  66. Brodal, P. The central nervous system: structure and function (Oxford Univ. Press, 2010).

    Google Scholar 

  67. Eskilsson, A. et al. Immune-induced fever is mediated by IL-6 receptors on brain endothelial cells coupled to STAT3-dependent induction of brain endothelial prostaglandin synthesis. J. Neurosci. 34, 15957–15961 (2014).

    Google Scholar 

  68. Jiang, B. et al. Cytokines as mediators for or effectors against rotavirus disease in children. Clin. Diagn. Lab. Immunol. 10, 995–1001 (2003).

    Google Scholar 

  69. Blutt, S. E. et al. Rotavirus antigenemia in children is associated with viremia. PLoS Med. 4, e121 (2007). This is a key study that shows infectious virus in the serum of children with rotavirus infections.

    Google Scholar 

  70. Ramani, S. et al. Rotavirus antigenemia in Indian children with rotavirus gastroenteritis and asymptomatic infections. Clin. Infect. Dis. 51, 1284–1289 (2010).

    Google Scholar 

  71. Hemming, M. et al. Rotavirus antigenemia in children is associated with more severe clinical manifestations of acute gastroenteritis. Pediatr. Infect. Dis. J. 33, 366–371 (2014).

    Google Scholar 

  72. Bass, D. M. et al. Molecular basis of age-dependent gastric inactivation of rhesus rotavirus in the mouse. J. Clin. Invest. 89, 1741–1745 (1992).

    Google Scholar 

  73. Venkataram Prasad, B. V. et al. Structural basis of glycan interaction in gastroenteric viral pathogens. Curr. Opin. Virol. 7, 119–127 (2014).

    Google Scholar 

  74. Franco, M. A. et al. Immunity and correlates of protection for rotavirus vaccines. Vaccine 24, 2718–2731 (2006).

    Google Scholar 

  75. Desselberger, U. & Huppertz, H. I. Immune responses to rotavirus infection and vaccination and associated correlates of protection. J. Infect. Dis. 203, 188–195 (2011).

    Google Scholar 

  76. Broquet, A. H. et al. RIG-I/MDA5/MAVS are required to signal a protective IFN response in rotavirus-infected intestinal epithelium. J. Immunol. 186, 1618–1626 (2011).

    Google Scholar 

  77. Lin, J. D. et al. Distinct roles of type I and type III interferons in intestinal immunity to homologous and heterologous rotavirus infections. PLoS Pathog. 12, e1005600 (2016).

    Google Scholar 

  78. López, S. et al. Rotavirus strategies against the innate antiviral system. Annu. Rev. Virol. 3, 591–609 (2016).

    Google Scholar 

  79. Uchiyama, R. et al. MyD88-mediated TLR signaling protects against acute rotavirus infection while inflammasome cytokines direct Ab response. Innate Immun. 21, 416–428 (2015).

    Google Scholar 

  80. Uchiyama, R. et al. Antibiotic treatment suppresses rotavirus infection and enhances specific humoral immunity. J. Infect. Dis. 210, 171–182 (2014).

    Google Scholar 

  81. Zhu, S. Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells. Nature 546, 667–670 (2017).

    Google Scholar 

  82. Pott, J. et al. Age-dependent TLR3 expression of the intestinal epithelium contributes to rotavirus susceptibility. PLoS Pathog. 8, e1002670 (2012).

    Google Scholar 

  83. Holloway, G. et al. Rotavirus inhibits IFN-induced STAT nuclear translocation by a mechanism that acts after STAT binding to importin-alpha. J. Gen. Virol. 95, 1723–1733 (2014).

    Google Scholar 

  84. Zhang, B. et al. Prevention and cure of rotavirus infection via TLR5/NLRC4-mediated production of IL-22 and IL-18. Science 346, 861–865 (2014).

    Google Scholar 

  85. Hernandez, P. P. et al. Interferon-λ and interleukin 22 act synergistically for the induction of interferon-stimulated genes and control of rotavirus infection. Nat. Immunol. 16, 698–707 (2015).

    Google Scholar 

  86. Chanda, S. et al. Rotavirus-induced miR-142-5p elicits proviral milieu by targeting non-canonical transforming growth factor beta signalling and apoptosis in cells. Cell. Microbiol. 18, 733–747 (2016).

    Google Scholar 

  87. Rodriguez, L. S. et al. Immunomodulators released during rotavirus infection of polarized caco-2 cells. Viral Immunol. 22, 163–172 (2009).

    Google Scholar 

  88. Liu, F. et al. Lactobacillus rhamnosus GG on rotavirus-induced injury of ileal epithelium in gnotobiotic pigs. J. Pediatr. Gastroenterol. Nutr. 57, 750–758 (2013).

    Google Scholar 

  89. Franco, M. A. & Greenberg, H. B. Immunity to rotavirus in T cell deficient mice. Virology 238, 169–179 (1997).

    Google Scholar 

  90. Angel, J. et al. Correlates of protection for rotavirus vaccines: possible alternative trial endpoints, opportunities, and challenges. Hum. Vaccin. Immunother. 10, 3659–3671 (2014).

    Google Scholar 

  91. Mesa, M. C. et al. A TGF-β mediated regulatory mechanism modulates the T cell immune response to rotavirus in adults but not in children. Virology 399, 77–86 (2010).

    Google Scholar 

  92. Jaimes, M. C. et al. Frequencies of virus-specific CD4+ and CD8+ T lymphocytes secreting gamma interferon after acute natural rotavirus infection in children and adults. J. Virol. 76, 4741–4749 (2002).

    Google Scholar 

  93. Gladstone, B. P. et al. Protective effect of natural rotavirus infection in an Indian birth cohort. N. Engl. J. Med. 365, 337–346 (2011). The study by Velazquez et al. (Ref. 20) formed the basis for rotavirus vaccines. However, this study suggests that natural infections (and therefore vaccines) are not likely to be as effective in some populations.

    Google Scholar 

  94. Gilger, M. A. et al. Extraintestinal rotavirus infections in children with immunodeficiency. J. Pediatr. 120, 912–917 (1992).

    Google Scholar 

  95. Patel, N. C. et al. Vaccine-acquired rotavirus in infants with severe combined immunodeficiency. N. Engl. J. Med. 362, 314–319 (2010).

    Google Scholar 

  96. VanCott, J. L. et al. Mice develop effective but delayed protective immune responses when immunized as neonates either intranasally with nonliving VP6/LT(R192G) or orally with live rhesus rotavirus vaccine candidates. J. Virol. 80, 4949–4961 (2006).

    Google Scholar 

  97. Parra, M. et al. Circulating rotavirus-specific T cells have a poor functional profile. Virology 468–470, 340–350 (2014).

    Google Scholar 

  98. Ward, R. L. et al. Reductions in cross-neutralizing antibody responses in infants after attenuation of the human rotavirus vaccine candidate 89–12. J. Infect. Dis. 194, 1729–1736 (2006).

    Google Scholar 

  99. Florez, I. D. et al. The effectiveness and safety of treatments used for acute diarrhea and acute gastroenteritis in children: protocol for a systematic review and network meta-analysis. Syst. Rev. 5, 14 (2016).

    Google Scholar 

  100. Bishop, R. F. et al. Clinical immunity after neonatal rotavirus infection. A prospective longitudinal study in young children. N. Engl. J. Med. 309, 72–76 (1983).

    Google Scholar 

  101. Kilgore, P. E. et al. Neonatal rotavirus infection in Bangladesh: strain characterization and risk factors for nosocomial infection. Pediatr. Infect. Dis. J. 15, 672–677 (1996).

    Google Scholar 

  102. Payne, D. C. et al. Active, population-based surveillance for severe rotavirus gastroenteritis in children in the United States. Pediatrics 122, 1235–1243 (2008).

    Google Scholar 

  103. Raul, V. F. et al. Cohort study of rotavirus serotype patterns in symptomatic and asymptomatic infections in Mexican children. Pediatr. Infect. Dis. J. 12, 54–61 (1993).

    Google Scholar 

  104. Glass, R. I. et al. The epidemiology of rotavirus diarrhea in the United States: surveillance and estimates of disease burden. J. Infect. Dis. 174 (Suppl. 1), S5–S11 (1996).

    Google Scholar 

  105. Echeverria, P. et al. Rotavirus as a cause of severe gastroenteritis in adults. J. Clin. Microbiol. 18, 663–667 (1983).

    Google Scholar 

  106. Nakajima, H. et al. Winter seasonality and rotavirus diarrhoea in adults. Lancet 357, 1950 (2001).

    Google Scholar 

  107. Pickering, L. K. et al. Asymptomatic excretion of rotavirus before and after rotavirus diarrhea in children in day care centers. J. Pediatr. 112, 361–365 (1988).

    Google Scholar 

  108. Richardson, S. et al. Extended excretion of rotavirus after severe diarrhoea in young children. Lancet 351, 1844–1848 (1998).

    Google Scholar 

  109. Kang, G. et al. Quantitation of group A rotavirus by real-time reverse-transcription-polymerase chain reaction: correlation with clinical severity in children in South India. J. Med. Virol. 73, 118–122 (2004).

    Google Scholar 

  110. Ramani, S. et al. Comparison of viral load and duration of virus shedding in symptomatic and asymptomatic neonatal rotavirus infections. J. Med. Virol. 82, 1803–1807 (2010).

    Google Scholar 

  111. Amar, C. F. et al. Detection by PCR of eight groups of enteric pathogens in 4,627 faecal samples: re-examination of the English case-control Infectious Intestinal Disease Study (1993–1996). Eur. J. Clin. Microbiol. Infect. Dis. 26, 311–323 (2007).

    Google Scholar 

  112. Teitelbaum, J. E. & Daghistani, R. Rotavirus causes hepatic transaminase elevation. Dig. Dis. Sci. 52, 3396–3398 (2007).

    Google Scholar 

  113. Akelma, A. Z. et al. Serum transaminase elevation in children with rotavirus gastroenteritis: seven years’ experience. Scand. J. Infect. Dis. 45, 362–367 (2013).

    Google Scholar 

  114. Patel, M. M. et al. Fulfilling the promise of rotavirus vaccines: how far have we come since licensure? Lancet Infect. Dis. 12, 561–570 (2012).

    Google Scholar 

  115. Vesikari, T. et al. Safety and efficacy of a pentavalent human-bovine (WC3) reassortant rotavirus vaccine. N. Engl. J. Med. 354, 23–33 (2006).

    Google Scholar 

  116. Ruiz-Palacios, G. M. et al. Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis. N. Engl. J. Med. 354, 11–22 (2006).

    Google Scholar 

  117. Leshem, E. et al. Rotavirus vaccines and health care utilization for diarrhea in the United States (2007–2011). Pediatrics 134, 15–23 (2014).

    Google Scholar 

  118. Armah, G. E. et al. Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in sub-Saharan Africa: a randomised, double-blind, placebo-controlled trial. Lancet 376, 606–614 (2010). This is a key study that shows lower efficacy of RV5 vaccine in Asian children relative to previous studies in developed countries and Latin America.

    Google Scholar 

  119. Madhi, S. A. et al. Effect of human rotavirus vaccine on severe diarrhea in African infants. N. Engl. J. Med. 362, 289–298 (2010). This is a key study that shows lower efficacy of RV1 vaccine in African children relative to previous studies in developed countries and Latin America.

    Google Scholar 

  120. Zaman, K. et al. Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in Asia: a randomised, double-blind, placebo-controlled trial. Lancet 376, 615–623 (2010).

    Google Scholar 

  121. Harris, V. C. et al. Significant correlation between the infant gut microbiome and rotavirus vaccine response in rural Ghana. J. Infect. Dis. 215, 34–41 (2017). This study indicates that the microbiome can impact rotavirus vaccines.

    Google Scholar 

  122. Harris, V. et al. Rotavirus vaccine response correlates with the infant gut microbiota composition in Pakistan. Gut Microbeshttp://dx.doi.org/10.1080/19490976.2017.1376162 (2017).

  123. Becker-Dreps, S. et al. The association between fecal biomarkers of environmental enteropathy and rotavirus vaccine response in Nicaraguan infants. Pediatr. Infect. Dis. J. 36, 412–416 (2017).

    Google Scholar 

  124. Emperador, D. M. et al. Interference of monovalent, bivalent, and trivalent oral poliovirus vaccines on monovalent rotavirus vaccine immunogenicity in rural Bangladesh. Clin. Infect. Dis. 62, 150–156 (2016).

    Google Scholar 

  125. Chilengi, R. et al. Association of maternal immunity with rotavirus vaccine immunogenicity in Zambian infants. PLoS ONE 11, e0150100 (2016).

    Google Scholar 

  126. Ali, A. et al. Impact of withholding breastfeeding at the time of vaccination on the immunogenicity of oral rotavirus vaccine-a randomized trial. PLoS ONE 10, e0145568 (2015).

    Google Scholar 

  127. Kazi, A. M. et al. Secretor and salivary ABO blood group antigen status predict rotavirus vaccine-take in infants. J. Infect. Dis. 215, 786–789 (2017).

    Google Scholar 

  128. Armah, G. et al. A randomized, controlled trial of the impact of alternative dosing schedules on the immune response to human rotavirus vaccine in rural Ghanaian infants. J. Infect. Dis. 213, 1678–1685 (2016).

    Google Scholar 

  129. Murphy, T. V. et al. Intussusception among infants given an oral rotavirus vaccine. N. Engl. J. Med. 344, 564–572 (2001).

    Google Scholar 

  130. Tate, J. E. et al. Intussusception rates before and after the introduction of rotavirus vaccine. Pediatrics 138, e20161082 (2016).

    Google Scholar 

  131. Groome, M. J. et al. Safety and immunogenicity of a parenteral P2-VP8-P[8] subunit rotavirus vaccine in toddlers and infants in South Africa: a randomised, double-blind, placebo-controlled trial. Lancet Infect. Dis. 17, 843–853 (2017). This clinical trial reports the use of a non-replicating rotavirus vaccine.

    Google Scholar 

  132. Bhandari, N. et al. Efficacy of a monovalent human-bovine (116E) rotavirus vaccine in Indian infants: a randomised, double-blind, placebo-controlled trial. Lancet 383, 2136–2143 (2014).

    Google Scholar 

  133. Chen, M. Y. et al. Rotavirus specific maternal antibodies and immune response to RV3-BB neonatal rotavirus vaccine in New Zealand. Hum. Vaccin. Immunother. 13, 1126–1135 (2017).

    Google Scholar 

  134. Isanaka, S. et al. Efficacy of a low-cost, heat-stable oral rotavirus vaccine in Niger. N. Engl. J. Med. 376, 1121–1130 (2017).

    Google Scholar 

  135. O'Ryan, G. M. et al. Management of acute infectious diarrhea for children living in resource-limited settings. Expert Rev. Anti. Infect. Ther. 12, 621–632 (2014).

    Google Scholar 

  136. Guarino, A. et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition/European Society for Pediatric Infectious Diseases evidence-based guidelines for the management of acute gastroenteritis in children in Europe: update 2014. J. Pediatr. Gastroenterol. Nutr. 59, 132–152 (2014).

    Google Scholar 

  137. Bhattacharya, S. K. History of development of oral rehydration therapy. Indian J. Public Health 38, 39–43 (1994).

    Google Scholar 

  138. Kotloff, K. L. et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 382, 209–222 (2013).

    Google Scholar 

  139. King, C. K. et al. Managing acute infectious gastroenteritis among children: oral rehydration, maintenance, and nutritional therapy. MMWR Recomm. Rep. 52, 1–16 (2003).

    Google Scholar 

  140. Ruuska, T. & Vesikari, T. Rotavirus disease in Finnish children: use of numerical scores for clinical severity of diarrhoeal episodes. Scand. J. Infect. Dis. 22, 259–267 (1990).

    Google Scholar 

  141. Duggan, C. et al. Scientific rationale for a change in the composition of oral rehydration solution. JAMA 291, 2628–2631 (2004).

    Google Scholar 

  142. Churgay, C. A. & Aftab, Z. Gastroenteritis in children: Part II. Prevention and management. Am. Fam. Physician 85, 1066–1070 (2012).

    Google Scholar 

  143. Gaffey, M. F. et al. Dietary management of childhood diarrhea in low- and middle-income countries: a systematic review. BMC Public Health 13 (Suppl. 3), S17 (2013).

    Google Scholar 

  144. Lo, V. A. et al. An international consensus report on a new algorithm for the management of infant diarrhoea. Acta Paediatr. 105, e384–e389 (2016).

    Google Scholar 

  145. Bzik, V. A. et al. Mechanisms of action of zinc on rat intestinal epithelial electrogenic ion secretion: insights into its antidiarrhoeal actions. J. Pharm. Pharmacol. 64, 644–653 (2012).

    Google Scholar 

  146. de Queiroz, C. A. et al. Zinc treatment ameliorates diarrhea and intestinal inflammation in undernourished rats. BMC Gastroenterol. 14, 136 (2014).

    Google Scholar 

  147. World Health Organization. Department of Child and Adolescent Health and Development & UNICEF. Clinical management of acute diarrhoea: WHO/UNICEF joint statement (WHO, 2004).

  148. Lukacik, M. et al. A meta-analysis of the effects of oral zinc in the treatment of acute and persistent diarrhea. Pediatrics 121, 326–336 (2008).

    Google Scholar 

  149. O'Ryan, M. et al. An update on management of severe acute infectious gastroenteritis in children. Expert Rev. Anti Infect. Ther. 8, 671–682 (2010).

    Google Scholar 

  150. Freedman, S. B. et al. Gastroenteritis therapies in developed countries: systematic review and meta-analysis. PLoS ONE. 10, e0128754 (2015).

    Google Scholar 

  151. Ahmadi, E. et al. Efficacy of probiotic use in acute rotavirus diarrhea in children: a systematic review and meta-analysis. Caspian J. Intern. Med. 6, 187–195 (2015).

    Google Scholar 

  152. Vlasova, A. N. et al. Comparison of probiotic lactobacilli and bifidobacteria effects, immune responses and rotavirus vaccines and infection in different host species. Vet. Immunol. Immunopathol. 172, 72–84 (2016).

    Google Scholar 

  153. Sindhu, K. N. et al. Immune response and intestinal permeability in children with acute gastroenteritis treated with Lactobacillus rhamnosus GG: a randomized, double-blind, placebo-controlled trial. Clin. Infect. Dis. 58, 1107–1115 (2014).

    Google Scholar 

  154. Das, S. et al. Efficacy and safety of Saccharomyces boulardii in acute rotavirus diarrhea: double blind randomized controlled trial from a developing country. J. Trop. Pediatr. 62, 464–470 (2016).

    Google Scholar 

  155. Rossignol, J. F. Nitazoxanide: a first-in-class broad-spectrum antiviral agent. Antiviral Res. 110, 94–103 (2014).

    Google Scholar 

  156. Rossignol, J. F. et al. Effect of nitazoxanide for treatment of severe rotavirus diarrhoea: randomised double-blind placebo-controlled trial. Lancet 368, 124–129 (2006).

    Google Scholar 

  157. Mahapatro, S. et al. Nitazoxanide in acute rotavirus diarrhea: a randomized control trial from a developing country. J. Trop. Med. 2017, 7942515 (2017).

    Google Scholar 

  158. La, F. S. et al. Thiazolides, a new class of antiviral agents effective against rotavirus infection, target viral morphogenesis, inhibiting viroplasm formation. J. Virol. 87, 11096–11106 (2013).

    Google Scholar 

  159. Das, J. K. et al. The effect of antiemetics in childhood gastroenteritis. BMC Public Health 13 (Suppl. 3), S9–S13 (2013).

    Google Scholar 

  160. Primi, M. P. et al. Racecadotril demonstrates intestinal antisecretory activity in vivo. Aliment. Pharmacol. Ther. 13 (Suppl. 6), 3–7 (1999).

    Google Scholar 

  161. Emparanza Knörr, J. I. et al. Systematic review of the efficacy of racecadotril in the treatment of acute diarrhoea [Spanish]. An. Pediatr. 69, 432–438 (2008).

    Google Scholar 

  162. Gordon, M. & Akobeng, A. Racecadotril for acute diarrhoea in children: systematic review and meta-analyses. Arch. Dis. Child. 101, 234–240 (2016).

    Google Scholar 

  163. Gharial, J. et al. Racecadotril for the treatment of severe acute watery diarrhoea in children admitted to a tertiary hospital in Kenya. BMJ Open Gastroenterol. 4, e000124 (2017).

    Google Scholar 

  164. Kang, G. et al. Racecadotril in the management of rotavirus and non-rotavirus diarrhea in under-five children: two randomized, double-blind, placebo-controlled trials. Indian Pediatr. 53, 595–600 (2016).

    Google Scholar 

  165. Das, R. R. et al. Efficacy and safety of diosmectite in acute childhood diarrhoea: a meta-analysis. Arch. Dis. Child. 100, 704–712 (2015).

    Google Scholar 

  166. Dupont, C. et al. Oral diosmectite reduces stool output and diarrhea duration in children with acute watery diarrhea. Clin. Gastroenterol. Hepatol. 7, 456–462 (2009).

    Google Scholar 

  167. Beutels, P. et al. Funding of drugs: do vaccines warrant a different approach? Lancet Infect. Dis. 8, 727–733 (2008).

    Google Scholar 

  168. Griebsch, I. et al. Quality-adjusted life-years lack quality in pediatric care: a critical review of published cost-utility studies in child health. Pediatrics 115, e600–e614 (2005).

    Google Scholar 

  169. Diez, D. J. et al. The impact of childhood acute rotavirus gastroenteritis on the parents’ quality of life: prospective observational study in European primary care medical practices. BMC Pediatr. 12, 58 (2012).

    Google Scholar 

  170. Rochanathimoke, O. et al. Quality of life of diarrheal children and caregivers in Thailand. Value Health 17, A368–A369 (2014).

    Google Scholar 

  171. Sénécal, M. et al. Measuring the Impact of Rotavirus Acute Gastroenteritis Episodes (MIRAGE): a prospective community-based study. Can. J. Infect. Dis. Med. Microbiol. 19, 397–404 (2008).

    Google Scholar 

  172. Kolling, G. et al. Enteric pathogens through life stages. Front. Cell. Infect. Microbiol. 2, 114 (2012).

    Google Scholar 

  173. Aballea, S. et al. A critical literature review of health economic evaluations of rotavirus vaccination. Hum. Vaccin. Immunother. 9, 1272–1288 (2013).

    Google Scholar 

  174. Atherly, D. E. et al. Projected health and economic impact of rotavirus vaccination in GAVI-eligible countries: 2011–2030. Vaccine 30 (Suppl. 1), A7–A14 (2012).

    Google Scholar 

  175. Ogden, K. M. et al. Predicted structure and domain organization of rotavirus capping enzyme and innate immune antagonist VP3. J. Virol. 88, 9072–9085 (2014).

    Google Scholar 

  176. Ogden, K. M. et al. Structural basis for 2′-5′-oligoadenylate binding and enzyme activity of a viral RNase L antagonist. J. Virol. 89, 6633–6645 (2015).

    Google Scholar 

  177. Brandmann, T. & Jinek, M. Crystal structure of the C-terminal 2′,5′-phosphodiesterase domain of group A rotavirus protein VP3. Proteins 83, 997–1002 (2015).

    Google Scholar 

  178. Suzuki, H. et al. Electron microscopic evidence for budding process-independent assembly of double-shelled rotavirus particles during passage through endoplasmic reticulum membranes. J. Gen. Virol. 74, 2015–2018 (1993).

    Google Scholar 

  179. Cheung, W. et al. Rotaviruses associate with cellular lipid droplet components to replicate in viroplasms, and compounds disrupting or blocking lipid droplets inhibit viroplasm formation and viral replication. J. Virol. 84, 6782–6798 (2010).

    Google Scholar 

  180. Hu, L. et al. Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen. Nature 485, 256–259 (2012). This paper demonstrates that the A-type HBGA is a cell attachment factor for a human rotavirus strain and structurally characterizing the HBGA binding to VP8*.

    Google Scholar 

  181. Asano, K. M. et al. Group A rotavirus in Brazilian bats: description of novel T15 and H15 genotypes. Arch. Virol. 161, 3225–3230 (2016).

    Google Scholar 

  182. Richards, J. E. et al. Experimental pathways towards developing a rotavirus reverse genetics system: synthetic full length rotavirus ssRNAs are neither infectious nor translated in permissive cells. PLoS ONE 8, e74328 (2013).

    Google Scholar 

  183. De, L. G. et al. An inhibitory motif on the 5’UTR of several rotavirus genome segments affects protein expression and reverse genetics strategies. PLoS ONE 11, e0166719 (2016).

    Google Scholar 

  184. Kanai, Y. et al. Entirely plasmid-based reverse genetics system for rotaviruses. Proc. Natl Acad. Sci. USA 114, 2349–2354 (2017). This study reports the use of a plasmid-based reverse genetics system for rotavirus.

    Google Scholar 

  185. Saxena, K. et al. A paradox of transcriptional and functional innate interferon responses of human intestinal enteroids to enteric virus infection. Proc. Natl Acad. Sci. USA 114, E570–E579 (2017).

    Google Scholar 

  186. Kandasamy, S. et al. Differential effects of Escherichia coli Nissle and Lactobacillus rhamnosus Strain GG on human rotavirus binding, infection, and B cell immunity. J. Immunol. 196, 1780–1789 (2016).

    Google Scholar 

  187. Angel, J. et al. Rotavirus immune responses and correlates of protection. Curr. Opin. Virol. 2, 419–425 (2012).

    Google Scholar 

  188. Kirkpatrick, B. D. et al. The “Performance of Rotavirus and Oral Polio Vaccines in Developing Countries” (PROVIDE) study: description of methods of an interventional study designed to explore complex biologic problems. Am. J. Trop. Med. Hyg. 92, 744–751 (2015).

    Google Scholar 

  189. Bucardo, F. et al. Vaccine-derived NSP2 segment in rotaviruses from vaccinated children with gastroenteritis in Nicaragua. Infect. Genet. Evol. 12, 1282–1294 (2012).

    Google Scholar 

  190. Hemming, M. & Vesikari, T. Detection of rotateq vaccine-derived, double-reassortant rotavirus in a 7-year-old child with acute gastroenteritis. Pediatr. Infect. Dis. J. 33, 655–656 (2014).

    Google Scholar 

  191. Nair, N. et al. VP4- and VP7-specific antibodies mediate heterotypic immunity to rotavirus in humans. Sci. Transl Med. 9, eaam5434 (2017).

    Google Scholar 

  192. Ettayebi, K. et al. Replication of human noroviruses in stem cell-derived human enteroids. Science 353, 1387–1393 (2016).

    Google Scholar 

  193. Sato, T. & Clevers, H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340, 1190–1194 (2013).

    Google Scholar 

  194. Wong, C. J. et al. Aseptic meningitis in an infant with rotavirus gastroenteritis. Pediatr. Infect. Dis. 3, 244–246 (1984).

    Google Scholar 

  195. Wong, V. Acute gastroenteritis-related encephalopathy. J. Child Neurol. 16, 906–910 (2001).

    Google Scholar 

  196. Nakagomi, T. & Nakagomi, O. Rotavirus antigenemia in children with encephalopathy accompanied by rotavirus gastroenteritis. Arch. Virol. 150, 1927–1931 (2005).

    Google Scholar 

  197. Ushijima, H. et al. Suspected rotavirus encephalitis. Arch. Dis. Child. 61, 692–694 (1986).

    Google Scholar 

  198. Payne, D. C. et al. Protective association between rotavirus vaccination and childhood seizures in the year following vaccination in US children. Clin. Infect. Dis. 58, 173–177 (2014).

    Google Scholar 

  199. Riepenhoff-Talty, M. et al. Detection of group C rotavirus in infants with extrahepatic biliary atresia. J. Infect. Dis. 174, 8–15 (1996).

    Google Scholar 

  200. Hertel, P. M. & Estes, M. K. Rotavirus and biliary atresia: can causation be proven? Curr. Opin. Gastroenterol. 28, 10–17 (2012).

    Google Scholar 

  201. Riepenhoff-Talty, M. et al. Group A rotaviruses produce extrahepatic biliary obstruction in orally inoculated newborn mice. Pediatr. Res. 33, 394–399 (1993).

    Google Scholar 

  202. Pane, J. A. et al. Rotavirus acceleration of type 1 diabetes in non-obese diabetic mice depends on type I interferon signalling. Sci. Rep. 6, 29697 (2016).

    Google Scholar 

  203. Pane, J. A. et al. Rotavirus activates lymphocytes from non-obese diabetic mice by triggering toll-like receptor 7 signaling and interferon production in plasmacytoid dendritic cells. PLoS Pathog. 10, e1003998 (2014).

    Google Scholar 

  204. Graham, K. L. et al. Rotavirus infection of infant and young adult nonobese diabetic mice involves extraintestinal spread and delays diabetes onset. J. Virol. 81, 6446–6458 (2007).

    Google Scholar 

  205. Blomqvist, M. et al. Rotavirus infections and development of diabetes-associated autoantibodies during the first 2 years of life. Clin. Exp. Immunol. 128, 511–515 (2002).

    Google Scholar 

  206. Makela, M. et al. Rotavirus-specific T cell responses and cytokine mRNA expression in children with diabetes-associated autoantibodies and type 1 diabetes. Clin. Exp. Immunol. 145, 261–270 (2006).

    Google Scholar 

  207. Angel, J. et al. Rotavirus vaccines: recent developments and future considerations. Nat. Rev. Microbiol. 5, 529–539 (2007).

    Google Scholar 

  208. World Health Organization. Rotavirus mortality rate in children younger than 5 years, 2013. World Health Organizationhttp://www.who.int/immunization/monitoring_surveillance/burden/estimates/rotavirus/rotavirus_deaths_map_b.jpg?ua=1 (2017).

  209. Centers for Disease Control and Prevention. Sustained decrease in laboratory detection of rotavirus after implementation of routine vaccination — United States, 2000–2014. CDChttps://www.cdc.gov/mmwr/preview/mmwrhtml/mm6413a1.htm (2015).

  210. Fleming, F. E. et al. Relative roles of GM1 ganglioside, N-acylneuraminic acids, and α2β1 integrin in mediating rotavirus infection. J. Virol. 88, 4558–4571 (2014).

    Google Scholar 

  211. Guerrero, C. A. et al. Heat shock cognate protein 70 is involved in rotavirus cell entry. J. Virol. 76, 4096–4102 (2002).

    Google Scholar 

  212. Zarate, S. et al. Interaction of rotaviruses with Hsc70 during cell entry is mediated by VP5. J. Virol. 77, 7254–7260 (2003).

    Google Scholar 

  213. Torres-Flores, J. M. et al. The tight junction protein JAM-A functions as coreceptor for rotavirus entry into MA104 cells. Virology 475, 172–178 (2015).

    Google Scholar 

  214. Diaz-Salinas, M. A. et al. The spike protein VP4 defines the endocytic pathway used by rotavirus to enter MA104 cells. J. Virol. 87, 1658–1663 (2013).

    Google Scholar 

  215. Kordasti, S. et al. Serotonin and vasoactive intestinal peptide antagonists attenuate rotavirus diarrhoea. Gut 53, 952–957 (2004).

    Google Scholar 

  216. Trask, S. D., McDonald, S. M. & Patton, J. T. Structural insights into the coupling of virion assembly and rotavirus replication. Nat. Rev. Microbiol. 10, 165–177 (2012).

    Google Scholar 

  217. Hagbom, M. et al. Towards a human rotavirus disease model. Curr. Opin. Virol. 2, 408–418 (2012).

    Google Scholar 

  218. Graff, J. W. et al. Rotavirus NSP1 inhibits NFκB activation by inducing proteasome-dependent degradation of β-TrCP: a novel mechanism of IFN antagonism. PLoS Pathog. 5, e1000280 (2009).

    Google Scholar 

  219. Ding, S. et al. Comparative proteomics reveals strain-specific β-TrCP degradation via rotavirus NSP1 hijacking a host cullin-3-Rbx1 complex. PLoS Pathog. 12, e1005929 (2016).

    Google Scholar 

  220. Sen, A. et al. Rotavirus NSP1 protein inhibits interferon-mediated STAT1 activation. J. Virol. 88, 41–53 (2014).

    Google Scholar 

Download references

Acknowledgements

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the US Centers for Disease Control and Prevention (CDC).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (S.E.C. and S.R.); Epidemiology (J.E.T. and U.D.P.); Mechanisms/pathophysiology (L.S. and M.H.); Diagnosis, screening and prevention (M.A.F. and H.B.G.); Management (M.O.); Quality of life (G.K.); Outlook (U.D. and M.K.E.); Overview of Primer (S.E.C., S.R. and M.K.E.).

Corresponding author

Correspondence to Mary K. Estes.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crawford, S., Ramani, S., Tate, J. et al. Rotavirus infection. Nat Rev Dis Primers 3, 17083 (2017). https://doi.org/10.1038/nrdp.2017.83

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2017.83

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing