Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemical approaches to cryopreservation

Abstract

Cryopreservation of cells and biologics underpins all biomedical research from routine sample storage to emerging cell-based therapies, as well as ensuring cell banks provide authenticated, stable and consistent cell products. This field began with the discovery and wide adoption of glycerol and dimethyl sulfoxide as cryoprotectants over 60 years ago, but these tools do not work for all cells and are not ideal for all workflows. In this Review, we highlight and critically review the approaches to discover, and apply, new chemical tools for cryopreservation. We summarize the key (and complex) damage pathways during cellular cryopreservation and how each can be addressed. Bio-inspired approaches, such as those based on extremophiles, are also discussed. We describe both small-molecule-based and macromolecular-based strategies, including ice binders, ice nucleators, ice nucleation inhibitors and emerging materials whose exact mechanism has yet to be understood. Finally, looking towards the future of the field, the application of bottom-up molecular modelling, library-based discovery approaches and materials science tools, which are set to transform cryopreservation strategies, are also included.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential mechanisms of cellular damage during cryopreservation.
Fig. 2: Vitrification agents for cryopreservation.
Fig. 3: Ice recrystallization inhibitors.
Fig. 4: Macromolecular cryoprotectants for cryopreservation.
Fig. 5: Control of ice nucleation.
Fig. 6: Modulating biochemical pathways.

Similar content being viewed by others

References

  1. Giwa, S. et al. The promise of organ and tissue preservation to transform medicine. Nat. Biotechnol. 35, 530–542 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fowler, C. The Svalbard seed vault and crop security. Bioscience 58, 190–191 (2008).

    Article  Google Scholar 

  3. Geraghty, R. J. et al. Guidelines for the use of cell lines in biomedical research. Br. J. Cancer 111, 1021–1046 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Swioklo, S., Constantinescu, A. & Connon, C. Alginate-encapsulation for the improved hypothermic preservation of human adipose-derived stem cells. Stem Cell Transl. Med. 5, 339–349 (2016).

    Article  CAS  Google Scholar 

  5. Polge, C., Smith, A. U. & Parkes, A. Revival of spermatozoa after vitrification and dehydration. Nature 164, 666 (1949). First report of glycerol as a cryoprotectant.

    Article  CAS  PubMed  Google Scholar 

  6. Lovelock, J. E. & Bishop, M. W. Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature 183, 1394–1395 (1959). First report of DMSO as a cryoprotectant.

    Article  CAS  PubMed  Google Scholar 

  7. Scott, K. L., Lecak, J. & Acker, J. P. Biopreservation of red blood cells: past, present, and future. Transfus. Med. Rev. 19, 127–142 (2005).

    Article  PubMed  Google Scholar 

  8. Lysak, D. et al. Long-term cryopreservation does not affect quality of peripheral blood stem cell grafts: a comparative study of native, short-term and long-term cryopreserved haematopoietic stem cells. Cell Transpl. 30, 09636897211036004 (2021).

    Article  Google Scholar 

  9. Panch, S. R. et al. Effect of cryopreservation on autologous chimeric antigen receptor T cell characteristics. Mol. Ther. 27, 1275–1285 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu, X. et al. The roles of apoptotic pathways in the low recovery rate after cryopreservation of dissociated human embryonic stem cells. Biotechnol. Prog. 26, 827–837 (2009).

    Article  CAS  Google Scholar 

  11. Bailey, T. L. et al. Protective effects of osmolytes in cryopreserving adherent neuroblastoma (Neuro-2a) cells. Cryobiology 71, 472–480 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Eskandari, N., Marquez-Curtis, L. A., McGann, L. E. & Elliott, J. A. W. Cryopreservation of human umbilical vein and porcine corneal endothelial cell monolayers. Cryobiology 85, 63–72 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Marquez-Curtis, L. A., Bokenfohr, R., McGann, L. E. & Elliott, J. A. W. Cryopreservation of human cerebral microvascular endothelial cells and astrocytes in suspension and monolayers. PLoS One 16, e0249814 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lagerberg, J. W. in Cryopreservation and Freeze-Drying Protocols (eds Wolkers, W. F. & Oldenhof, H.) 353–367 (Springer, 2015).

  15. Verheijen, M. et al. DMSO induces drastic changes in human cellular processes and epigenetic landscape in vitro. Sci. Rep. 9, 4641–4653 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Adler, S., Pellizzer, C., Paparella, M., Hartung, T. & Bremer, S. The effects of solvents on embryonic stem cell differentiation. Toxicol. In Vitro 20, 265–271 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Yamaguchi, R. et al. Plasticizer concentration in cord blood cryopreserved with DMSO. Bone Marrow Transpl. 49, 157–158 (2014).

    Article  CAS  Google Scholar 

  18. Morris, C. et al. Should the standard dimethyl sulfoxide concentration be reduced? Results of a European Group for Blood and Marrow Transplantation prospective noninterventional study on usage and side effects of dimethyl sulfoxide. Transfusion 54, 2514–2522 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Maral, S. et al. Dimethyl sulfoxide-induced tonic-clonic seizure and cardiac arrest during infusion of autologous peripheral blood stem cells. Cell Tissue Bank. 19, 831–832 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. John Morris, G. & Acton, E. Controlled ice nucleation in cryopreservation–a review. Cryobiology 66, 85–92 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Mazur, P. Cryobiology: the freezing of biological systems. Science 168, 939–949 (1970).

    Article  CAS  PubMed  Google Scholar 

  22. Deller, R. C., Vatish, M., Mitchell, D. A. & Gibson, M. I. Synthetic polymers enable non-vitreous cellular cryopreservation by reducing ice crystal growth during thawing. Nat. Commun. 5, 3244 (2014).

    Article  PubMed  CAS  Google Scholar 

  23. Cao, E., Chen, Y., Cui, Z. & Foster, P. R. Effect of freezing and thawing rates on denaturation of proteins in aqueous solutions. Biotechnol. Bioeng. 82, 684–690 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Rienzi, L. et al. Polscope analysis of meiotic spindle changes in living metaphase II human oocytes during the freezing and thawing procedures. Hum. Reprod. 19, 655–659 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Fuller, B. J. Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo-Lett. 25, 375–388 (2004).

    CAS  Google Scholar 

  26. Elliott, G. D., Wang, S. & Fuller, B. J. Cryoprotectants: a review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 76, 74–91 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Nagy, Z. P., Shapiro, D. & Chang, C. C. Vitrification of the human embryo: a more efficient and safer in vitro fertilization treatment. Fertil. Steril. 113, 241–247 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Rienzi, L. et al. Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum. Reprod. Update 23, 139–155 (2017).

    CAS  PubMed  Google Scholar 

  29. Fahy, G. M. et al. Physical and biological aspects of renal vitrification. Organogenesis 5, 167–175 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kuleshova, L. L., Gouk, S. S. & Hutmacher, D. W. Vitrification as a prospect for cryopreservation of tissue-engineered constructs. Biomaterials 28, 1585–1596 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Jomha, N. M. et al. Vitrification of intact human articular cartilage. Biomaterials 33, 6061–6068 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Yong, K. W., Laouar, L., Elliott, J. A. W. & Jomha, N. M. Review of non-permeating cryoprotectants as supplements for vitrification of mammalian tissues. Cryobiology 96, 1–11 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Fahy, G. M., Wowk, B., Wu, J. & Paynter, S. Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology 48, 22–35 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Fahy, G. M. Cryoprotectant toxicity neutralization. Cryobiology 60, S45–S53 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Warner, R. M. et al. Rapid quantification of multi-cryoprotectant toxicity using an automated liquid handling method. Cryobiology 98, 219–232 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Demirci, U. & Montesano, G. Cell encapsulating droplet vitrification. Lab Chip 7, 1428–1433 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Dou, R., Saunders, R. E., Mohamet, L., Ward, C. M. & Derby, B. High throughput cryopreservation of cells by rapid freezing of sub-Μl drops using inkjet printing-cryoprinting. Lab Chip 15, 3503–3513 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Akiyama, Y., Shinose, M., Watanabe, H., Yamada, S. & Kanda, Y. Cryoprotectant-free cryopreservation of mammalian cells by superflash freezing. Proc. Natl Acad. Sci. USA 116, 7738–7743 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Manuchehrabadi, N. et al. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Sci. Transl. Med. 9, eaah4586 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ito, A. et al. Magnetic heating of nanoparticles as a scalable cryopreservation technology for human induced pluripotent stem cells. Sci. Rep. 10, 13605 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gao, Z. et al. Preparation of scalable silica-coated iron oxide nanoparticles for nanowarming. Adv. Sci. 7, 1901624 (2020).

    Article  CAS  Google Scholar 

  42. Liu, X., Zhao, G., Chen, Z., Panhwar, F. & He, X. Dual suppression effect of magnetic induction heating and microencapsulation on ice crystallization enables low-cryoprotectant vitrification of stem cell–alginate hydrogel constructs. ACS Appl. Mater. Interfaces 10, 16822–16835 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wowk, B. et al. Vitrification enhancement by synthetic ice blocking agents. Cryobiology 40, 228–236 (2000). Key example of synthetic polymers being used to inhibit devitrification and, hence, a ‘chemistry solution to a cryopreservation problem’.

    Article  CAS  PubMed  Google Scholar 

  44. Biggs, C. I. et al. Polymer mimics of biomacromolecular antifreezes. Nat. Commun. 8, 1546 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Wang, H. Y., Inada, T., Funakoshi, K. & Lu, S. S. Inhibition of nucleation and growth of ice by poly(vinyl alcohol) in vitrification solution. Cryobiology 59, 83–89 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Matsumura, K., Bae, J. Y., Kim, H. H. & Hyon, S. H. Effective vitrification of human induced pluripotent stem cells using carboxylated ε-poly-l-lysine. Cryobiology 63, 76–83 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Matsumura, K., Hayashi, F., Nagashima, T., Rajan, R. & Hyon, S.-H. Molecular mechanisms of cell cryopreservation with polyampholytes studied by solid-state NMR. Commun. Mater. 2, 15 (2021).

    Article  CAS  Google Scholar 

  48. Ota, A., Matsumura, K., Lee, J. J., Sumi, S. & Hyon, S. H. StemCell Keep™ is effective for cryopreservation of human embryonic stem cells by vitrification. Cell Transpl. 26, 773–787 (2017).

    Article  Google Scholar 

  49. Kamoshita, M. et al. Successful vitrification of pronuclear-stage pig embryos with a novel cryoprotective agent, carboxylated ε-poly-l-lysine. PLoS One 12, e0176711 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Matsumura, K. et al. Molecular design of polyampholytes for vitrification-induced preservation of three-dimensional cell constructs without using liquid nitrogen. Biomacromolecules 21, 3017–3025 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Bar Dolev, M., Braslavsky, I. & Davies, P. L. Ice-binding proteins and their function. Annu. Rev. Biochem. 85, 515–542 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Budke, C. et al. Quantitative efficacy classification of ice recrystallization inhibition agents. Cryst. Growth Des. 14, 4285–4294 (2014). Complete map of ice growth inhibition using a truly quantitative measurement.

    Article  CAS  Google Scholar 

  53. Biggs, C. I. et al. Mimicking the ice recrystallization activity of biological antifreezes. When is a new polymer “active”? Macromol. Biosci. 19, 1900082 (2019).

    Article  CAS  Google Scholar 

  54. Carpenter, J. F. & Hansen, T. N. Antifreeze protein modulates cell survival during cryopreservation: mediation through influence on ice crystal growth. Proc. Natl Acad. Sci. USA 89, 8953–8957 (1992). First demonstration that α-fetoproteins can be used to improve cell cryopreservation by controlling ice growth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sun, Y., Liu, J., Li, Z., Wang, J. & Huang, Y. Nonionic and water-soluble poly(d/l-serine) as a promising biomedical polymer for cryopreservation. ACS Appl. Mater. Interfaces 13, 18454–18461 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Graham, B. et al. Polyproline as a minimal antifreeze protein mimic that enhances the cryopreservation of cell monolayers. Angew. Chem. Int. Ed. 56, 15941–15944 (2017).

    Article  CAS  Google Scholar 

  57. Qin, Q. et al. Bioinspired l-proline oligomers for the cryopreservation of oocytes via controlling ice growth. ACS Appl. Mater. Interfaces 12, 18352–18362 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Mochizuki, K. & Molinero, V. Antifreeze glycoproteins bind reversibly to ice via hydrophobic groups. J. Am. Chem. Soc. 140, 4803–4811 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Graham, B., Fayter, A. E. R., Houston, J. E., Evans, R. C. & Gibson, M. I. Facially amphipathic glycopolymers inhibit ice recrystallization. J. Am. Chem. Soc. 140, 5682–5685 (2018). Study demonstrating that segregated domains of hydrophilicity and hydrophobicity are required for IRI as a chemical mimic of an antifreeze glycoprotein.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Georgiou, P. G. et al. Polymer self-assembly induced enhancement of ice recrystallization inhibition. J. Am. Chem. Soc. 143, 7449–7461 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Balcerzak, A. K., Febbraro, M. & Ben, R. N. The importance of hydrophobic moieties in ice recrystallization inhibitors. RSC Adv. 9, 3232–3236 (2013).

    Article  CAS  Google Scholar 

  62. Voets, I. K. From ice-binding proteins to bio-inspired antifreeze materials. Soft Matter 13, 4808–4823 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gruneberg, A. K. et al. Ice recrystallization inhibition activity varies with ice-binding protein type and does not correlate with thermal hysteresis. Cryobiology 99, 28–39 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Olijve, L. L. C. et al. Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins. Proc. Natl Acad. Sci. 113, 3740–3745 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Eniade, A., Purushotham, M., Ben, R. N., Wang, J. B. & Horwath, K. A serendipitous discovery of antifreeze protein-specific activity in C-linked antifreeze glycoprotein analogs. Cell Biochem. Biophys. 38, 115–124 (2003). First report of synthetic molecules with ice recrystallization inhibition.

    Article  CAS  PubMed  Google Scholar 

  66. Tachibana, Y. et al. Antifreeze glycoproteins: elucidation of the structural motifs that are essential for antifreeze activity. Angew. Chem. Int. Ed. 43, 856–862 (2004). Study describing the structure–activity relationships of antifreeze glycoproteins showing the exact chemical units needed for macroscopic effects.

    Article  CAS  Google Scholar 

  67. Briard, J. G. et al. Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing. Sci. Rep. 6, 23619 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Capicciotti, C. J. et al. Potent inhibition of ice recrystallization by low molecular weight carbohydrate-based surfactants and hydrogelators. Chem. Sci. 3, 1408–1416 (2012).

    Article  CAS  Google Scholar 

  69. Congdon, T., Notman, R. & Gibson, M. I. Antifreeze (glyco)protein mimetic behavior of poly(vinyl alcohol): detailed structure ice recrystallization inhibition activity study. Biomacromolecules 14, 1578–1586 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Chaytor, J. L. & Ben, R. N. Assessing the ability of a short fluorinated antifreeze glycopeptide and a fluorinated carbohydrate derivative to inhibit ice recrystallization. Bioorg. Med. Chem. Lett. 20, 5251–5254 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Poisson, J. S., Acker, J. P., Briard, J. G., Meyer, J. E. & Ben, R. N. Modulating intracellular ice growth with cell-permeating small-molecule ice recrystallization inhibitors. Langmuir 35, 7452–7458 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Tomas, R. M. F., Bailey, T. L., Hasan, M. & Gibson, M. I. Extracellular antifreeze protein significantly enhance the cryopreservation of cell monolayers. Biomacromolecules 20, 3864–3872 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Acker, J. P., Larese, A., Yang, H., Petrenko, A. & McGann, L. E. Intracellular ice formation is affected by cell interactions. Cryobiology 38, 363–371 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Geng, H. et al. Graphene oxide restricts growth and recrystallization of ice crystals. Angew. Chem. Int. Ed. 56, 997–1001 (2017).

    Article  CAS  Google Scholar 

  75. Chaytor, J. L. et al. Inhibiting ice recrystallization and optimization of cell viability after cryopreservation. Glycobiology 22, 123–133 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Lautner, L., Himmat, S., Acker, J. P. & Nagendran, J. The efficacy of ice recrystallization inhibitors in rat lung cryopreservation using a low cost technique for ex vivo subnormothermic lung perfusion. Cryobiology 97, 93–100 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Li, T., Zhao, Y., Zhong, Q. & Wu, T. Inhibiting ice recrystallization by nanocelluloses. Biomacromolecules 20, 1667–1674 (2019).

    Article  PubMed  CAS  Google Scholar 

  78. Mitchell, D. E. et al. Antifreeze protein mimetic metallohelices with potent ice recrystallization inhibition activity. J. Am. Chem. Soc. 139, 9835–9838 (2017). First synthetic IRI using metal-driven supramolecular self-assembly.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Drori, R. et al. A supramolecular ice growth inhibitor. J. Am. Chem. Soc. 138, 13396–13401 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Xue, B. et al. Bioinspired ice growth inhibitors based on self-assembling peptides. ACS Macro Lett. 8, 1383–1390 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. MacDonald, M. J., Cornejo, N. R. & Gellman, S. H. Inhibition of ice recrystallization by nylon-3 polymers. ACS Macro Lett. 6, 695–699 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. He, Z., Liu, K. & Wang, J. Bioinspired materials for controlling ice nucleation, growth, and recrystallization. Acc. Chem. Res. 51, 1082–1091 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Fayter, A. E. R., Hasan, M., Congdon, T. R. T. R., Kontopoulou, I. & Gibson, M. I. M. I. Ice recrystallisation inhibiting polymers prevent irreversible protein aggregation during solvent-free cryopreservation as additives and as covalent polymer-protein conjugates. Eur. Polym. J. 140, 110036 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Thomas, M. J. G., Parry, E. S., Nash, S. G. & Bell, S. H. A method for the cryopreservation of red blood cells using hydroxyethyl starch as a cryoprotectant. Transfus. Sci. 17, 385–396 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Park, S., Lee, D. R., Nam, J. S., Ahn, C. W. & Kim, H. Fetal bovine serum-free cryopreservation methods for clinical banking of human adipose-derived stem cells. Cryobiology 81, 65–73 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Halberstadt, M., Athmann, S. & Hagenah, M. Corneal cryopreservation with dextran. Cryobiology 43, 71–80 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. O’Neil, L., Paynter, S. J., Fuller, B. J. & Shaw, R. W. Vitrification of mature mouse oocytes in dimethylsulphoxide: improved results following the addition of polyethylene glycol but not dextran. Cryobiology 34, 295–301 (1997).

    Article  PubMed  Google Scholar 

  88. Matsumura, K. & Hyon, S. H. Polyampholytes as low toxic efficient cryoprotective agents with antifreeze protein properties. Biomaterials 30, 4842–4849 (2009). The first report of a polyampholyte as a cryoprotective agent for mammalian cells.

    Article  CAS  PubMed  Google Scholar 

  89. Jain, M., Rajan, R., Hyon, S. H. & Matsumura, K. Hydrogelation of dextran-based polyampholytes with cryoprotective properties via click chemistry. Biomater. Sci. 2, 308–317 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Mitchell, D. E., Cameron, N. R. & Gibson, M. I. Rational, yet simple, design and synthesis of an antifreeze-protein inspired polymer for cellular cryopreservation. Chem. Commun. 51, 12977–12980 (2015).

    Article  CAS  Google Scholar 

  91. Stubbs, C., Lipecki, J. & Gibson, M. I. Regioregular alternating polyampholytes have enhanced biomimetic ice recrystallization activity compared to random copolymers and the role of side chain versus main chain hydrophobicity. Biomacromolecules 18, 295–302 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Maehara, M. et al. Development of a novel vitrification method for chondrocyte sheets. BMC Biotechnol. 13, 58 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rajan, R., Hayashi, F., Nagashima, T. & Matsumura, K. Toward a molecular understanding of the mechanism of cryopreservation by polyampholytes: cell membrane interactions and hydrophobicity. Biomacromolecules 17, 1882–1893 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Stubbs, C., Murray, K. A., Ishibe, T., Mathers, R. T. & Gibson, M. I. Combinatorial biomaterials discovery strategy to identify new macromolecular cryoprotectants. ACS Macro Lett. 9, 290–294 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhao, J., Johnson, M. A., Fisher, R., Burke, N. A. D. & Stöver, H. D. H. Synthetic polyampholytes as macromolecular cryoprotective agents. Langmuir 35, 1807–1817 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Stubbs, C., Bailey, T. L., Murray, K. & Gibson, M. I. Polyampholytes as emerging macromolecular cryoprotectants. Biomacromolecules 21, 7–17 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Murray, K. A. & Gibson, M. I. Post-thaw culture and measurement of total cell recovery is crucial in the evaluation of new macromolecular cryoprotectants. Biomacromolecules 21, 2864–2873 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bailey, T. L. et al. A synthetically scalable poly(ampholyte) which dramatically enhances cellular cryopreservation. Biomacromolecules 20, 3104–3114 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Murray, K. A., Tomás, R. M. F. & Gibson, M. I. Low DMSO cryopreservation of stem cells enabled by macromolecular cryoprotectants. ACS Appl. Bio Mater. 3, 5627–5632 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Murray, A., Congdon, T. R., Tomás, R. M. F., Kilbride, P. & Gibson, M. I. Red blood cell cryopreservation with minimal post-thaw lysis enabled by a synergistic combination of a cryoprotecting polyampholyte with DMSO/trehalose. Biomacromolecules 23, 467–477 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Burkey, A. A. et al. Mechanism of polymer-mediated cryopreservation using poly(methyl glycidyl sulfoxide). Biomacromolecules 21, 3047–3055 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Mancini, R. J., Lee, J. & Maynard, H. D. Trehalose glycopolymers for stabilization of protein conjugates to environmental stressors. J. Am. Chem. Soc. 134, 8474–8479 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Lee, J. et al. Trehalose glycopolymers as excipients for protein stabilization. Biomacromolecules 14, 2561–2569 (2013). Use of trehalose glycopolymers to stabilize proteins during heating or freeze-drying.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Diaz-Dussan, D. et al. Trehalose-based polyethers for cryopreservation and three-dimensional cell scaffolds. Biomacromolecules 21, 1264–1273 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Walters, K. R. et al. A nonprotein thermal hysteresis-producing xylomannan antifreeze in the freeze-tolerant Alaskan beetle Upis ceramboides. Proc. Natl Acad. Sci. USA 106, 20210–20215 (2009). Report of a polysaccharide isolated from a freeze-tolerant beetle showing thermal hysteresis behaviours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Guerreiro, B. M. et al. Demonstration of the cryoprotective properties of the fucose-containing polysaccharide FucoPol. Carbohydr. Polym. 245, 116500 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Guerreiro, B. M. et al. Development of a cryoprotective formula based on the fucose-containing polysaccharide FucoPol. ACS Appl. Bio Mater. 4, 4800–4808 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Wang, J., Salem, D. R. & Sani, R. K. Extremophilic exopolysaccharides: a review and new perspectives on engineering strategies and applications. Carbohydr. Polym. 205, 8–26 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Casillo, A. et al. Structure-activity relationship of the exopolysaccharide from a psychrophilic bacterium: a strategy for cryoprotection. Carbohydr. Polym. 156, 364–371 (2017).

    Article  CAS  PubMed  Google Scholar 

  110. Bigg, E. K. The supercooling of water. Proc. Phys. Soc. B 66, 688–694 (1953).

    Article  Google Scholar 

  111. Daily, M. I. et al. Cryopreservation of primary cultures of mammalian somatic cells in 96-well plates benefits from control of ice nucleation. Cryobiology 93, 62–69 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pravdyuk, A. I., Petrenko, Y. A., Fuller, B. J. & Petrenko, A. Y. Cryopreservation of alginate encapsulated mesenchymal stromal cells. Cryobiology 66, 215–222 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Skorobogatova, N. G., Novikov, A. N., Fuller, B. J. & Petrenko, A. Y. Importance of a three-stage cooling regime and induced ice nucleation during cryopreservation on colony-forming potential and differentiation in mesenchymal stem/progenitor cells from human fetal liver. Cryo Lett. 31, 371–379 (2010).

    Google Scholar 

  114. Ware, C. B., Nelson, A. M. & Blau, C. A. Controlled-rate freezing of human ES cells. Biotechniques 38, 879–883 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Lauterboeck, L., Hofmann, N., Mueller, T. & Glasmacher, B. Active control of the nucleation temperature enhances freezing survival of multipotent mesenchymal stromal cells. Cryobiology 71, 384–390 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Petersen, A., Schneider, H., Rau, G. & Glasmacher, B. A new approach for freezing of aqueous solutions under active control of the nucleation temperature. Cryobiology 53, 248–257 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Kilbride, P. et al. Recovery and post-thaw assessment of human umbilical cord blood cryopreserved as quality control segments and bulk samples. Biol. Blood Marrow Transpl. 25, 2447–2453 (2019).

    Article  CAS  Google Scholar 

  118. Sosso, G. C. et al. Unravelling the origins of ice nucleation on organic crystals. Chem. Sci. 9, 8077–8088 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Massie, I., Selden, C., Hodgson, H. & Fuller, B. Cryopreservation of encapsulated liver spheroids for a bioartificial liver: reducing latent cryoinjury using an ice nucleating agent. Tissue Eng. Part C Methods 17, 765–774 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Massie, I. et al. GMP cryopreservation of large volumes of cells for regenerative medicine: active control of the freezing process. Tissue Eng. Part C Methods 20, 693–702 (2014). Study demonstrating a strong correlation between nucleation temperature and cell viability post-thaw.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Head, R. B. Steroids as ice nucleators. Nature 191, 1058–1059 (1961).

    Article  CAS  PubMed  Google Scholar 

  122. Teixeira, M. et al. Ice nucleating agents allow embryo freezing without manual seeding. Theriogenology 104, 173–178 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Weng, L., Tessier, S. N., Swei, A., Stott, S. L. & Toner, M. Controlled ice nucleation using freeze-dried Pseudomonas syringae encapsulated in alginate beads. Cryobiology 75, 1–6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Atkinson, J. D. et al. The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature 498, 355–358 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Yakobi-Hancock, J. D., Ladino, L. A. & Abbatt, J. P. D. Feldspar minerals as efficient deposition ice nuclei. Atmos. Chem. Phys. 13, 11175–11185 (2013).

    Article  CAS  Google Scholar 

  126. Zolles, T. et al. Identification of ice nucleation active sites on feldspar dust particles. J. Phys. Chem. A 119, 2692–2700 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Biggs, C. I. et al. Impact of sequential surface-modification of graphene oxide on ice nucleation. Phys. Chem. Chem. Phys. 19, 21929–21932 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Han, X., Ma, H. B., Wilson, C. & Critser, J. K. Effects of nanoparticles on the nucleation and devitrification temperatures of polyol cryoprotectant solutions. Microfluid. Nanofluidics 4, 357–361 (2008).

    Article  CAS  Google Scholar 

  129. Whale, T. F., Rosillo-Lopez, M., Murray, B. J. & Salzmann, C. G. Ice nucleation properties of oxidized carbon nanomaterials. J. Phys. Chem. Lett. 6, 3012–3016 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cheng, Y., Yu, Y., Zhang, Y., Zhao, G. & Zhao, Y. Cold-responsive nanocapsules enable the sole-cryoprotectant-trehalose cryopreservation of β cell–laden hydrogels for diabetes treatment. Small 15, 1904290 (2019).

    Article  CAS  Google Scholar 

  131. Canton, I. et al. Mucin-inspired thermoresponsive synthetic hydrogels induce stasis in human pluripotent stem cells and human embryos. ACS Cent. Sci. 2, 65–74 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Matsumoto, Y., Morinaga, Y., Ujihira, M., Oka, K. & Tanishita, K. Improvement in the viability of cryopreserved cells by microencapsulation. JSME Int. J. Ser. C. 44, 580–587 (2001).

    Article  Google Scholar 

  133. Hardikar, A. A., Risbud, M. V. & Bhonde, R. R. Improved post-cryopreservation recovery following encapsulation of islets in chitosan-alginate microcapsules. Transplant. Proc. 32, 824–825 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Cao, K. et al. Hydrogel microfiber encapsulation enhances cryopreservation of human red blood cells with low concentrations of glycerol. Biopreserv. Biobank. 18, 228–234 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Cui, Z. K. et al. Characteristics of neural growth and cryopreservation of the dorsal root ganglion using three-dimensional collagen hydrogel culture versus conventional culture. Neural Regen. Res. 16, 1856–1864 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Malpique, R. et al. Alginate encapsulation as a novel strategy for the cryopreservation of neurospheres. Tissue Eng. Part C Methods 16, 965–977 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Sambu, S., Xu, X., Schiffter, H. A., Cui, Z. F. & Ye, H. RGDS-fuctionalized alginates improve the survival rate of encapsulated embryonic stem cells during cryopreservation. Cryo Lett. 32, 389–401 (2011).

    CAS  Google Scholar 

  138. Zeng, J. et al. A supramolecular gel approach to minimize the neural cell damage during cryopreservation process. Macromol. Biosci. 16, 363–370 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Matsumura, K., Hayashi, F., Nagashima, T. & Hyon, S. H. Long-term cryopreservation of human mesenchymal stem cells using carboxylated poly-l-lysine without the addition of proteins or dimethyl sulfoxide. J. Biomater. Sci. Polym. Ed. 24, 1484–1497 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Jeon, O., Lee, Y. B., Hinton, T. J., Feinberg, A. W. & Alsberg, E. Cryopreserved cell-laden alginate microgel bioink for 3D bioprinting of living tissues. Mater. Today Chem. 12, 61–70 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Jacobs-Tulleneers-Thevissen, D. et al. Sustained function of alginate-encapsulated human islet cell implants in the peritoneal cavity of mice leading to a pilot study in a type 1 diabetic patient. Diabetologia 56, 1605–1614 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Eroglu, A. et al. Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat. Biotechnol. 18, 163–167 (1999).

    Article  CAS  Google Scholar 

  143. Eroglu, A., Toner, M. & Toth, T. L. Beneficial effect of microinjected trehalose on the cryosurvival of human oocytes. Fertil. Steril. 77, 152–158 (2002).

    Article  PubMed  Google Scholar 

  144. Lynch, A. L. et al. Biopolymer mediated trehalose uptake for enhanced erythrocyte cryosurvival. Biomaterials 31, 6096–6103 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Sharp, D. M. C. et al. Amphipathic polymer-mediated uptake of trehalose for dimethyl sulfoxide-free human cell cryopreservation. Cryobiology 67, 305–311 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Marie, E., Sagan, S., Cribier, S. & Tribet, C. Amphiphilic macromolecules on cell membranes: from protective layers to controlled permeabilization. J. Membr. Biol. 247, 861–881 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Hong, S. et al. Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability. Bioconjug. Chem. 17, 728–734 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Rao, W. et al. Nanoparticle-mediated intracellular delivery enables cryopreservation of human adipose-derived stem cells using trehalose as the sole cryoprotectant. ACS Appl. Mater. Interfaces 7, 5017–5028 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhang, Y. et al. Cold-responsive nanoparticle enables intracellular delivery and rapid release of trehalose for organic-solvent-free cryopreservation. Nano Lett. 19, 9051–9061 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Stefanic, M. et al. Apatite nanoparticles strongly improve red blood cell cryopreservation by mediating trehalose delivery via enhanced membrane permeation. Biomaterials 140, 138–149 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Acker, J. P. et al. Measurement of trehalose loading of mammalian cells porated with a metal-actuated switchable pore. Biotechnol. Bioeng. 82, 525–532 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Abazari, A. et al. Engineered trehalose permeable to mammalian cells. PLoS One 10, e0130323 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Stewart, S. & He, X. Intracellular delivery of trehalose for cell banking. Langmuir 35, 7414–7422 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Fu, A., Tang, R., Hardie, J., Farkas, M. E. & Rotello, V. M. Promises and pitfalls of intracellular delivery of proteins. Bioconjug. Chem. 25, 1602–1608 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. D’Amore, T., Crumplen, R. & Stewart, G. G. The involvement of trehalose in yeast stress tolerance. J. Ind. Microbiol. 7, 191–195 (1991).

    Article  Google Scholar 

  156. Morita, Y., Nakamori, S. & Takagi, H. l-proline accumulation and freeze tolerance in Saccharomyces cerevisiae are caused by a mutation in the PRO1 gene encoding γ-glutamyl kinase. Appl. Environ. Microbiol. 69, 212–219 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Koštál, V., Zahradníèková, H. & Šimek, P. Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen. Proc. Natl Acad. Sci. USA 108, 13041–13046 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Koštál, V., Šimek, P., Zahradníčková, H., Cimlová, J. & Štětina, T. Conversion of the chill susceptible fruit fly larva (Drosophila melanogaster) to a freeze tolerant organism. Proc. Natl Acad. Sci. USA 109, 3270–3274 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Bailey, T. L., Hernandez-Fernaud, J. R. & Gibson, M. I. Proline pre-conditioning of cell monolayers increases post-thaw recovery and viability by distinct mechanisms to other osmolytes. RSC Med. Chem. 12, 982–993 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yang, J. et al. Natural zwitterionic betaine enables cells to survive ultrarapid cryopreservation. Sci. Rep. 6, 37458 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Petronini, P. G., De Angelis, E. M., Borghetti, P., Borghetti, A. F. & Wheeler, K. P. Modulation by betaine of cellular responses to osmotic stress. Biochem. J. 282, 69–73 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Boon, C. H. et al. Loss of viability during freeze–thaw of intact and adherent human embryonic stem cells with conventional slow-cooling protocols is predominantly due to apoptosis rather than cellular necrosis. J. Biomed. Sci. 13, 433–445 (2006).

    Article  CAS  Google Scholar 

  163. Paasch, U. et al. Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoa. Biol. Reprod. 71, 1828–1837 (2004).

    Article  CAS  PubMed  Google Scholar 

  164. Baust, J. M., Buskirk, R.Van & Baust, J. G. Cell viability improves following inhibition of cryopreservation-induced apoptosis. In Vitro Cell Dev. Biol. - Anim. 36, 262–270 (2000).

    Article  CAS  PubMed  Google Scholar 

  165. Baust, J. M., Vogel, M. J., Van Buskirk, R. & Baust, J. G. A molecular basis of cryopreservation failure and its modulation to improve cell survival. Cell Transpl. 10, 561–571 (2001).

    Article  CAS  Google Scholar 

  166. Stroh, C. et al. The role of caspases in cryoinjury: caspase inhibition strongly improves the recovery of cryopreserved hematopoietic and other cells. FASEB J. 16, 1651–1653 (2002).

    Article  CAS  PubMed  Google Scholar 

  167. Pero, M. E. et al. Inhibition of apoptosis by caspase inhibitor Z-VAD-FMK improves cryotolerance of in vitro derived bovine embryos. Theriogenology 108, 127–135 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. Yagi, T. et al. Caspase inhibition reduces apoptotic death of cryopreserved porcine hepatocytes. Hepatology 33, 1432–1440 (2001).

    Article  CAS  PubMed  Google Scholar 

  169. Ölander, M. et al. A simple approach for restoration of differentiation and function in cryopreserved human hepatocytes. Arch. Toxicol. 93, 819–829 (2019).

    Article  PubMed  CAS  Google Scholar 

  170. Lee, S., Cho, H. W., Kim, B., Lee, J. K. & Kim, T. The effectiveness of anti-apoptotic agents to preserve primordial follicles and prevent tissue damage during ovarian tissue cryopreservation and xenotransplantation. Int. J. Mol. Sci. 22, 2534 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Matsushita, T. et al. Apoptotic cell death and function of cryopreserved porcine hepatocytes in a bioartificial liver. Cell Transpl. 12, 109–121 (2003).

    Article  Google Scholar 

  172. Bissoyi, A. & Pramanik, K. Role of the apoptosis pathway in cryopreservation-induced cell death in mesenchymal stem cells derived from umbilical cord blood. Biopreserv. Biobank. 12, 246–254 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Fernald, K. & Kurokawa, M. Evading apoptosis in cancer. Trends Cell Biol. 23, 620–633 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol. 25, 681–686 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Martin-Ibañez, R. et al. Novel cryopreservation method for dissociated human embryonic stem cells in the presence of a ROCK inhibitor. Hum. Reprod. 23, 2744–2754 (2008).

    Article  PubMed  CAS  Google Scholar 

  176. Li, X., Krawetz, R., Liu, S., Meng, G. & Rancourt, D. E. ROCK inhibitor improves survival of cryopreserved serum/feeder-free single human embryonic stem cells. Hum. Reprod. 24, 580–589 (2009).

    Article  CAS  PubMed  Google Scholar 

  177. Claassen, D. A., Desler, M. M. & Rizzino, A. ROCK inhibition enhances the recovery and growth of cryopreserved human embryonic stem cells and human induced pluripotent stem cells. Mol. Reprod. Dev. 76, 722–732 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Haun, F. et al. Identification of a novel anoikis signalling pathway using the fungal virulence factor gliotoxin. Nat. Commun. 9, 3524 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Ha, S. J. et al. Effect of antioxidants and apoptosis inhibitors on cryopreservation of murine germ cells enriched for spermatogonial stem cells. PLoS One 11, e0161372 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Drews, J. Drug discovery: a historical perspective. Science 287, 1960–1964 (2000).

    Article  CAS  PubMed  Google Scholar 

  181. Mayer, T. U. et al. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286, 971–974 (1999).

    Article  CAS  PubMed  Google Scholar 

  182. Stevens, C. A. et al. A minimalistic cyclic ice-binding peptide from phage display. Nat. Commun. 12, 2675 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Pollock, K., Budenske, J., McKenna, D., Dosa, P. & Hubel, A. Algorithm-driven optimization of cryopreservation protocols for transfusion model cell types including Jurkat cells and mesenchymal stem cells. J. Tissue Eng. Regen. Med. 11, 2806–2815 (2017).

    Article  CAS  PubMed  Google Scholar 

  184. Li, R., Hornberger, K., Dutton, J. R. & Hubel, A. Cryopreservation of human IPS cell aggregates in a DMSO-free solution — an optimization and comparative study. Front. Bioeng. Biotechnol. 8, 1 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Zhao, G. & Fu, J. Microfluidics for cryopreservation. Biotechnol. Adv. 35, 323–336 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Park, S., Wijethunga, P. A. L., Moon, H. & Han, B. On-chip characterization of cryoprotective agent mixtures using an EWOD-based digital microfluidic device. Lab Chip 11, 2212–2221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Moore, E. B. & Molinero, V. Structural transformation in supercooled water controls the crystallization rate of ice. Nature 479, 506–508 (2011).

    Article  CAS  PubMed  Google Scholar 

  188. Bachtiger, F., Congdon, T. R., Stubbs, C., Gibson, M. I. & Sosso, G. C. The atomistic details of the ice recrystallisation inhibition activity of PVA. Nat. Commun. 12, 1323 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Pedevilla, P., Fitzner, M., Sosso, G. C. & Michaelides, A. Heterogeneous seeded molecular dynamics as a tool to probe the ice nucleating ability of crystalline surfaces. J. Chem. Phys. 149, 072327 (2018).

    Article  PubMed  CAS  Google Scholar 

  190. Notman, R., Noro, M., O’Malley, B. & Anwar, J. Molecular basis for dimethylsulfoxide (DMSO) action on lipid membranes. J. Am. Chem. Soc. 128, 13982–13983 (2006).

    Article  CAS  PubMed  Google Scholar 

  191. Towey, J. J., Soper, A. K. & Dougan, L. Molecular insight into the hydrogen bonding and micro-segregation of a cryoprotectant molecule. J. Phys. Chem. B 116, 13898–13904 (2012).

    Article  CAS  PubMed  Google Scholar 

  192. Cypser, J. R., Chick, W. S., Fahy, G. M., Schumacher, G. J. & Johnson, T. E. Genetic suppression of cryoprotectant toxicity. Cryobiology 86, 95–102 (2019).

    Article  CAS  PubMed  Google Scholar 

  193. Fahy, G. M., MacFarlane, D. R., Angell, C. A. & Meryman, H. T. Vitrification as an approach to cryopreservation. Cryobiology 21, 407–426 (1984).

    Article  CAS  PubMed  Google Scholar 

  194. Capicciotti, C. J. et al. O-aryl-glycoside ice recrystallization inhibitors as novel cryoprotectants: a structure–function study. ACS Omega 1, 656–662 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

K.A.M. thanks the Wellcome Trust and the University of Warwick for supporting a Translational Partnership Fellowship (WT-219429/Z/19/Z). This project (M.I.G.) has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 866056) and the Royal Society for an Industry Fellowship (M.I.G., 191037) with Cytiva.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew I. Gibson.

Ethics declarations

Competing interests

M.I.G. is co-founder and shareholder of Cryologyx Ltd, which is developing cryopreservation technology.

Peer review

Peer review information

Nature Reviews Chemistry thanks J. Elliott, A. Higgins and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Phenotypic drift

A gradual change in the observable traits of a cell due to prolonged time in culture.

Cell therapies

Using a patient’s own cells, or donated cells, to elicit a medicinal response to disease.

Immunotherapies

Treatments that use a person’s immune system to fight diseases, such as cancer.

Cold chain

A low-temperature supply chain.

Cryoprotective agents

(CPAs). Compounds added to freezing solutions to provide a protective effect to the material being frozen.

Ice recrystallization

An increase in ice crystal size over time in an already frozen material.

Glass transition temperature

The temperature at which materials transition from rigid to flexible.

Super-flash freezing

Cooling at an incredibly high cooling rate, so the liquid freezes almost instantly.

Differential scanning calorimetry

(DSC). A thermal analysis technique used to study the heat flow of a sample.

Ice-binding proteins

Molecules found in a diverse range of organisms that bind to the interface between ice and water.

Thermal hysteresis

A difference in the melting and freezing temperatures.

Exopolysaccharides

Macromolecules secreted from microorganisms.

Extremophilic

A propensity for extreme environments, such as organisms that survive at very high or very low temperatures.

Heterogeneous ice nucleation

Ice crystallization induced by the presence of foreign particles.

Ice seeding

Introducing microscopic ice crystals to induce nucleation in a supercooled liquid.

Electrofreezing

Applying an electric current to induce ice nucleation in a supercooled liquid.

Shock cooling

Applying external force or rapid temperature changes to induce nucleation in a supercooled liquid.

Cryosurvival

The ability to survive exposure to cold temperatures, often referring to temperatures far below 0 °C.

Caspase

Protease enzyme involved in the activation and execution of apoptosis.

Calpain cascade

A signalling cascade driven by calcium-dependent cysteine proteases, known as calpains.

Lab-on-chip

A miniature microchip device used to integrate several processes that are typically performed in a laboratory, such as chemical or biological analyses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murray, K.A., Gibson, M.I. Chemical approaches to cryopreservation. Nat Rev Chem 6, 579–593 (2022). https://doi.org/10.1038/s41570-022-00407-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-022-00407-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research