Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Cell type ontologies of the Human Cell Atlas

Abstract

Massive single-cell profiling efforts have accelerated our discovery of the cellular composition of the human body while at the same time raising the need to formalize this new knowledge. Here, we discuss current efforts to harmonize and integrate different sources of annotations of cell types and states into a reference cell ontology. We illustrate with examples how a unified ontology can consolidate and advance our understanding of cell types across scientific communities and biological domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representation of part of CL centred around the term Kupffer cell.
Fig. 2: CL links human cell types with anatomy and cell-state transition.

Similar content being viewed by others

References

  1. Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A. & Teichmann, S. A. The Human Cell Atlas: from vision to reality. Nature 550, 451–453 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Aldridge, S. & Teichmann, S. A. Single cell transcriptomics comes of age. Nat. Commun. 11, 4307 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Popescu, D. M. et al. Decoding human fetal liver haematopoiesis. Nature 574, 365–371 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Madissoon, E. et al. scRNA-seq assessment of the human lung, spleen, and esophagus tissue stability after cold preservation. Genome Biol. 21, 1 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hagai, T. et al. Gene expression variability across cells and species shapes innate immunity. Nature 563, 197–202 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal–fetal interface in humans. Nature 563, 347–353 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Drokhlyansky, E. et al. The human and mouse enteric nervous system at single-cell resolution. Cell 182, 1606–1622.e23 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Elmentaite, R. et al. Cells of the human intestinal tract mapped across space and time. Nature 597, 250–255 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bodenreider, O. & Stevens, R. Bio-ontologies: current trends and future directions. Brief. Bioinform 7, 256–274 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Diehl, A. D. et al. The Cell Ontology 2016: enhanced content, modularization, and ontology interoperability. J. Biomed. Semant. 7, 44 (2016).

    Article  Google Scholar 

  13. Costa, M., Reeve, S., Grumbling, G. & Osumi-Sutherland, D. The Drosophila anatomy ontology. J. Biomed. Semant. 4, 32 (2013).

    Article  Google Scholar 

  14. Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  Google Scholar 

  15. Smith, B. et al. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat. Biotechnol. 25, 1251–1255 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Milyaev, N. et al. The Virtual Fly Brain browser and query interface. Bioinformatics 28, 411–415 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Osumi-Sutherland, D., Costa, M., Court, R. & O’Kane, C. J. Virtual Fly Brain—using OWL to support the mapping and genetic dissection of the Drosophila brain. CEUR Workshop Proc. 1265, 85–96 (2014).

    PubMed  PubMed Central  Google Scholar 

  18. Li, H. et al. Fly Cell Atlas: a single-cell transcriptomic atlas of the adult fruit fly. Preprint at bioRxiv https://doi.org/10.1101/2021.07.04.451050 (2021).

  19. Gene Ontology, C. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 49, D325–D334 (2021).

    Article  Google Scholar 

  20. Mungall, C. J. et al. The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species. Nucleic Acids Res. 45, D712–D722 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Jacqz, E., Branch, R. A., Heidemann, H. & Aujard, Y. [Prevention of nephrotoxicity of amphotericin B during the treatment of deep candidiasis]. Ann. Biol. Clin. (Paris) 45, 689–693 (1987).

    CAS  Google Scholar 

  22. Hu, B. C. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature 574, 187–192 (2019).

    Article  Google Scholar 

  23. Ecker, J. R. et al. The BRAIN Initiative Cell Census Consortium: lessons learned toward generating a comprehensive brain cell atlas. Neuron 96, 542–557 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Young, M. D. et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science 361, 594–599 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sungnak, W. et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 26, 681–687 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Muus, C. et al. Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nat. Med. 27, 546–559 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Delorey, T. M. et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature 595, 107–113 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mungall, C. J., Torniai, C., Gkoutos, G. V., Lewis, S. E. & Haendel, M. A. Uberon, an integrative multi-species anatomy ontology. Genome Biol. 13, R5 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bernard, A., Boumsell, L., Daussett, J., Milstein, C. & Schlossman, S. F. (eds) Leucocyte Typing: Human Leucocyte Differentiation Antigens Detected by Monoclonal Antibodies: Specification, Classification, Nomenclature = Typage Leucocytaire: Antigènes de Différenciation Leococytaire Humains Révélés par les Anticorps Monoclonaux (Springer, 1984).

  30. Reinherz, E. L., Haynes, B. F., Nadler, L. M. & Bernstein, I. D. (eds) Leukocyte Typing II (Springer, 1986).

  31. McMichael, A. J. (ed.) Leucocyte Typing III: White Cell Differentiation Antigens (Oxford Univ. Press, 1987).

  32. Knapp, W. et al. (eds) Leucocyte Typing IV: White Cell Differentiation Antigens (Oxford Univ. Press, 1989).

  33. Schlossman, S. F. (ed.) Leucocyte typing V: white cell differentiation antigens. In Proc. Fifth International Workshop and Conference held in Boston, USA, 3–7 November, 1993 (Oxford Univ. Press, 1995).

  34. Kishimoto, T. (ed.) Leucocyte typing VI: white cell differentiation antigens. In Proc. Sixth International Workshop and Conference held in Kobe, Japan, 10–14 November 1996 (Garland, 1998).

  35. Mason, D. (ed.) Leucocyte typing VII: white cell differentiation antigens. In Proc. Seventh International Workshop and Conference held in Harrogate, United Kingdom (Oxford University Press: Oxford, 2002).

  36. Zola, H., Swart, B., Nicholson, I. & Voss, E. Leukocyte and Stromal Cell Molecules: The CD Markers (Wiley-Liss, 2007).

  37. Yuste, R. et al. A community-based transcriptomics classification and nomenclature of neocortical cell types. Nat. Neurosci. 23, 1456–1468 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 1308–1323.e30 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vermeiren, S., Bellefroid, E. J. & Desiderio, S. Vertebrate sensory ganglia: common and divergent features of the transcriptional programs generating their functional specialization. Front. Cell Dev. Biol. 8, 587699 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Driskell, R. R. & Watt, F. M. Understanding fibroblast heterogeneity in the skin. Trends Cell Biol. 25, 92–99 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Miao, Z. et al. Putative cell type discovery from single-cell gene expression data. Nat. Methods 17, 621–628 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Miller, J. A. et al. Common cell type nomenclature for the mammalian brain. eLife 9, e59928 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Börner, K. et al. Anatomical structures, cell types and biomarkers of the Human Reference Atlas. Nat. Cell Biol. https://doi.org/10.1038/s41556-021-00788-6 (2021).

  45. Qi, Z. et al. Single-cell deconvolution of head and neck squamous cell carcinoma. Cancers (Basel) 13, 2387 (2021).

    Article  Google Scholar 

  46. Kiselev, V. Y., Yiu, A. & Hemberg, M. scmap: projection of single-cell RNA-seq data across data sets. Nat. Methods 15, 359–362 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Kimmel, J. C. & Kelley, D. R. Semi-supervised adversarial neural networks for single-cell classification. Genome Res. 31, 1781–1793 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Domínguez, C.C. et al. Cross-tissue immune cell analysis reveals tissue-specific adaptations and clonal architecture across the human body. Preprint at bioRxiv https://doi.org/10.1101/2021.04.28.441762 (2021).

  49. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bernstein, M. N., Ma, Z., Gleicher, M. & Dewey, C. N. CellO: comprehensive and hierarchical cell type classification of human cells with the Cell Ontology. iScience 24, 101913 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Hou, R., Denisenko, E. & Forrest, A. R. R. scMatch: a single-cell gene expression profile annotation tool using reference datasets. Bioinformatics 35, 4688–4695 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Orvis, J. et al. gEAR: gene expression analysis resource portal for community-driven, multi-omic data exploration. Nat. Methods 18, 843–844 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Megill, C. et al. cellxgene: a performant, scalable exploration platform for high dimensional sparse matrices. Preprint at bioRxiv https://doi.org/10.1101/2021.04.05.438318 (2021).

  55. Stewart, B. J. et al. Spatiotemporal immune zonation of the human kidney. Science 365, 1461–1466 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. James, K. R. et al. Distinct microbial and immune niches of the human colon. Nat. Immunol. 21, 343–353 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vieira Braga, F. A. et al. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat. Med. 25, 1153–1163 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Travaglini, K. J. et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 587, 619–625 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Aizarani, N. et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572, 199–204 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Litvinukova, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Park, J. E. et al. A cell atlas of human thymic development defines T cell repertoire formation. Science 367, eaay3224 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Reynolds, G. et al. Developmental cell programs are co-opted in inflammatory skin disease. Science 371, eaba6500 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Garcia-Alonso, L. et al. Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro. Nat. Genetics https://doi.org/10.1038/s41588-021-00972-2 (2021).

Download references

Acknowledgements

We are grateful to J. Eliasova (scientific illustrator) for support with the figure, to R. Vento-Tormo for comments on the figure and texts, and to the following clinicians and researchers for information on standard pathology markers for tissues and cells: L. Campos, A. Dean, L. Moore, N. Sebire, T. Brevini, M. Haniffa, J. E. Kwa, J. McCaffrey and A. Kreins. We also thank all members of the CL and Uberon editorial teams, including C. Mungall, N. Matentzoglu, A. Diehl, N. Washington, S. Tan, P. Roncaglia, T. Lubiana and D. Goutte-Gattat. Research reported in this publication was supported by the Wellcome Trust (grant 108413/A/15/D), the Office of the Director, National Institutes of Health of the National Institutes of Health (under award number OT2OD026682’), grants from the CZI (Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community Foundation), and Schmidt Futures (Grant 74). This publication is part of the HCA (www.humancellatlas.org/publications/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah A. Teichmann.

Ethics declarations

Competing interests

Since January 2019, S.A.T. has been remunerated for consulting and SAB membership by Foresite Labs, GlaxoSmithKline, Biogen, Roche and Genentech, and is a founder and equity holder of Transition Bio. A.R. is a cofounder and equity holder in Celsius Therapeutics, an equity holder in Immunitas Therapeutics, and was a scientific advisory board member for ThermoFisher Scientific, Asimov, Syros Pharmaceuticals and Neogene Therapeutics until 31 July 2020. From 1 August 2020, A.R. is an employee of Genentech, a member of the Roche group. A.R. is a named inventor on several patents and patent applications filed by the Broad Institute in the area of single-cell and spatial genomics. The other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osumi-Sutherland, D., Xu, C., Keays, M. et al. Cell type ontologies of the Human Cell Atlas. Nat Cell Biol 23, 1129–1135 (2021). https://doi.org/10.1038/s41556-021-00787-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-021-00787-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing