Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Bronchopulmonary dysplasia

Abstract

In the absence of effective interventions to prevent preterm births, improved survival of infants who are born at the biological limits of viability has relied on advances in perinatal care over the past 50 years. Except for extremely preterm infants with suboptimal perinatal care or major antenatal events that cause severe respiratory failure at birth, most extremely preterm infants now survive, but they often develop chronic lung dysfunction termed bronchopulmonary dysplasia (BPD; also known as chronic lung disease). Despite major efforts to minimize injurious but often life-saving postnatal interventions (such as oxygen, mechanical ventilation and corticosteroids), BPD remains the most frequent complication of extreme preterm birth. BPD is now recognized as the result of an aberrant reparative response to both antenatal injury and repetitive postnatal injury to the developing lungs. Consequently, lung development is markedly impaired, which leads to persistent airway and pulmonary vascular disease that can affect adult lung function. Greater insights into the pathobiology of BPD will provide a better understanding of disease mechanisms and lung repair and regeneration, which will enable the discovery of novel therapeutic targets. In parallel, clinical and translational studies that improve the classification of disease phenotypes and enable early identification of at-risk preterm infants should improve trial design and individualized care to enhance outcomes in preterm infants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline and stages of BPD.
Fig. 2: Patterns of lung disease in premature infants.
Fig. 3: Structure of the alveolar gas exchange region.
Fig. 4: Human lung morphogenesis.
Fig. 5: Structural changes in the lung during development and in BPD.
Fig. 6: Pulmonary vascular disease in BPD.
Fig. 7: Alternative ventilation strategies in the treatment of heterogeneous lung disease in severe BPD.
Fig. 8: Structural changes in the lungs in severe BPD.
Fig. 9: Persistent subclinical pulmonary vascular disease in BPD.

Similar content being viewed by others

References

  1. Northway, W. H. Jr., Rosan, R. C. & Porter, D. Y. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N. Engl. J. Med. 276, 357–368 (1967). This paper provides the first description of BPD, and many of the findings are true today.

    Article  PubMed  Google Scholar 

  2. Abman, S. H., Bancalari, E. & Jobe, A. The evolution of bronchopulmonary dysplasia after 50 years. Am. J. Respir. Crit. Care Med. 195, 421–424 (2017).

    Article  PubMed  Google Scholar 

  3. Higgins, R. D. et al. Bronchopulmonary dysplasia: executive summary of a workshop. J. Pediatr. 197, 300–308 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Goldenberg, R. L., Culhane, J. F., Iams, J. D. & Romero, R. Epidemiology and causes of preterm birth. Lancet 371, 75–84 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Narayanan, M. et al. Alveolarization continues during childhood and adolescence: new evidence from helium-3 magnetic resonance. Am. J. Respir. Crit. Care Med. 185, 186–191 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zeitlin, J. et al. Preterm birth time trends in Europe: a study of 19 countries. BJOG 120, 1356–1365 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ferre, C., Callaghan, W., Olson, C., Sharma, A. & Barfield, W. Effects of maternal age and age-specific preterm birth rates on overall preterm birth rates - United States, 2007 and 2014. MMWR Morb. Mortal Wkly. Rep. 65, 1181–1184 (2016).

    Article  PubMed  Google Scholar 

  8. Stoll, B. J. et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics 126, 443–456 (2010).

    Article  PubMed  Google Scholar 

  9. Wadhawan, R. et al. Does labor influence neonatal and neurodevelopmental outcomes of extremely-low-birth-weight infants who are born by cesarean delivery? Am. J. Obstet. Gynecol. 189, 501–506 (2003).

    Article  PubMed  Google Scholar 

  10. Lapcharoensap, W. et al. Hospital variation and risk factors for bronchopulmonary dysplasia in a population-based cohort. JAMA Pediatr. 169, e143676 (2015).

    Article  PubMed  Google Scholar 

  11. Adams, M. et al. Variability of very low birth weight infant outcome and practice in Swiss and US neonatal units. Pediatrics 141, e20173436 (2018).

    Article  PubMed  Google Scholar 

  12. Bhunwal, S., Mukhopadhyay, K., Bhattacharya, S., Dey, P. & Dhaliwal, L. K. Bronchopulmonary dysplasia in preterm neonates in a level III neonatal unit in India. Indian Pediatr. 55, 211–215 (2018).

    Article  PubMed  Google Scholar 

  13. Bose, C. et al. Fetal growth restriction and chronic lung disease among infants born before the 28th week of gestation. Pediatrics 124, e450–e458 (2009).

    Article  PubMed  Google Scholar 

  14. Isayama, T. et al. Revisiting the definition of bronchopulmonary dysplasia: effect of changing panoply of respiratory support for preterm neonates. JAMA Pediatr. 171, 271–279 (2017). These data from the Canadian Neonatal Network identified the use of oxygen and/or respiratory support as a better indicator of chronic respiratory insufficiency than oxygen alone, and that assessment at term equivalent (40 weeks post-menstrual age) increases the predictive value.

    Article  PubMed  Google Scholar 

  15. Lee, J. H., Noh, O. K., Chang, Y. S. & Korean Neonatal Network. Neonatal outcomes of very low birth weight infants in Korean Neonatal Network from 2013 to 2016. J. Korean Med. Sci. 34, e40 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lin, H. J. et al. Mortality and morbidity of extremely low birth weight infants in the mainland of China: a multi-center study. Chin. Med. J. 128, 2743–2750 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Su, B. H. et al. Neonatal outcomes of extremely preterm infants from Taiwan: comparison with Canada, Japan, and the USA. Pediatr. Neonatol. 56, 46–52 (2015).

    Article  PubMed  Google Scholar 

  18. Shah, P. S. et al. Neonatal outcomes of very low birth weight and very preterm neonates: an international comparison. J. Pediatr. 177, 144–152 e146 (2016).

    Article  PubMed  Google Scholar 

  19. Ambalavanan, N. et al. Predictors of death or bronchopulmonary dysplasia in preterm infants with respiratory failure. J. Perinatol. 28, 420–426 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lemons, J. A. et al. Very low birth weight outcomes of the National Institute of Child Health and Human Development Neonatal Research Network, January 1995 through December 1996. Pediatrics 107, e1 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Marshall, D. D. et al. Risk factors for chronic lung disease in the surfactant era: a North Carolina population-based study of very low birth weight infants. North Carolina Neonatologists Association. Pediatrics 104, 1345–1350 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Oh, W. et al. Association between fluid intake and weight loss during the first ten days of life and risk of bronchopulmonary dysplasia in extremely low birth weight infants. J. Pediatr. 147, 786–790 (2005).

    Article  PubMed  Google Scholar 

  23. Rojas, M. A. et al. Changing trends in the epidemiology and pathogenesis of neonatal chronic lung disease. J. Pediatr. 126, 605–610 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Stoll, B. J. et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. JAMA 314, 1039–1051 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Young, T. E., Kruyer, L. S., Marshall, D. D. & Bose, C. L. Population-based study of chronic lung disease in very low birth weight infants in North Carolina in 1994 with comparisons with 1984. The North Carolina Neonatologists Association. Pediatrics 104, e17 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Younge, N. et al. Survival and neurodevelopmental outcomes among periviable infants. N. Engl. J. Med. 376, 617–628 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Walsh, M. C. et al. Impact of a physiologic definition on bronchopulmonary dysplasia rates. Pediatrics 114, 1305–1311 (2004).

    Article  PubMed  Google Scholar 

  28. Hartling, L., Liang, Y. & Lacaze-Masmonteil, T. Chorioamnionitis as a risk factor for bronchopulmonary dysplasia: a systematic review and meta-analysis. Arch. Dis. Child Fetal. Neonatal Ed. 97, F8–F17 (2012).

    Article  PubMed  Google Scholar 

  29. McEvoy, C. T. & Spindel, E. R. Pulmonary effects of maternal smoking on the fetus and child: effects on lung development, respiratory morbidities, and life long lung health. Paediatr. Respir. Rev. 21, 27–33 (2017).

    PubMed  Google Scholar 

  30. Morrow, L. A. et al. Antenatal determinants of bronchopulmonary dysplasia and late respiratory disease in preterm infants. Am. J. Respir. Crit. Care Med. 196, 364–374 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lavoie, P. M., Pham, C. & Jang, K. L. Heritability of bronchopulmonary dysplasia, defined according to the consensus statement of the National Institutes of Health. Pediatrics 122, 479–485 (2008).

    Article  PubMed  Google Scholar 

  32. Parker, R. A., Lindstrom, D. P. & Cotton, R. B. Evidence from twin study implies possible genetic susceptibility to bronchopulmonary dysplasia. Semin. Perinatol. 20, 206–209 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Bhandari, V. et al. Genetics of bronchopulmonary dysplasia: when things do not match up, it is only the beginning. J. Pediatr. 208, 298–299 (2019).

    Article  PubMed  Google Scholar 

  34. Lal, C. V., Bhandari, V. & Ambalavanan, N. Genomics, microbiomics, proteomics, and metabolomics in bronchopulmonary dysplasia. Semin. Perinatol. 42, 425–431 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Parad, R. B. et al. Role of genetic susceptibility in the development of bronchopulmonary dysplasia. J. Pediatr. 203, 234–241.e2 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Torgerson, D. G. et al. Ancestry and genetic associations with bronchopulmonary dysplasia in preterm infants. Am. J. Physiol. Lung Cell. Mol. Physiol. 315, L858–L869 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu, K. H., Li, J., Snyder, M., Shaw, G. M. & O’Brodovich, H. M. The genetic predisposition to bronchopulmonary dysplasia. Curr. Opin. Pediatr. 28, 318–323 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ryan, S. W., Nycyk, J. & Shaw, B. N. Prediction of chronic neonatal lung disease on day 4 of life. Eur. J. Pediatr. 155, 668–671 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Laughon, M. et al. Antecedents of chronic lung disease following three patterns of early respiratory disease in preterm infants. Arch. Dis. Child Fetal Neonatal Ed. 96, F114–F120 (2011).

    Article  PubMed  Google Scholar 

  40. Charafeddine, L., D'Angio, C. T. & Phelps, D. L. Atypical chronic lung disease patterns in neonates. Pediatrics 103, 759–765 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Panickar, J., Scholefield, H., Kumar, Y., Pilling, D. W. & Subhedar, N. V. Atypical chronic lung disease in preterm infants. J. Perinat. Med. 32, 162–167 (2004).

    Article  PubMed  Google Scholar 

  42. Choi, C. W., Kim, B. I., Koh, Y. Y., Choi, J. H. & Choi, J. Y. Clinical characteristics of chronic lung disease without preceding respiratory distress syndrome in preterm infants. Pediatr. Int. 47, 72–79 (2005).

    Article  PubMed  Google Scholar 

  43. Choi, C. W. et al. Risk factors for the different types of chronic lung diseases of prematurity according to the preceding respiratory distress syndrome. Pediatr. Int. 47, 417–423 (2005).

    Article  PubMed  Google Scholar 

  44. Streubel, A. H., Donohue, P. K. & Aucott, S. W. The epidemiology of atypical chronic lung disease in extremely low birth weight infants. J. Perinatol. 28, 141–148 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Nobile, S. et al. New insights on early patterns of respiratory disease among extremely low gestational age newborns. Neonatology 112, 53–59 (2017).

    Article  PubMed  Google Scholar 

  46. Merrill, J. D. et al. Dysfunction of pulmonary surfactant in chronically ventilated premature infants. Pediatr. Res. 56, 918–926 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Laughon, M. et al. Patterns of blood protein concentrations of ELGANs classified by three patterns of respiratory disease in the first 2 postnatal weeks. Pediatr. Res. 70, 292–296 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Laughon, M. et al. Patterns of respiratory disease during the first 2 postnatal weeks in extremely premature infants. Pediatrics 123, 1124–1131 (2009). The authors used data from the NICHD Neonatal Research Network to develop a BPD prediction model by postnatal day, which can be used to provide information to families, for deciding when to use corticosteroids and as a preliminary measure of drug effectiveness for BPD treatment in clinical trials.

    Article  PubMed  Google Scholar 

  49. Laughon, M. M. et al. Prediction of bronchopulmonary dysplasia by postnatal age in extremely premature infants. Am. J. Respir. Crit. Care Med. 183, 1715–1722 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Onland, W. et al. Clinical prediction models for bronchopulmonary dysplasia: a systematic review and external validation study. BMC Pediatr. 13, 207 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Leroy, S. et al. A time-based analysis of inflammation in infants at risk of bronchopulmonary dysplasia. J. Pediatr. 192, 60–65.e1 (2018).

    Article  PubMed  Google Scholar 

  52. Metzger, R. J., Klein, O. D., Martin, G. R. & Krasnow, M. A. The branching programme of mouse lung development. Nature 453, 745–750 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hogan, B. L. et al. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 15, 123–138 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Whitsett, J. A., Kalin, T. V., Xu, Y. & Kalinichenko, V. V. Building and regenerating the lung cell by cell. Physiol. Rev. 99, 513–554 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Guo, M. et al. Single cell RNA analysis identifies cellular heterogeneity and adaptive responses of the lung at birth. Nat. Commun. 10, 37 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Whitsett, J. A., Wert, S. E. & Weaver, T. E. Diseases of pulmonary surfactant homeostasis. Annu. Rev. Pathol. 10, 371–393 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jobe, A. H. The new bronchopulmonary dysplasia. Curr. Opin. Pediatr. 23, 167–172 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Higano, N. S. et al. Neonatal pulmonary magnetic resonance imaging of bronchopulmonary dysplasia predicts short-term clinical outcomes. Am. J. Respir. Crit. Care Med. 198, 1302–1311 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Surate Solaligue, D. E., Rodriguez-Castillo, J. A., Ahlbrecht, K. & Morty, R. E. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am. J. Physiol. Lung Cell Mol. Physiol. 313, L1101–L1153 (2017). The authors extensively review the animal models that have contributed to an understanding of the lung injury in BPD, with an emphasis on transgenic mouse models.

    Article  PubMed  CAS  Google Scholar 

  60. Jobe, A. H. Animal models, learning lessons to prevent and treat neonatal chronic lung disease. Front. Med. 2, 49 (2015).

    Article  Google Scholar 

  61. Morty, R. E. Recent advances in the pathogenesis of BPD. Semin. Perinatol. 42, 404–412 (2018).

    Article  PubMed  Google Scholar 

  62. Balany, J. & Bhandari, V. Understanding the impact of infection, inflammation, and their persistence in the pathogenesis of bronchopulmonary dysplasia. Front. Med. 2, 90 (2015).

    Article  Google Scholar 

  63. Lee, J. W. & Davis, J. M. Future applications of antioxidants in premature infants. Curr. Opin. Pediatr. 23, 161–166 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Savani, R. C. Modulators of inflammation in bronchopulmonary dysplasia. Semin. Perinatol. 42, 459–470 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Onland, W., De Jaegere, A. P., Offringa, M. & van Kaam, A. Systemic corticosteroid regimens for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst. Rev. 1, CD010941 (2017).

    PubMed  Google Scholar 

  66. Pillow, J. J. et al. Bubble continuous positive airway pressure enhances lung volume and gas exchange in preterm lambs. Am. J. Respir. Crit. Care Med. 176, 63–69 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kim, C. J. et al. Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. Am. J. Obstet. Gynecol. 213, S29–S52 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Jobe, A. H. & Goldenberg, R. L. Antenatal corticosteroids: an assessment of anticipated benefits and potential risks. Am. J. Obstet. Gynecol. 219, 62–74 (2018). This extensive summary reviews the effects of antenatal corticosteroids and fetal exposure to inflammation on clinical lung maturation.

    Article  CAS  PubMed  Google Scholar 

  69. Kallapur, S. G., Presicce, P., Rueda, C. M., Jobe, A. H. & Chougnet, C. A. Fetal immune response to chorioamnionitis. Semin. Reprod. Med. 32, 56–67 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Andrews, W. W. et al. The Alabama preterm birth study: polymorphonuclear and mononuclear cell placental infiltrations, other markers of inflammation, and outcomes in 23- to 32-week preterm newborn infants. Am. J. Obstet. Gynecol. 195, 803–808 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Goldenberg, R. L. et al. The Alabama preterm birth study: umbilical cord blood Ureaplasma urealyticum and Mycoplasma hominis cultures in very preterm newborn infants. Am. J. Obstet. Gynecol. 198, 43.e1–43.e5 (2008).

    Article  Google Scholar 

  72. Viscardi, R. M. & Kallapur, S. G. Role of Ureaplasma respiratory tract colonization in bronchopulmonary dysplasia pathogenesis: current concepts and update. Clin. Perinatol. 42, 719–738 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Jobe, A. H. Effects of chorioamnionitis on the fetal lung. Clin. Perinatol. 39, 441–457 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kallapur, S. G. et al. Chronic fetal exposure to Ureaplasma parvum suppresses innate immune responses in sheep. J. Immunol. 187, 2688–2695 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Gisslen, T. et al. Repeated exposure to intra-amniotic LPS partially protects against adverse effects of intravenous LPS in preterm lambs. Innate Immun. 20, 214–224 (2014).

    Article  PubMed  CAS  Google Scholar 

  76. Lal, C. V. et al. The airway microbiome at birth. Sci. Rep. 6, 31023 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pammi, M. et al. Airway microbiome and development of bronchopulmonary dysplasia in preterm infants: a systematic review. J. Pediatr. 204, 126–133.e2 (2019).

    Article  PubMed  Google Scholar 

  78. Fouron, J. C., Le Guennec, J. C., Villemant, D., Perreault, G. & Davignon, A. Value of echocardiography in assessing the outcome of bronchopulmonary dysplasia of the newborn. Pediatrics 65, 529–535 (1980).

    CAS  PubMed  Google Scholar 

  79. Khemani, E. et al. Pulmonary artery hypertension in formerly premature infants with bronchopulmonary dysplasia: clinical features and outcomes in the surfactant era. Pediatrics 120, 1260–1269 (2007).

    Article  PubMed  Google Scholar 

  80. Mourani, P. M. & Abman, S. H. Pulmonary hypertension and vascular abnormalities in bronchopulmonary dysplasia. Clin. Perinatol. 42, 839–855 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  81. An, H. S. et al. Pulmonary hypertension in preterm infants with bronchopulmonary dysplasia. Korean Circ. J. 40, 131–136 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bhat, R., Salas, A. A., Foster, C., Carlo, W. A. & Ambalavanan, N. Prospective analysis of pulmonary hypertension in extremely low birth weight infants. Pediatrics 129, e682–e689 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mourani, P. M. et al. Early pulmonary vascular disease in preterm infants at risk for bronchopulmonary dysplasia. Am. J. Respiratory Crit. Care Med. 191, 87–95 (2015).

    Article  Google Scholar 

  84. Aikio, O., Metsola, J., Vuolteenaho, R., Perhomaa, M. & Hallman, M. Transient defect in nitric oxide generation after rupture of fetal membranes and responsiveness to inhaled nitric oxide in very preterm infants with hypoxic respiratory failure. J. Pediatr. 161, 397–403.e1 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Chandrasekharan, P. et al. Early use of inhaled nitric oxide in preterm infants: is there a rationale for selective approach? Am. J. Perinatol. 34, 428–440 (2017).

    PubMed  Google Scholar 

  86. Mirza, H. et al. Natural history of postnatal cardiopulmonary adaptation in infants born extremely preterm and risk for death or bronchopulmonary dysplasia. J. Pediatr. 198, 187–193 e181 (2018).

    Article  PubMed  Google Scholar 

  87. Giesinger, R. E. et al. Controversies in the identification and management of acute pulmonary hypertension in preterm neonates. Pediatr. Res. 82, 901–914 (2017).

    Article  PubMed  Google Scholar 

  88. Berenz, A., Vergales, J. E., Swanson, J. R. & Sinkin, R. A. Evidence of early pulmonary hypertension is associated with increased mortality in very low birth weight infants. Am. J. Perinatol. 34, 801–807 (2017).

    Article  PubMed  Google Scholar 

  89. Taglauer, E., Abman, S. H. & Keller, R. L. Recent advances in antenatal factors predisposing to bronchopulmonary dysplasia. Semin. Perinatol. 42, 413–424 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Abman, S. H. Bronchopulmonary dysplasia: “a vascular hypothesis”. Am. J. Respir. Crit. Care Med. 164, 1755–1756 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Bhatt, A. J. et al. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 164, 1971–1980 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Stenmark, K. R. & Abman, S. H. Lung vascular development: implications for the pathogenesis of bronchopulmonary dysplasia. Annu. Rev. Physiol. 67, 623–661 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Thebaud, B. & Abman, S. H. Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Am. J. Respir. Crit. Care Med. 175, 978–985 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Check, J. et al. Fetal growth restriction and pulmonary hypertension in premature infants with bronchopulmonary dysplasia. J. Perinatol. 33, 553–557 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mestan, K. K. et al. Placental pathologic changes of maternal vascular underperfusion in bronchopulmonary dysplasia and pulmonary hypertension. Placenta 35, 570–574 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Keller, R. L. et al. Bronchopulmonary dysplasia and perinatal characteristics predict 1-year respiratory outcomes in newborns born at extremely low gestational age: a prospective cohort study. J. Pediatr. 187, 89–97.e3 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Baker, C. D. et al. Cord blood angiogenic progenitor cells are decreased in bronchopulmonary dysplasia. Eur. Respir. J. 40, 1516–1522 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Mestan, K. K. et al. Cord blood biomarkers of placental maternal vascular underperfusion predict bronchopulmonary dysplasia-associated pulmonary hypertension. J. Pediatr. 185, 33–41 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Voller, S. B. et al. Cord blood biomarkers of vascular endothelial growth (VEGF and sFlt-1) and postnatal growth: a preterm birth cohort study. Early Hum. Dev. 90, 195–200 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mourani, P. M. et al. Early pulmonary vascular disease in preterm infants is associated with late respiratory outcomes in childhood. Am. J. Respir. Crit. Care Med. 199, 1020–1027 (2019). This prospective study confirmed previous work in rodents showing that the development of PVD during the perinatal period increases the risk of BPD and pulmonary hypertension in human infants; early signs of PVD in preterm neonates on day 7 of life is associated with increased susceptibility to BPD and late respiratory disease, which requires more frequent emergency room visits, rehospitalization and respiratory medications throughout the first 2 years of life.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Mandell, E. W. & Abman, S. H. Fetal vascular origins of bronchopulmonary dysplasia. J. Pediatr. 185, 7–10.e1 (2017).

    Article  PubMed  Google Scholar 

  102. Eriksson, L. et al. Perinatal conditions related to growth restriction and inflammation are associated with an increased risk of bronchopulmonary dysplasia. Acta Paediatr. 104, 259–263 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Hansen, A. R., Barnes, C. M., Folkman, J. & McElrath, T. F. Maternal preeclampsia predicts the development of bronchopulmonary dysplasia. J. Pediatr. 156, 532–536 (2010).

    Article  PubMed  Google Scholar 

  104. Watterberg, K. L., Demers, L. M., Scott, S. M. & Murphy, S. Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops. Pediatrics 97, 210–215 (1996).

    CAS  PubMed  Google Scholar 

  105. Steinhorn, R. et al. Chronic pulmonary insufficiency of prematurity: developing optimal endpoints for drug development. J. Pediatr. 191, 15–21.e1 (2017). This paper broadens the concept of chronic pulmonary insufficiency of prematurity (CPIP) to include chronic lung diseases in preterm infants that might be different from BPD, such as tracheomalacia or bronchomalacia. The paper emphasizes the importance of optimizing and harmonizing clinical definitions of CPIP, including BPD and later respiratory outcomes, while developing strong surrogate end points that are useful for regulators, industry, clinicians and families, to benefit future interventional trials and accelerate the development of new therapies for these high-risk and vulnerable patients.

    Article  PubMed  Google Scholar 

  106. Shennan, A. T., Dunn, M. S., Ohlsson, A., Lennox, K. & Hoskins, E. M. Abnormal pulmonary outcomes in premature infants: prediction from oxygen requirement in the neonatal period. Pediatrics 82, 527–532 (1988).

    CAS  PubMed  Google Scholar 

  107. Gage, S. et al. Determinants of chronic lung disease severity in the first year of life; a population based study. Pediatr. Pulmonol. 50, 878–888 (2015).

    Article  PubMed  Google Scholar 

  108. Jobe, A. H. & Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 163, 1723–1729 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Poindexter, B. B. et al. Comparisons and limitations of current definitions of bronchopulmonary dysplasia for the Prematurity and Respiratory Outcomes Program. Ann. Am. Thorac. Soc. 12, 1822–1830 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  110. van Rossem, M. C. et al. Accuracy of the diagnosis of bronchopulmonary dysplasia in a referral-based health care system. J. Pediatr. 167, 540–544.e1 (2015).

    Article  PubMed  Google Scholar 

  111. Stoecklin, B., Simpson, S. J. & Pillow, J. J. Bronchopulmonary dysplasia: rationale for a pathophysiological rather than treatment based approach to diagnosis. Paediatr. Respir. Rev. https://doi.org/10.1016/j.prrv.2018.12.002 (2018).

    Article  PubMed  Google Scholar 

  112. Svedenkrans, J., Stoecklin, B., Jones, J. G., Doherty, D. A. & Pillow, J. J. Physiology and predictors of impaired gas exchange in infants with bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 200, 471–480 (2019).

    Article  PubMed  Google Scholar 

  113. Jensen, E. A. et al. The diagnosis of bronchopulmonary dysplasia in very preterm infants: an evidence-based approach. Am. J. Respir. Crit. Care Med. 200, 751–759 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ehrenkranz, R. A. et al. Validation of the National Institutes of Health consensus definition of bronchopulmonary dysplasia. Pediatrics 116, 1353–1360 (2005).

    Article  PubMed  Google Scholar 

  115. Abman, S. H. et al. Interdisciplinary care of children with severe bronchopulmonary dysplasia. J. Pediatr. 181, 12–28.e1 (2017).

    Article  PubMed  Google Scholar 

  116. Krishnan, U. et al. Evaluation and management of pulmonary hypertension in children with bronchopulmonary dysplasia. J. Pediatr. 188, 24–34.e1 (2017).

    Article  PubMed  Google Scholar 

  117. Jobe, A. H. & Steinhorn, R. Can we define bronchopulmonary dysplasia? J. Pediatr. 188, 19–23 (2017).

    Article  PubMed  Google Scholar 

  118. Stark, A. R. et al. Adverse effects of early dexamethasone treatment in extremely-low-birth-weight infants. N. Engl. J. Med. 344, 95–101 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Lal, C. V. & Ambalavanan, N. Biomarkers, early diagnosis, and clinical predictors of bronchopulmonary dysplasia. Clin. Perinatol. 42, 739–754 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  120. McEvoy, C. T. et al. Bronchopulmonary dysplasia: NHLBI workshop on the primary prevention of chronic lung diseases. Ann. Am. Thorac. Soc. 11, S146–S153 (2014). This workshop report highlights promising areas of research to improve understanding of normal and aberrant lung development, to distinguish BPD endotypes and to identify biomarkers for more targeted therapeutic approaches to prevention.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Aschner, J. L., Bancalari, E. H. & McEvoy, C. T. Can we prevent bronchopulmonary dysplasia? J. Pediatr. 189, 26–30 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Wai, K. C. et al. Early cumulative supplemental oxygen predicts bronchopulmonary dysplasia in high risk extremely low gestational age newborns. J. Pediatr. 177, 97–102.e2 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Alvarez-Fuente, M. et al. Exploring clinical, echocardiographic and molecular biomarkers to predict bronchopulmonary dysplasia. PLOS ONE 14, e0213210 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Mahlman, M. et al. Genes encoding vascular endothelial growth factor A (VEGF-A) and VEGF receptor 2 (VEGFR-2) and risk for bronchopulmonary dysplasia. Neonatology 108, 53–59 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Qi, Y., Jiang, Q., Chen, C., Cao, Y. & Qian, L. Circulating endothelial progenitor cells decrease in infants with bronchopulmonary dysplasia and increase after inhaled nitric oxide. PLOS ONE 8, e79060 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. De Paepe, M. E., Patel, C., Tsai, A., Gundavarapu, S. & Mao, Q. Endoglin (CD105) up-regulation in pulmonary microvasculature of ventilated preterm infants. Am. J. Respir. Crit. Care Med. 178, 180–187 (2008).

    Article  CAS  Google Scholar 

  127. Mohamed, W. A. W., Niyazy, W. H. & Mahfouz, A. A. Angiopoietin-1 and endostatin levels in cord plasma predict the development of bronchopulmonary dysplasia in preterm infants. J. Trop. Pediatr. 57, 385–388 (2010).

    Article  PubMed  Google Scholar 

  128. Janér, J., Andersson, S., Kajantie, E. & Lassus, P. Endostatin concentration in cord plasma predicts the development of bronchopulmonary dysplasia in very low birth weight infants. Pediatrics 123, 1142–1146 (2009).

    Article  PubMed  Google Scholar 

  129. Vento, G. et al. Serum levels of seven cytokines in premature ventilated newborns: correlations with old and new forms of bronchopulmonary dysplasia. Intensive Care Med. 32, 723–730 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Tsao, P.-N. et al. Placenta growth factor elevation in the cord blood of premature neonates predicts poor pulmonary outcome. Pediatrics 113, 1348–1351 (2004).

    Article  PubMed  Google Scholar 

  131. Lal, C. V. & Schwarz, M. A. Vascular mediators in chronic lung disease of infancy: role of endothelial monocyte activating polypeptide II (EMAP II). Birth Defects Res. A Clin. Mol. Teratol. 100, 180–188 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ogihara, T. et al. Plasma KL-6 predicts the development and outcome of bronchopulmonary dysplasia. Pediatr. Res. 60, 613 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Fukunaga, S. et al. MMP-9 and TIMP-1 in the cord blood of premature infants developing BPD. Pediatr. Pulmonol. 44, 267–272 (2009).

    Article  PubMed  Google Scholar 

  134. Bhandari, A. & Bhandari, V. Biomarkers in bronchopulmonary dysplasia. Paediatr. Respir. Rev. 14, 173–179 (2013).

    PubMed  Google Scholar 

  135. Capoluongo, E. et al. Epithelial lining fluid neutrophil-gelatinase-associated lipocalin levels in premature newborns with bronchopulmonary dysplasia and patency of ductus arteriosus. Int. J. Immunopathol. Pharmacol. 21, 173–179 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Aschner, J. L. et al. Challenges, priorities and novel therapies for hypoxemic respiratory failure and pulmonary hypertension in the neonate. J. Perinatol. 36, S32 (2016).

    Article  PubMed  CAS  Google Scholar 

  137. Ballard, P. L. et al. Inhaled nitric oxide increases urinary nitric oxide metabolites and cyclic guanosine monophosphate in premature infants: relationship to pulmonary outcome. Am. J. Perinatol. 32, 225–232 (2015).

    PubMed  Google Scholar 

  138. Fike, C. D. & Aschner, J. L. Looking beyond PPHN: the unmet challenge of chronic progressive pulmonary hypertension in the newborn. Pulm. Circ. 3, 454–466 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Fike, C. D., Summar, M. & Aschner, J. L. L-citrulline provides a novel strategy for treating chronic pulmonary hypertension in newborn infants. Acta Paediatr. 103, 1019–1026 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. O’Connor, M. G. et al. Pulmonary hypertension in the premature infant population: analysis of echocardiographic findings and biomarkers. Pediatr. Pulmonol. 53, 302–309 (2018).

    Article  PubMed  Google Scholar 

  141. Perrone, S., Tataranno, M. & Buonocore, G. Oxidative stress and bronchopulmonary dysplasia. J. Clin. Neonatol. 1, 109–114 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Saugstad, O. D. Oxidative stress in the newborn – a 30-year perspective. Neonatology 88, 228–236 (2005).

    Article  CAS  Google Scholar 

  143. Saugstad, O. D. Bronchopulmonary dysplasia and oxidative stress: are we closer to an understanding of the pathogenesis of BPD? Acta Paediatr. 86, 1277–1282 (1997).

    Article  CAS  PubMed  Google Scholar 

  144. Ballard, P. L. et al. Plasma biomarkers of oxidative stress: relationship to lung disease and inhaled nitric oxide therapy in premature infants. Pediatrics 121, 555–561 (2008).

    Article  PubMed  Google Scholar 

  145. Ambalavanan, N. et al. Cytokines associated with bronchopulmonary dysplasia or death in extremely low birth weight infants. Pediatrics 123, 1132–1141 (2009).

    Article  PubMed  Google Scholar 

  146. Truog, W. E. et al. Inflammatory markers and mediators in tracheal fluid of premature infants treated with inhaled nitric oxide. Pediatrics 119, 670–678 (2007).

    Article  PubMed  Google Scholar 

  147. Piersigilli, F. et al. Identification of new biomarkers of bronchopulmonary dysplasia using metabolomics. Metabolomics 15, 20 (2019).

    Article  PubMed  CAS  Google Scholar 

  148. Lal, C. V. et al. Early airway microbial metagenomic and metabolomic signatures are associated with development of severe bronchopulmonary dysplasia. Am. J. Physiol. Lung Cell. Mol. Physiol. 315, L810–L815 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hamvas, A. et al. Exome sequencing identifies gene variants and networks associated with extreme respiratory outcomes following preterm birth. BMC Genet. 19, 94 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. May, C. et al. Relation of exhaled nitric oxide levels to development of bronchopulmonary dysplasia. Arch. Dis. Child Fetal. Neonatal. Ed. 94, F205–F209 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Kim, G. B. Pulmonary hypertension in infants with bronchopulmonary dysplasia. Korean J. Pediatr. 53, 688–693 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Day, C. L. & Ryan, R. M. Bronchopulmonary dysplasia: new becomes old again! Pediatr. Res. 81, 210 (2016).

    Article  PubMed  Google Scholar 

  153. Zhang, Z.-Q., Huang, X.-M. & Lu, H. Early biomarkers as predictors for bronchopulmonary dysplasia in preterm infants: a systematic review. Eur. J. Pediatr. 173, 15–23 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Mahlman, M. et al. Genome-wide association study of bronchopulmonary dysplasia: a potential role for variants near the CRP gene. Sci. Rep. 7, 9271 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Tanay, A. & Regev, A. Scaling single-cell genomics from phenomenology to mechanism. Nature 541, 331–338 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Anderson, P. J. & Doyle, L. W. Neurodevelopmental outcome of bronchopulmonary dysplasia. Semin. Perinatol. 30, 227–232 (2006).

    Article  PubMed  Google Scholar 

  157. Ratner, V. et al. The contribution of intermittent hypoxemia to late neurological handicap in mice with hyperoxia-induced lung injury. Neonatology 92, 50–58 (2007).

    Article  PubMed  Google Scholar 

  158. Cheong, J. L. Y. & Doyle, L. W. An update on pulmonary and neurodevelopmental outcomes of bronchopulmonary dysplasia. Semin. Perinatol. 42, 478–484 (2018).

    Article  PubMed  Google Scholar 

  159. Committee on Fetus and Newborn. Respiratory support in preterm infants at birth. Pediatrics 133, 171–174 (2014).

    Article  Google Scholar 

  160. Schmolzer, G. M. et al. Non-invasive versus invasive respiratory support in preterm infants at birth: systematic review and meta-analysis. BMJ 347, f5980 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Lemyre, B., Davis, P. G., De Paoli, A. G. & Kirpalani, H. Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for preterm neonates after extubation. Cochrane Database Syst. Rev. 2, CD003212 (2017).

    PubMed  Google Scholar 

  162. Lemyre, B., Laughon, M., Bose, C. & Davis, P. G. Early nasal intermittent positive pressure ventilation (NIPPV) versus early nasal continuous positive airway pressure (NCPAP) for preterm infants. Cochrane Database Syst. Rev. 12, CD005384 (2016).

    PubMed  Google Scholar 

  163. Wilkinson, D., Andersen, C., O'Donnell, C. P., De Paoli, A. G. & Manley, B. J. High flow nasal cannula for respiratory support in preterm infants. Cochrane Database Syst. Rev. 2, CD006405 (2016).

    PubMed  Google Scholar 

  164. Seger, N. & Soll, R. Animal derived surfactant extract for treatment of respiratory distress syndrome. Cochrane Database Syst. Rev. 8, CD007836 (2009).

    Google Scholar 

  165. Soll, R. F. Synthetic surfactant for respiratory distress syndrome in preterm infants. Cochrane Database Syst. Rev. 2, CD001149 (2000).

    Google Scholar 

  166. Kribs, A. et al. Nonintubated surfactant application vs conventional therapy in extremely preterm infants: a randomized clinical trial. JAMA Pediatr. 169, 723–730 (2015).

    Article  PubMed  Google Scholar 

  167. Dargaville, P. A. et al. Minimally-invasive surfactant therapy in preterm infants on continuous positive airway pressure. Arch. Dis. Child Fetal Neonatal Ed. 98, F122–F126 (2013).

    Article  PubMed  Google Scholar 

  168. Aldana-Aguirre, J. C., Pinto, M., Featherstone, R. M. & Kumar, M. Less invasive surfactant administration versus intubation for surfactant delivery in preterm infants with respiratory distress syndrome: a systematic review and meta-analysis. Arch. Dis. Child Fetal Neonatal. Ed. 102, F17–F23 (2017).

    Article  PubMed  Google Scholar 

  169. Dargaville, P. A. et al. The OPTIMIST-A trial: evaluation of minimally-invasive surfactant therapy in preterm infants 25-28 weeks gestation. BMC Pediatr. 14, 213 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Finer, N. N. et al. An open label, pilot study of Aerosurf(R) combined with nCPAP to prevent RDS in preterm neonates. J. Aerosol. Med. Pulm. Drug Deliv. 23, 303–309 (2010).

    Article  CAS  PubMed  Google Scholar 

  171. Roberts, K. D. et al. Laryngeal mask airway for surfactant administration in neonates: a randomized, controlled trial. J. Pediatr. 193, 40–46.e1 (2018).

    Article  PubMed  Google Scholar 

  172. Ballard, R. A. et al. Randomized trial of late surfactant treatment in ventilated preterm infants receiving inhaled nitric oxide. J. Pediatr. 168, 23–29.e4 (2016).

    Article  CAS  PubMed  Google Scholar 

  173. Keller, R. L. et al. The randomized, controlled trial of late surfactant: effects on respiratory outcomes at 1-year corrected age. J. Pediatr. 183, 19–25.e2 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Schmidt, B. et al. Caffeine therapy for apnea of prematurity. N. Engl. J. Med. 354, 2112–2121 (2006).

    Article  CAS  PubMed  Google Scholar 

  175. Schmidt, B. et al. Long-term effects of caffeine therapy for apnea of prematurity. N. Engl. J. Med. 357, 1893–1902 (2007). References 173 and 174 report results of the CAP trial in 2,000 infants and its long-term follow-up study, which convincingly demonstrated the pathway between shortened exposure to assisted ventilation, reduced rates of BPD and improved neurodevelopmental outcomes.

    Article  CAS  PubMed  Google Scholar 

  176. Roberts, D., Brown, J., Medley, N. & Dalziel, S. R. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev. 3, CD004454 (2017).

    PubMed  Google Scholar 

  177. Committee on Fetus and Newborn. Postnatal corticosteroids to treat or prevent chronic lung disease in preterm infants. Pediatrics 109, 330–338 (2002).

    Article  Google Scholar 

  178. Doyle, L. W., Halliday, H. L., Ehrenkranz, R. A., Davis, P. G. & Sinclair, J. C. An update on the impact of postnatal systemic corticosteroids on mortality and cerebral palsy in preterm infants: effect modification by risk of bronchopulmonary dysplasia. J. Pediatr. 165, 1258–1260 (2014).

    Article  CAS  PubMed  Google Scholar 

  179. Doyle, L. W. et al. Outcome at 2 years of age of infants from the DART study: a multicenter, international, randomized, controlled trial of low-dose dexamethasone. Pediatrics 119, 716–721 (2007).

    Article  PubMed  Google Scholar 

  180. Doyle, L. W. et al. Low-dose dexamethasone facilitates extubation among chronically ventilator-dependent infants: a multicenter, international, randomized, controlled trial. Pediatrics 117, 75–83 (2006).

    Article  PubMed  Google Scholar 

  181. Nuytten, A. et al. Evidence-based neonatal unit practices and determinants of postnatal corticosteroid-use in preterm births below 30 weeks GA in Europe. a population-based cohort study. PLOS ONE 12, e0170234 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Watterberg, K. L. et al. Prophylaxis of early adrenal insufficiency to prevent bronchopulmonary dysplasia: a multicenter trial. Pediatrics 114, 1649–1657 (2004).

    Article  PubMed  Google Scholar 

  183. Watterberg, K. L., Gerdes, J. S., Gifford, K. L. & Lin, H. M. Prophylaxis against early adrenal insufficiency to prevent chronic lung disease in premature infants. Pediatrics 104, 1258–1263 (1999).

    Article  CAS  PubMed  Google Scholar 

  184. Watterberg, K. L., Scott, S. M., Backstrom, C., Gifford, K. L. & Cook, K. L. Links between early adrenal function and respiratory outcome in preterm infants: airway inflammation and patent ductus arteriosus. Pediatrics 105, 320–324 (2000).

    Article  CAS  PubMed  Google Scholar 

  185. Baud, O. et al. Effect of early low-dose hydrocortisone on survival without bronchopulmonary dysplasia in extremely preterm infants (PREMILOC): a double-blind, placebo-controlled, multicentre, randomised trial. Lancet 387, 1827–1836 (2016).

    Article  CAS  PubMed  Google Scholar 

  186. Baud, O. et al. Association between early low-dose hydrocortisone therapy in extremely preterm neonates and neurodevelopmental outcomes at 2 years of age. JAMA 317, 1329–1337 (2017).

    Article  CAS  PubMed  Google Scholar 

  187. Onland, W. et al. Effect of hydrocortisone therapy initiated 7 to 14 days after birth on mortality or bronchopulmonary dysplasia among very preterm infants receiving mechanical ventilation: a randomized clinical trial. JAMA 321, 354–363 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Shaffer, M. L. et al. Effect of prophylaxis for early adrenal insufficiency using low-dose hydrocortisone in very preterm infants: an individual patient data meta-analysis. J. Pediatr. 207, 136–142.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  189. Bassler, D. et al. Long-term effects of inhaled budesonide for bronchopulmonary dysplasia. N. Engl. J. Med. 378, 148–157 (2018).

    Article  CAS  PubMed  Google Scholar 

  190. Bassler, D. et al. Early inhaled budesonide for the prevention of bronchopulmonary dysplasia. N. Engl. J. Med. 373, 1497–1506 (2015).

    Article  CAS  PubMed  Google Scholar 

  191. Yeh, T. F. et al. Intratracheal administration of budesonide/surfactant to prevent bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 193, 86–95 (2016).

    Article  CAS  PubMed  Google Scholar 

  192. Roberts, J. K. et al. Pharmacokinetics of budesonide administered with surfactant in premature lambs: implications for neonatal clinical trials. Curr. Clin. Pharmacol. 11, 53–61 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Bland, R. D., Albertine, K. H., Carlton, D. P. & MacRitchie, A. J. Inhaled nitric oxide effects on lung structure and function in chronically ventilated preterm lambs. Am. J. Respir. Crit. Care Med. 172, 899–906 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Cotton, R. B. et al. Inhaled nitric oxide attenuates hyperoxic lung injury in lambs. Pediatr. Res. 59, 142–146 (2006).

    Article  CAS  PubMed  Google Scholar 

  195. Askie, L. M. et al. Inhaled nitric oxide in preterm infants: an individual-patient data meta-analysis of randomized trials. Pediatrics 128, 729–739 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Askie, L. M. et al. Race effects of inhaled nitric oxide in preterm infants: an individual participant data meta-analysis. J. Pediatr. 193, 34–39.e2 (2018).

    Article  CAS  PubMed  Google Scholar 

  197. Hwang, S. S., Burris, H. H., Collins, J. W. Jr, Kirpalani, H. & Wright, C. J. Moving beyond race and ethnicity to understand the effect of inhaled nitric oxide on bronchopulmonary dysplasia prevention. J. Pediatr. 201, 298–300 (2018).

    Article  PubMed  Google Scholar 

  198. Askie, L. M. et al. Association between oxygen saturation targeting and death or disability in extremely preterm infants in the neonatal oxygenation prospective meta-analysis collaboration. JAMA 319, 2190–2201 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Collaco, J. M. & McGrath-Morrow, S. A. Respiratory phenotypes for preterm infants, children, and adults: bronchopulmonary dysplasia and more. Ann. Am. Thorac. Soc. 15, 530–538 (2018).

    Article  PubMed  Google Scholar 

  200. Abman, S. H. & Nelin, L. D. in The Newborn Lung: Neonatology Questions and Controversies 2nd edn (ed. Bancalari, E.) 407–425 (Elsevier Saunders, 2012).

  201. Guaman, M. C. et al. Point prevalence, clinical characteristics, and treatment variation for infants with severe bronchopulmonary dysplasia. Am. J. Perinatol. 32, 960–967 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Gien, J. et al. Retrospective analysis of an interdisciplinary ventilator care program intervention on survival of infants with ventilator-dependent bronchopulmonary dysplasia. Am. J. Perinatol. 34, 155–163 (2017).

    PubMed  Google Scholar 

  203. Baker, C. D. et al. A standardized discharge process decreases length of stay for ventilator-dependent children. Pediatrics 137, e20150637 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Burchert, H. & Lewandowski, A. J. Preterm birth is a novel, independent risk factor for altered cardiac remodeling and early heart failure: is it time for a new cardiomyopathy? Curr. Treat Options Cardiovasc. Med. 21, 8 (2019).

    Article  PubMed  Google Scholar 

  205. Goss, K. N. et al. Early pulmonary vascular disease in young adults born preterm. Am. J. Respiratory Crit. Care Med. 198, 1549–1558 (2018). This is the first study to demonstrate the persistence or resurgence of PVD in young adults who were born preterm and highlights the need for early monitoring of PVD during childhood and throughout adulthood.

    Article  Google Scholar 

  206. Laurie, S. S. et al. Exaggerated increase in pulmonary artery pressure during exercise in adults born preterm. Am. J. Respir. Crit. Care Med. 197, 821–823 (2018).

    Article  CAS  PubMed  Google Scholar 

  207. Lewandowski, A. J. et al. Preterm heart in adult life: cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation 127, 197–206 (2013).

    Article  PubMed  Google Scholar 

  208. Lewandowski, A. J. et al. Right ventricular systolic dysfunction in young adults born preterm. Circulation 128, 713–720 (2013).

    Article  PubMed  Google Scholar 

  209. Maron, B. A. & Abman, S. H. Translational advances in the field of pulmonary hypertension. Focusing on developmental origins and disease inception for the prevention of pulmonary hypertension. Am. J. Respir. Crit. Care Med. 195, 292–301 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Zivanovic, S. et al. Pulmonary artery pressures in school-age children born prematurely. J. Pediatr. 191, 42–49.e3 (2017).

    Article  PubMed  Google Scholar 

  211. Cotten, C. M. et al. Prolonged hospital stay for extremely premature infants: risk factors, center differences, and the impact of mortality on selecting a best-performing center. J. Perinatol. 25, 650–655 (2005).

    Article  PubMed  Google Scholar 

  212. Katz-Salamon, M., Gerner, E. M., Jonsson, B. & Lagercrantz, H. Early motor and mental development in very preterm infants with chronic lung disease. Arch. Dis. Child Fetal Neonatal. Ed. 83, F1–F6 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. McAleese, K. A., Knapp, M. A. & Rhodes, T. T. Financial and emotional cost of bronchopulmonary dysplasia. Clin. Pediatr. 32, 393–400 (1993).

    Article  CAS  Google Scholar 

  214. Gough, A., Spence, D., Linden, M., Halliday, H. L. & McGarvey, L. General and respiratory health outcomes in adult survivors of bronchopulmonary dysplasia: a systematic review. Chest 141, 1554–1567 (2012).

    Article  PubMed  Google Scholar 

  215. Singer, L. T. et al. Maternal psychological distress and parenting stress after the birth of a very low-birth-weight infant. JAMA 281, 799–805 (1999).

    Article  CAS  PubMed  Google Scholar 

  216. Lau, R. et al. Parent preferences regarding home oxygen use for infants with bronchopulmonary dysplasia. J. Pediatr. 213, 30–37 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Brady, J. M., Zhang, H., Kirpalani, H. & DeMauro, S. B. Living with severe bronchopulmonary dysplasia — parental views of their child's quality of life. J. Pediatr. 207, 117–122 (2019).

    Article  PubMed  Google Scholar 

  218. Degl, J., Discenza, D. & Sorrells, K. Remembering the power of stories in pediatric research. J. Pediatr. 207, 14–17 (2019).

    Article  PubMed  Google Scholar 

  219. Resch, B., Kurath-Koller, S., Eibisberger, M. & Zenz, W. Prematurity and the burden of influenza and respiratory syncytial virus disease. World J. Pediatr. 12, 8–18 (2016).

    Article  PubMed  Google Scholar 

  220. Smith, V. C. et al. Rehospitalization in the first year of life among infants with bronchopulmonary dysplasia. J. Pediatr. 144, 799–803 (2004).

    PubMed  Google Scholar 

  221. Townsi, N., Laing, I. A., Hall, G. L. & Simpson, S. J. The impact of respiratory viruses on lung health after preterm birth. Eur. Clin. Respir. J. 5, 1487214 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Stein, R. T. et al. Respiratory syncytial virus hospitalization and mortality: systematic review and meta-analysis. Pediatr. Pulmonol. 52, 556–569 (2017).

    Article  PubMed  Google Scholar 

  223. Miller, E. K. et al. Human rhinoviruses in severe respiratory disease in very low birth weight infants. Pediatrics 129, e60–e67 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Kotecha, S. J. et al. Effect of preterm birth on later FEV1: a systematic review and meta-analysis. Thorax 68, 760–766 (2013).

    Article  PubMed  Google Scholar 

  225. Lombardi, E. et al. Lung function in a cohort of 5-year-old children born very preterm. Pediatr. Pulmonol. 53, 1633–1639 (2018).

    Article  PubMed  Google Scholar 

  226. Sanchez-Solis, M., Perez-Fernandez, V., Bosch-Gimenez, V., Quesada, J. J. & Garcia-Marcos, L. Lung function gain in preterm infants with and without bronchopulmonary dysplasia. Pediatr. Pulmonol. 51, 936–942 (2016).

    Article  PubMed  Google Scholar 

  227. Bobolea, I., Arismendi, E., Valero, A. & Agusti, A. Early life origins of asthma: a review of potential effectors. J. Investig. Allergol. Clin. Immunol. 29, 168–179 (2019).

    Article  CAS  PubMed  Google Scholar 

  228. MacLean, J. E. et al. Altered breathing mechanics and ventilatory response during exercise in children born extremely preterm. Thorax 71, 1012–1019 (2016).

    Article  CAS  PubMed  Google Scholar 

  229. Skromme, K., Leversen, K. T., Eide, G. E., Markestad, T. & Halvorsen, T. Respiratory illness contributed significantly to morbidity in children born extremely premature or with extremely low birthweights in 1999-2000. Acta Paediatr. 104, 1189–1198 (2015).

    Article  PubMed  Google Scholar 

  230. Vom Hove, M., Prenzel, F., Uhlig, H. H. & Robel-Tillig, E. Pulmonary outcome in former preterm, very low birth weight children with bronchopulmonary dysplasia: a case-control follow-up at school age. J. Pediatr. 164, 40–45.e4 (2014).

    Article  PubMed  Google Scholar 

  231. Joshi, S. et al. Exercise-induced bronchoconstriction in school-aged children who had chronic lung disease in infancy. J. Pediatr. 162, 813–818.e1 (2013).

    Article  PubMed  Google Scholar 

  232. O’Dea, C. A. et al. Increased prevalence of expiratory flow limitation during exercise in children with bronchopulmonary dysplasia. ERJ Open Res. 4, 00048-2018 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Balinotti, J. E. et al. Growth of lung parenchyma in infants and toddlers with chronic lung disease of infancy. Am. J. Respir. Crit. Care Med. 181, 1093–1097 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Narayanan, M. et al. Catch-up alveolarization in ex-preterm children: evidence from 3He magnetic resonance. Am. J. Respir. Crit. Care Med. 187, 1104–1109 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Thunqvist, P. et al. Lung function after extremely preterm birth—A population-based cohort study (EXPRESS). Pediatr. Pulmonol. 53, 64–72 (2018).

    Article  PubMed  Google Scholar 

  236. Hirata, K. et al. Longitudinal impairment of lung function in school-age children with extremely low birth weights. Pediatr. Pulmonol. 52, 779–786 (2017).

    Article  PubMed  Google Scholar 

  237. Kennedy, J. D. Lung function outcome in children of premature birth. J. Paediatr. Child Health 35, 516–521 (1999).

    Article  CAS  PubMed  Google Scholar 

  238. Ronkainen, E. et al. New BPD predicts lung function at school age: follow-up study and meta-analysis. Pediatr. Pulmonol. 50, 1090–1098 (2015).

    Article  PubMed  Google Scholar 

  239. Simpson, S. J. et al. Altered lung structure and function in mid-childhood survivors of very preterm birth. Thorax 72, 702–711 (2017).

    Article  PubMed  Google Scholar 

  240. Urs, R., Kotecha, S., Hall, G. L. & Simpson, S. J. Persistent and progressive long-term lung disease in survivors of preterm birth. Paediatr. Respir. Rev. 28, 87–94 (2018).

    PubMed  Google Scholar 

  241. Simpson, S. J. et al. Lung function trajectories throughout childhood in survivors of very preterm birth: a longitudinal cohort study. Lancet Child Adolesc. Health 2, 350–359 (2018). This study found that 4–12-year-old survivors of preterm birth with BPD are more likely to have impaired lung function trajectories, ongoing respiratory symptoms and abnormal chest CT findings compared with children born at term, indicating that BPD may increase the risk of chronic respiratory disease in later life.

    Article  PubMed  Google Scholar 

  242. Bui, D. S. et al. Childhood predictors of lung function trajectories and future COPD risk: a prospective cohort study from the first to the sixth decade of life. Lancet Respir. Med. 6, 535–544 (2018).

    Article  PubMed  Google Scholar 

  243. Hadchouel, A. et al. Identification of SPOCK2 as a susceptibility gene for bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 184, 1164–1170 (2011).

    Article  CAS  PubMed  Google Scholar 

  244. Mullen, M. P. et al. Quality of life and parental adjustment in pediatric pulmonary hypertension. Chest 145, 237–244 (2014).

    Article  PubMed  Google Scholar 

  245. Handler, S. S. et al. Assessment of quality of life in pediatric patients with pulmonary hypertension. Pulm. Circ. 9, 2045894018822985 (2019).

    Article  PubMed  Google Scholar 

  246. Kadmon, G. et al. Pulmonary hypertension specific treatment in infants with bronchopulmonary dysplasia. Pediatr. Pulmonol. 52, 77–83 (2017).

    Article  PubMed  Google Scholar 

  247. Joshi, S. et al. Cardiovascular function in children who had chronic lung disease of prematurity. Arch. Dis. Child Fetal Neonatal Ed. 99, F373–F379 (2014).

    Article  PubMed  Google Scholar 

  248. Koroglu, O. A., Yalaz, M., Levent, E., Akisu, M. & Kultursay, N. Cardiovascular consequences of bronchopulmonary dysplasia in prematurely born preschool children. Neonatology 104, 283–289 (2013).

    Article  PubMed  Google Scholar 

  249. Levy, P. T., Patel, M. D., Choudhry, S., Hamvas, A. & Singh, G. K. Evidence of echocardiographic markers of pulmonary vascular disease in asymptomatic infants born preterm at one year of age. J. Pediatr. 197, 48–56.e2 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Assad, T. R. et al. Prognostic effect and longitudinal hemodynamic assessment of borderline pulmonary hypertension. JAMA Cardiol. 2, 1361–1368 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Maron, B. A. et al. Association of borderline pulmonary hypertension with mortality and hospitalization in a large patient cohort: insights from the Veterans Affairs Clinical Assessment, Reporting, and Tracking Program. Circulation 133, 1240–1248 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Douschan, P. et al. Mild elevation of pulmonary arterial pressure as a predictor of mortality. Am. J. Respir. Crit. Care Med. 197, 509–516 (2018).

    Article  PubMed  Google Scholar 

  253. Heresi, G. A. et al. Clinical characterization and survival of patients with borderline elevation in pulmonary artery pressure. Pulm. Circ. 3, 916–925 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Horbar, J. D. et al. Variation in performance of neonatal intensive care units in the United States. JAMA Pediatr. 171, e164396 (2017).

    Article  PubMed  Google Scholar 

  255. Soll, R. F. et al. Obstetric and neonatal care practices for infants 501 to 1500 g from 2000 to 2009. Pediatrics 132, 222–228 (2013).

    Article  PubMed  Google Scholar 

  256. Cools, F., Offringa, M. & Askie, L. M. Elective high frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants. Cochrane Database Syst. Rev. 3, CD000104 (2015).

    Google Scholar 

  257. Klingenberg, C., Wheeler, K. I., McCallion, N., Morley, C. J. & Davis, P. G. Volume-targeted versus pressure-limited ventilation in neonates. Cochrane Database Syst. Rev. 10, CD003666 (2017).

    PubMed  Google Scholar 

  258. Rojas-Reyes, M. X., Morley, C. J. & Soll, R. Prophylactic versus selective use of surfactant in preventing morbidity and mortality in preterm infants. Cochrane Database Syst. Rev. 3, CD000510 (2012).

    Google Scholar 

  259. Doyle, L. W., Cheong, J. L., Ehrenkranz, R. A. & Halliday, H. L. Early (< 8 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst. Rev. 10, CD001146 (2017).

    PubMed  Google Scholar 

  260. Doyle, L. W., Cheong, J. L., Ehrenkranz, R. A. & Halliday, H. L. Late (> 7 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst. Rev. 10, CD001145 (2017).

    PubMed  Google Scholar 

  261. Darlow, B. A., Graham, P. J. & Rojas-Reyes, M. X. Vitamin A supplementation to prevent mortality and short- and long-term morbidity in very low birth weight infants. Cochrane Database Syst. Rev. 8, CD000501 (2016).

    Google Scholar 

  262. Barrington, K. J., Finer, N. & Pennaforte, T. Inhaled nitric oxide for respiratory failure in preterm infants. Cochrane Database Syst. Rev. 1, CD000509 (2017).

    PubMed  Google Scholar 

  263. Picarillo, A. P. & Carlo, W. Using quality improvement tools to reduce chronic lung disease. Clin. Perinatol. 44, 701–712 (2017).

    Article  PubMed  Google Scholar 

  264. Aslam, M. et al. Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am. J. Respir. Crit. Care Med. 180, 1122–1130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. van Haaften, T. et al. Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am. J. Respir. Crit. Care Med. 180, 1131–1142 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Augustine, S. et al. Mesenchymal stromal cell therapy in bronchopulmonary dysplasia: systematic review and meta-analysis of preclinical studies. Stem Cell Transl. Med. 6, 2079–2093 (2017).

    Article  Google Scholar 

  267. Chang, Y. S. et al. Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose-escalation clinical trial. J. Pediatr. 164, 966–972.e6 (2014). This is the first phase I trial showing the feasibility and no short-term toxicity of a single intratracheal administration of allogeneic cord-blood-derived mesenchymal stromal cells in extreme preterm infants at risk of developing BPD.

    Article  PubMed  Google Scholar 

  268. Powell, S. B. & Silvestri, J. M. Safety of intratracheal administration of human umbilical cord blood derived mesenchymal stromal cells in extremely low birth weight preterm infants. J. Pediatr. 210, 209–213.e2 (2019).

    Article  PubMed  Google Scholar 

  269. Alvarez-Fuente, M. et al. Off-label mesenchymal stromal cell treatment in two infants with severe bronchopulmonary dysplasia: clinical course and biomarkers profile. Cytotherapy 20, 1337–1344 (2018).

    Article  PubMed  Google Scholar 

  270. Lim, R. et al. First-in-human administration of allogeneic amnion cells in premature infants with bronchopulmonary dysplasia: a safety study. Stem Cell Transl. Med. 7, 628–635 (2018).

    Article  Google Scholar 

  271. Fung, M. E. & Thebaud, B. Stem cell-based therapy for neonatal lung disease: it is in the juice. Pediatr. Res. 75, 2–7 (2014).

    Article  PubMed  Google Scholar 

  272. Lesage, F. & Thebaud, B. Nanotherapies for micropreemies: stem cells and the secretome in bronchopulmonary dysplasia. Semin. Perinatol. 42, 453–458 (2018).

    Article  PubMed  Google Scholar 

  273. Willis, G. R. et al. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am. J. Respir. Crit. Care Med. 197, 104–116 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Collins, J. J. P. et al. Impaired angiogenic supportive capacity and altered gene expression profile of resident CD146+ mesenchymal stromal cells isolated from hyperoxia-injured neonatal rat lungs. Stem Cell Dev. 27, 1109–1124 (2018).

    Article  CAS  Google Scholar 

  275. Hennrick, K. T. et al. Lung cells from neonates show a mesenchymal stem cell phenotype. Am. J. Respir. Crit. Care Med. 175, 1158–1164 (2007).

    Article  CAS  PubMed  Google Scholar 

  276. Mobius, M. A. et al. Oxygen disrupts human fetal lung mesenchymal cells: implications for bronchopulmonary dysplasia. Am. J. Respir. Cell Mol. Biol. 60, 592–600 (2019).

    Article  PubMed  Google Scholar 

  277. Mobius, M. A. & Thebaud, B. Bronchopulmonary dysplasia – where have all the stem cells gone? Origin and (potential) function of resident lung stem cells. Chest 152, 1043–1052 (2017).

    Article  PubMed  Google Scholar 

  278. Lipsitz, Y. Y., Timmins, N. E. & Zandstra, P. W. Quality cell therapy manufacturing by design. Nat. Biotechnol. 34, 393–400 (2016).

    Article  CAS  PubMed  Google Scholar 

  279. Collins, J. J. P., Tibboel, D., de Kleer, I. M., Reiss, I. K. M. & Rottier, R. J. The future of bronchopulmonary dysplasia: emerging pathophysiological concepts and potential new avenues of treatment. Front. Med. 4, 61 (2017).

    Article  Google Scholar 

  280. Ley, D. et al. rhIGF-1/rhIGFBP-3 in preterm infants: a phase 2 randomized controlled trial. J. Pediatr. 206, 56–65.e8 (2019).

    Article  CAS  PubMed  Google Scholar 

  281. Treutlein, B. et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509, 371–375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Frank, D. B. et al. Early lineage specification defines alveolar epithelial ontogeny in the murine lung. Proc. Natl Acad. Sci. USA 116, 4362–4371 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Zacharias, W. J. et al. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature 555, 251–255 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Contreras, M. et al. Bronchoalveolar oxyradical inflammatory elements herald bronchopulmonary dysplasia. Crit. Care Med. 24, 29–37 (1996).

    Article  CAS  PubMed  Google Scholar 

  285. Gladstone, I. M. & Levine, R. L. Oxidation of proteins in neonatal lungs. Pediatrics 93, 764–768 (1994).

    PubMed  Google Scholar 

  286. Thompson, A. & Bhandari, V. Pulmonary biomarkers of bronchopulmonary dysplasia. Biomark. Insights 3, 361–373 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Whitsett, J. A. & Alenghat, T. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat. Immunol. 16, 27–35 (2015).

    Article  CAS  PubMed  Google Scholar 

  288. Whitsett, J. A., Wert, S. E. & Trapnell, B. C. Genetic disorders influencing lung formation and function at birth. Hum. Mol. Genet. 13, R207–R215 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Heart, Lung and Blood Institute of the US National Institutes of Health (NIH) grants (U01HL122642 and U01HL134745 to J.A.W.; RO1HL68702, R01HL145679 and U01HL12118-01 to S.H.A.; and K24 HL143283 to M.L.), and funding from the Australian National Health and Medical Research Council (NHMRC) to P.G.D. and from the Canadian Institute for Health Research, Stem Cell Network and the Ontario Institute for Regenerative Medicine to B.T. The authors thank J. Kitzmiller and C.-L. Na for their contributions in obtaining images.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (B.T.); Epidemiology (M.L. and B.T.); Mechanisms/pathophysiology (J.A.W., S.H.A., A.H.J. and B.T.); Diagnosis, screening and prevention (R.H.S., J.L.A. and B.T.); Management (P.G.D., S.H.A. and B.T.); Quality of life (K.N.G., S.A.McG.-M. and B.T.); Outlook (R.F.S. and B.T.); Overview of the Primer (B.T.).

Corresponding author

Correspondence to Bernard Thébaud.

Ethics declarations

Competing interests

A.H.J. consults occasionally for Chiesi Farmaceutici about BPD and surfactant. S.H.A has served as a consultant for Takeda Pharmaceuticals. R.H.S. is a consultant for Takeda Pharmaceutical Company and for Actelion Pharmaceutical Ltd. The remaining authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Disease Primers thanks Y.S. Chang, M. Hallman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

NICHD NRN risk estimator: https://neonatal.rti.org/index.cfm

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thébaud, B., Goss, K.N., Laughon, M. et al. Bronchopulmonary dysplasia. Nat Rev Dis Primers 5, 78 (2019). https://doi.org/10.1038/s41572-019-0127-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-019-0127-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing