Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineering the next generation of cell-based therapeutics

Abstract

Cell-based therapeutics are an emerging modality with the potential to treat many currently intractable diseases through uniquely powerful modes of action. Despite notable recent clinical and commercial successes, cell-based therapies continue to face numerous challenges that limit their widespread translation and commercialization, including identification of the appropriate cell source, generation of a sufficiently viable, potent and safe product that meets patient- and disease-specific needs, and the development of scalable manufacturing processes. These hurdles are being addressed through the use of cutting-edge basic research driven by next-generation engineering approaches, including genome and epigenome editing, synthetic biology and the use of biomaterials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A cellular therapy process flow.
Fig. 2: Leveraging CRISPR–Cas-mediated genome and epigenome editing for improved cell-based therapeutics.
Fig. 3: Using synthetic biology approaches to endow therapeutic cells with enhanced functional properties.
Fig. 4: Using synthetic circuits to enhance therapeutic function.
Fig. 5: Strategies to overcome immune rejection for allogeneic cell therapy.

Similar content being viewed by others

References

  1. Pellegrini, G. et al. Navigating market authorization: the path holoclar took to become the first stem cell product approved in the European Union. Stem Cell Transl. Med. 7, 146–154 (2018).

    Article  Google Scholar 

  2. Buscail, E. et al. Adipose-derived stem cells in the treatment of perianal fistulas in Crohn’s disease: rationale, clinical results and perspectives. Int. J. Mol. Sci. 22, 9967 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shah, D. K. Pharmacokinetic and pharmacodynamic considerations for the next generation protein therapeutics. J. Pharmacokinet. Pharmacodyn. 42, 553–571 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kamath, A. V. Translational pharmacokinetics and pharmacodynamics of monoclonal antibodies. Drug. Discov. Today Technol. 21–22, 75–83 (2016).

  5. Bulaklak, K. & Gersbach, C. A. The once and future gene therapy. Nat. Commun. 11, 5820 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Elverum, K. & Whitman, M. Delivering cellular and gene therapies to patients: solutions for realizing the potential of the next generation of medicine. Gene Ther. 27, 537–544 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Roth, T. L. et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559, 405–409 (2018). Describes the development of a CRISPR–Cas9-based targeting system to precisely insert large DNA segments without the need for viral vectors for rapid and flexible engineering of primary human immune cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chew, W. L. et al. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat. Methods 13, 868–874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Keiser, J. Liver tumor in gene therapy recipient raises concerns about virus widely used in treatment. Science https://www.sciencemag.org/news/2020/12/liver-tumor-gene-therapy-recipient-raises-concerns-about-virus-widely-used-treatment (2020).

  10. Aalipour, A. et al. Engineered immune cells as highly sensitive cancer diagnostics. Nat. Biotechnol. 37, 531–539 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Panina, Y., Karagiannis, P., Kurtz, A., Stacey, G. N. & Fujibuchi, W. Human Cell Atlas and cell-type authentication for regenerative medicine. Exp. Mol. Med. 52, 1443–1451 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Tran, E., Longo, D. L. & Urba, W. J. A milestone for CAR T cells. N. Engl. J. Med. 377, 2593–2596 (2017).

    Article  PubMed  Google Scholar 

  14. Kimbrel, E. A. & Lanza, R. Next-generation stem cells - ushering in a new era of cell-based therapies. Nat. Rev. Drug Discov. 19, 463–479 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Henig, I. & Zuckerman, T. Hematopoietic stem cell transplantation-50 years of evolution and future perspectives. Rambam Maimonides Med. J. 5, e0028 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mayani, H., Wagner, J. E. & Broxmeyer, H. E. Cord blood research, banking, and transplantation: achievements, challenges, and perspectives. Bone Marrow Transpl. 55, 48–61 (2020).

    Article  Google Scholar 

  17. Anassi, E. & Ndefo, U. A. Sipuleucel-T (Provenge) injection: the first immunotherapy agent (vaccine) for hormone-refractory prostate cancer. P T 36, 197–202 (2011).

    PubMed  PubMed Central  Google Scholar 

  18. Jaroslawski, S. & Toumi, M. Sipuleucel-T (Provenge((R)))-autopsy of an innovative paradigm change in cancer treatment: why a single-product biotech company failed to capitalize on its breakthrough invention. BioDrugs 29, 301–307 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Domaszewska-Szostek, A., Krzyzanowska, M. & Siemionow, M. Cell-based therapies for chronic wounds tested in clinical studies: review. Ann. Plast. Surg. 83, e96–e109 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. US Food and Drug Administration. KYMRIAH (tisagenlecleucel) https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/kymriah-tisagenlecleucel (2019).

  21. US Food and Drug Administration. YESCARTA (axicabtagene ciloleucel), https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/yescarta-axicabtagene-ciloleucel (2020).

  22. Pettitt, D. et al. CAR-T cells: a systematic review and mixed methods analysis of the clinical trial landscape. Mol. Ther. 26, 342–353 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Crees, Z. D. & Ghobadi, A. Cellular therapy updates in B-cell lymphoma: the state of the CAR-T. Cancers (Basel) 13, 5181 (2021).

  24. Albinger, N., Hartmann, J. & Ullrich, E. Current status and perspective of CAR-T and CAR-NK cell therapy trials in Germany. Gene Ther. 28, 513–527 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, E. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382, 545–553 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Atrash S., Ali S. A & Usmani, S. Z. Chimeric antigen receptor T-cell therapy for multiple myeloma. Clin. Lymphoma Myeloma Leuk. 21, 21–34 (2021).

    Article  PubMed  Google Scholar 

  27. Feldman, S. A., Assadipour, Y., Kriley, I., Goff, S. L. & Rosenberg, S. A. Adoptive cell therapy–tumor-infiltrating lymphocytes, T-cell receptors, and chimeric antigen receptors. Semin. Oncol. 42, 626–639 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tesfaye, M. & Savoldo, B. Adoptive cell therapy in treating pediatric solid tumors. Curr. Oncol. Rep. 20, 73 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Marofi, F. et al. CAR T cells in solid tumors: challenges and opportunities. Stem Cell Res. Ther. 12, 81 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deng, Q. et al. Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat. Med. 26, 1878–1887 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boulch, M. A cross-talk between CAR T cell subsets and the tumor microenvironment is essential for sustained cytotoxic activity. Sci. Immunol. 6, eabd4344 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Ferreira, L. M. R., Muller, Y. D., Bluestone, J. A. & Tang, Q. Next-generation regulatory T cell therapy. Nat. Rev. Drug Discov. 18, 749–769 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Petrou, P. et al. Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: results of phase 1/2 and 2a clinical trials. JAMA Neurol. 73, 337–344 (2016).

    Article  PubMed  Google Scholar 

  34. Terashvili, M. & Bosnjak, Z. J. Stem cell therapies in cardiovascular disease. J. Cardiothorac. Vasc. Anesth. 33, 209–222 (2019).

    Article  PubMed  Google Scholar 

  35. Mavilio, F. Developing gene and cell therapies for rare diseases: an opportunity for synergy between academia and industry. Gene Ther. 24, 590–592 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Pittenger, M. F. et al. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen. Med. 4, 22 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Vaes, B., Van’t Hof, W., Deans, R. & Pinxteren, J. Application of multistem((R)) allogeneic cells for immunomodulatory therapy: clinical progress and pre-clinical challenges in prophylaxis for graft versus host disease. Front. Immunol. 3, 345 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ronfard, V., Vertes, A. A., May, M. H., Dupraz, A., van Dyke, M. E. & Bayon, Y. Evaluating the past, present, future of regenerative medicine: a global view. Tissue Eng. Part B Rev. 2, 199–210 (2017).

  39. Banerjee, M. N., Bolli, R. & Hare, J. M. Clinical studies of cell therapy in cardiovascular medicine: recent developments and future directions. Circ. Res. 123, 266–287 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chien, K. R. et al. Regenerating the field of cardiovascular cell therapy. Nat. Biotechnol. 37, 232–237 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Schneider, M. D. Heartbreak hotel: a convergence in cardiac regeneration. Development 143, 1435–1441 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Galleu, A. et al. Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci. Transl. Med. 9, eaam7828 (2017).

    Article  PubMed  CAS  Google Scholar 

  43. Zhou, T. et al. Challenges and advances in clinical applications of mesenchymal stromal cells. J. Hematol. Oncol. 14, 24 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lanza, R., Russell, D. W. & Nagy, A. Engineering universal cells that evade immune detection. Nat. Rev. Immunol. 19, 723–733 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. da Cruz, L. et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat. Biotechnol. 36, 328–337 (2018).

    Article  PubMed  CAS  Google Scholar 

  46. Osborn, T. M., Hallett, P. J., Schumacher, J. M. & Isacson, O. Advantages and recent developments of autologous cell therapy for Parkinson’s disease patients. Front. Cell Neurosci. 14, 58 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ford, E. et al. Human pluripotent stem cells-based therapies for neurodegenerative diseases: current status and challenges. Cells 9, 2517 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  48. Ahmadian-Moghadam, H., Sadat-Shirazi, M. S. & Zarrindast, M. R. Therapeutic potential of stem cells for treatment of neurodegenerative diseases. Biotechnol. Lett. 42, 1073–1101 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Lim, F. & Sun, A. M. Microencapsulated islets as bioartificial endocrine pancreas. Science 210, 908 (1980).

    Article  CAS  PubMed  Google Scholar 

  50. Basta, G., Montanucci, P. & Calafiore, R. Islet transplantation versus stem cells for the cell therapy of type 1 diabetes mellitus. Minerva Endocrinol. 40, 267–282 (2015).

    CAS  PubMed  Google Scholar 

  51. Drew, L. How stem cells could fix type 1 diabetes. Nature 595, S64–S66 (2021).

    Article  CAS  Google Scholar 

  52. Hogrebe, N. J., Maxwell, K. G., Augsornworawat, P. & Millman, J. R. Generation of insulin-producing pancreatic beta cells from multiple human stem cell lines. Nat. Protoc. 16, 4109–4143 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Henry, R. R. et al. Initial clinical evaluation of VC-01TM combination product — a stem cell–derived islet replacement for type 1 diabetes (T1D). Diabetes 67 (Suppl. 1), 138-OR (2018).

    Article  Google Scholar 

  54. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013). References 54–56 are three landmark studies describing the development of the CRIPSR–Cas platform for programmable genome editing applications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hilton, I. B. & Gersbach, C. A. Enabling functional genomics with genome engineering. Genome Res. 25, 1442–1455 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gaj, T., Gersbach, C. A. & Barbas, C. F. III ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397–405 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 578, 229–236 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Porteus, M. H. A new class of medicines through DNA editing. N. Engl. J. Med. 380, 947–959 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Canver, M. C. et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527, 192–197 (2015). This study demonstrates the use of CRISPR–Cas9 to saturate the BCL11A enhancer with mutations to produce a map of vulnerabilities that could open the door to new treatments for β-globinopathies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hu, W. et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc. Natl Acad. Sci. USA 111, 11461–11466 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hu, Z. et al. Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. Biomed. Res. Int. 2014, 612823 (2014).

    PubMed  PubMed Central  Google Scholar 

  64. Bak, R. O. et al. Multiplexed genetic engineering of human hematopoietic stem and progenitor cells using CRISPR/Cas9 and AAV6. eLife 6, e27873 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ren, J. et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin. Cancer Res. 23, 2255–2266 (2017). This study leverages multiplexed CRISPR–Cas9 genome editing and lentiviral delivery of a CAR to generate CAR-T cells with potent antitumour activities and reduced alloreactivity.

    Article  CAS  PubMed  Google Scholar 

  66. Kabadi, A. M., Ousterout, D. G., Hilton, I. B. & Gersbach, C. A. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Res. 42, e147 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017). This study uses CRISPR–Cas-based genome editing to insert a CD19-specific CAR into the native TRAC locus, resulting in uniform CAR expression and enhanced CAR-T cell potency.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Roth, T. L. et al. Pooled knockin targeting for genome engineering of cellular immunotherapies. Cell 181, 728–744.e721 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Haapaniemi, E., Botla, S., Persson, J., Schmierer, B. & Taipale, J. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 24, 927–930 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016). This study describes the development of CRISPR–Cas base editors, which enable genome editing without the creation of DSBs in genomic DNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gaudelli, N. M. et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Koblan, L. W. et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843–846 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sangsin Lee, N. D. et al. Single C-to-T substitution using engineered APOBEC3G-nCas9 base editors with minimum genome- and transcriptome-wide off-target effects. Sci. Adv. 6, eaba1773 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Webber, B. R. et al. Highly efficient multiplex human T cell engineering without double-strand breaks using Cas9 base editors. Nat. Commun. 10, 5222 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019). This study describes the development of the CRISPR–Cas-based prime editing platorm, which can enable genome editing and programmable sequence alterations without the creation of DSBs in genomic DNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Strecker, J. et al. RNA-guided DNA insertion with CRISPR-associated transposases. Science 365, 48–53 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Klompe, S. E., Vo, P. L. H., Halpin-Healy, T. S. & Sternberg, S. H. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature 571, 219–225 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Charlesworth, C. T. et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 25, 249–254 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wagner, D. L. et al. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat. Med. 25, 242–248 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Enache, O. M. et al. Cas9 activates the p53 pathway and selects for p53-inactivating mutations. Nat. Genet. 52, 662–668 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. van Haasteren, J., Li, J., Scheideler, O. J., Murthy, N. & Schaffer, D. V. The delivery challenge: fulfilling the promise of therapeutic genome editing. Nat. Biotechnol. 38, 845–855 (2020).

    Article  PubMed  CAS  Google Scholar 

  84. Gemberling, M. P. et al. Transgenic mice for in vivo epigenome editing with CRISPR-based systems. Nat. Methods 18, 965–974 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stadtmauer, E. A. et al. CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Klichinsky, M. et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 38, 947–953 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cooper, M. L. et al. An “off-the-shelf” fratricide-resistant CAR-T for the treatment of T cell hematologic malignancies. Leukemia 32, 1970–1983 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Xu, H. et al. Targeted Disruption of HLA Genes via CRISPR-Cas9 generates iPSCs with enhanced immune compatibility. Cell Stem Cell 24, 566–578.e567 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Deuse, T. et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 37, 252–258 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Selle, K. et al. In vivo targeting of clostridioides difficile using phage-delivered CRISPR-Cas3 antimicrobials. mBio 10, e00019-20 (2020).

    Article  Google Scholar 

  91. Gomaa, A. A. et al. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. mBio 5, e00928-13 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Frangoul, H. et al. CRISPR-Cas9 gene editing for sickle cell disease and beta-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Li, H. et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475, 217–221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Laoharawee, K. et al. Dose-dependent prevention of metabolic and neurologic disease in Murine MPS II by ZFN-mediated in vivo genome editing. Mol. Ther. 26, 1127–1136 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Thakore, P. I., Black, J. B., Hilton, I. B. & Gersbach, C. A. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat. Methods 13, 127–137 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pickar-Oliver, A. & Gersbach, C. A. The next generation of CRISPR-Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20, 490–507 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Goell, J. H. & Hilton, I. B. CRISPR/Cas-based epigenome editing: advances, applications, and clinical utility. Trends Biotechnol. 39, 678–691 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015). This study describes the development of the widely used dCas9–VPR CRISPRa platform.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Black, J. B. et al. Targeted epigenetic remodeling of endogenous loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells. Cell Stem Cell 19, 406–414 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chakraborty, S. et al. A CRISPR/Cas9-based system for reprogramming cell lineage specification. Stem Cell Rep. 3, 940–947 (2014).

    Article  CAS  Google Scholar 

  101. Liao, H. K. et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell 171, 1495–1507.e1415 (2017). This study demonstrates the utility of CRISPR–Cas-based gene activation in vivo for diverse indications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhou, H. et al. In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice. Nat. Neurosci. 21, 440–446 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Liu, P., Chen, M., Liu, Y., Qi, L. S. & Ding, S. CRISPR-based chromatin remodeling of the endogenous Oct4 or Sox2 locus enables reprogramming to pluripotency. Cell Stem Cell 22, 252–261.e254 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Weltner, J. et al. Human pluripotent reprogramming with CRISPR activators. Nat. Commun. 9, 2643 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Mahata, B. et al. Compact engineered human transactivation modules enable potent and versatile synthetic transcriptional control. bioRxiv https://doi.org/10.1101/2022.03.21.485228 (2022).

    Article  Google Scholar 

  106. Nelson, C. E., Robinson-Hamm, J. N. & Gersbach, C. A. Genome engineering: a new approach to gene therapy for neuromuscular disorders. Nat. Rev. Neurol. 13, 647–661 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Thakore, P. I. et al. RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors. Nat. Commun. 9, 1674 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Hilton, I. B. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015). This study is one of the first examples of using dCas9-based fusions to programmably modulate the human epigenome and activate gene expression from endogenous human enhancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Li, J. et al. Programmable human histone phosphorylation and gene activation using a CRISPR/Cas9-based chromatin kinase. Nat. Commun. 12, 896 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Feucht, J. et al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat. Med. 25, 82–88 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Cameron, D. E., Bashor, C. J. & Collins, J. J. A brief history of synthetic biology. Nat. Rev. Microbiol. 12, 381–390 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Auslander, S. & Fussenegger, M. Engineering gene circuits for mammalian cell-based applications. Cold Spring Harb. Perspect. Biol. 8, a023895 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Kitada, T., DiAndreth, B., Teague, B. & Weiss, R. Programming gene and engineered-cell therapies with synthetic biology. Science 359, eaad1067 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Lim, W. A. & June, C. H. The principles of engineering immune cells to treat cancer. Cell 168, 724–740 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Roybal, K. T. & Lim, W. A. Synthetic immunology: hacking immune cells to expand their therapeutic capabilities. Annu. Rev. Immunol. 35, 229–253 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Di Stasi, A. et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 365, 1673–1683 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Wu, C. Y., Roybal, K. T., Puchner, E. M., Onuffer, J. & Lim, W. A. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science 350, aab4077 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Roybal, K. T. et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164, 770–779 (2016). This study describes the the first use of transcriptional circuits engineered from artificial Notch-derived receptors to ehance CAR-T cell specificity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nissim, L. et al. Synthetic RNA-based immunomodulatory gene circuits for cancer immunotherapy. Cell 171, 1138–1150.e1115 (2017). This study reports on the use of RNA-based synthetic circuitry to direct a CAR-T cell to a target cell by computing its intracellular state.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hernandez-Lopez, R. A. et al. T cell circuits that sense antigen density with an ultrasensitive threshold. Science 371, 1166–1171 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Williams, J. Z. et al. Precise T cell recognition programs designed by transcriptionally linking multiple receptors. Science 370, 1099–1104 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cho, J. H., Collins, J. J. & Wong, W. W. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell 173, 1426–1438.e1411 (2018). This study demonstrates the ability to direct CAR-T cells to specific cellular targets using programmable extracellular protein scaffolds.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lajoie, M. J. et al. Designed protein logic to target cells with precise combinations of surface antigens. Science 369, 1637–1643 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mo, F. et al. Engineered off-the-shelf therapeutic T cells resist host immune rejection. Nat. Biotechnol. 39, 56–63 (2021).

    Article  CAS  PubMed  Google Scholar 

  125. Schukur, L., Geering, B., Charpin-El Hamri, G. & Fussenegger, M. Implantable synthetic cytokine converter cells with AND-gate logic treat experimental psoriasis. Sci. Transl. Med. 7, 318ra201 (2015). This study is one of the first examples of closed-loop sense-and-respond circuitry that enables cells to sense disease-associated environmental cues and therapeutically respond.

    Article  PubMed  CAS  Google Scholar 

  126. Xie, M. et al. Beta-cell-mimetic designer cells provide closed-loop glycemic control. Science 354, 1296–1301 (2016). This study harnesses ion channels to engineer encapsulated cell devices that are capable of treating glycaemia in an in vivo model.

    Article  CAS  PubMed  Google Scholar 

  127. Stirling, F. et al. Rational design of evolutionarily stable microbial kill switches. Mol. Cell 68, 686–697.e683 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Saxena, P., Bojar, D., Zulewski, H. & Fussenegger, M. Generation of glucose-sensitive insulin-secreting beta-like cells from human embryonic stem cells by incorporating a synthetic lineage-control network. J. Biotechnol. 259, 39–45 (2017). In this study, the authors describe one of the first instances of gene circuit-guided differentiation of pluripotent stem cells towards a mature cell fate.

    Article  CAS  PubMed  Google Scholar 

  129. Guye, P. et al. Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. Nat. Commun. 7, 10243 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Velazquez, J. J. et al. Gene regulatory network analysis and engineering directs development and vascularization of multilineage human liver organoids. Cell Syst. 12, 41–55.e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Khalil, A. S. et al. A synthetic biology framework for programming eukaryotic transcription functions. Cell 150, 647–658 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Donahue, P. S. et al. The COMET toolkit for composing customizable genetic programs in mammalian cells. Nat. Commun. 11, 779 (2020). References 131 and 132 describe a highly modular ZF transcription factor-based gene circuit engineering platform, and demonstrate its scalability to engineering complex circuit architetures in yeast and human cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lienert, F., Lohmueller, J. J., Garg, A. & Silver, P. A. Synthetic biology in mammalian cells: next generation research tools and therapeutics. Nat. Rev. Mol. Cell Biol. 15, 95–107 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bashor, C. J. et al. Complex signal processing in synthetic gene circuits using cooperative regulatory assemblies. Science 364, 593–597 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chen, Z. et al. Programmable design of orthogonal protein heterodimers. Nature 565, 106–111 (2019). This study describes a set of computationally designed modular protein switches with verastile use for programming post-translational cellular circuitry.

    Article  CAS  PubMed  Google Scholar 

  136. Scheller, L., Strittmatter, T., Fuchs, D., Bojar, D. & Fussenegger, M. Generalized extracellular molecule sensor platform for programming cellular behavior. Nat. Chem. Biol. 14, 723–729 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Chang, Z. L. et al. Rewiring T-cell responses to soluble factors with chimeric antigen receptors. Nat. Chem. Biol. 14, 317–324 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Scarpitta, S. C. & Harley, N. H. Adsorption and desorption of noble gases on activated charcoal: I. 133Xe studies in a monolayer and packed bed. Health Phys. 59, 383–392 (1990).

    Article  CAS  PubMed  Google Scholar 

  139. Cheng, Z. et al. Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol. Ther. 16, 571–579 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Wan, T. et al. Genome editing of mutant KRAS through supramolecular polymer-mediated delivery of Cas9 ribonucleoprotein for colorectal cancer therapy. J. Control. Rel. 322, 236–247 (2020).

    Article  CAS  Google Scholar 

  141. Maze, A. & Benenson, Y. Artificial signaling in mammalian cells enabled by prokaryotic two-component system. Nat. Chem. Biol. 16, 179–187 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Kim, E. et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat. Commun. 8, 14500 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Schwarz, K. A., Daringer, N. M., Dolberg, T. B. & Leonard, J. N. Rewiring human cellular input-output using modular extracellular sensors. Nat. Chem. Biol. 13, 202–209 (2017).

    Article  CAS  PubMed  Google Scholar 

  144. Gordley, R. M. et al. Engineering dynamical control of cell fate switching using synthetic phospho-regulons. Proc. Natl Acad. Sci. USA 113, 13528–13533 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gaub, B. M. et al. Neurons differentiate magnitude and location of mechanical stimuli. Proc. Natl Acad. Sci. USA 117, 848–856 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Frey, B., Janel, G., Michelsen, U. & Kersten, H. Mutations in the Escherichia coli fnr and tgt genes: control of molybdate reductase activity and the cytochrome d complex by fnr. J. Bacteriol. 171, 1524–1530 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kazuki, Y. & Oshimura, M. Human artificial chromosomes for gene delivery and the development of animal models. Mol. Ther. 19, 1591–1601 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Vijayachandran, L. S. et al. Gene gymnastics: synthetic biology for baculovirus expression vector system engineering. Bioengineered 4, 279–287 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Coon, M. E., Stephan, S. B., Gupta, V., Kealey, C. P. & Stephan, M. T. Nitinol thin films functionalized with CAR-T cells for the treatment of solid tumours. Nat. Biomed. Eng. 4, 195–206 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Stephan, S. B. et al. Biopolymer implants enhance the efficacy of adoptive T-cell therapy. Nat. Biotechnol. 33, 97–101 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Ghanta, R. K. et al. Immune-modulatory alginate protects mesenchymal stem cells for sustained delivery of reparative factors to ischemic myocardium. Biomater. Sci. 8, 5061–5070 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Chang, H. et al. Cryomicroneedles for transdermal cell delivery. Nat. Biomed. Eng. 5, 1008–1018 (2021).

    Article  CAS  PubMed  Google Scholar 

  153. Nash, A. et al. Clinically translatable cytokine delivery platform for eradication of intraperitoneal tumors. Sci. Adv. 8, eabm1032 (2022). This study demonstrates programmable and localized immunomodulation through cell-generated cytokines.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sieving, P. A. et al. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc. Natl Acad. Sci. USA 103, 3896–3901 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ramzy, A. et al. Implanted pluripotent stem-cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in patients with type 1 diabetes. Cell Stem Cell 28, 2047–2061.e2045 (2021).

    Article  CAS  PubMed  Google Scholar 

  156. Mitrousis, N., Fokina, A. & Shoichet, M. S. Biomaterials for cell transplantation. Nat. Rev. Mater. 3, 441–456 (2018).

    Article  CAS  Google Scholar 

  157. Lin, C. M. & Gill, R. G. Direct and indirect allograft recognition: pathways dictating graft rejection mechanisms. Curr. Opin. Organ. Transpl. 21, 40–44 (2016).

    Article  CAS  Google Scholar 

  158. Wang, G., Kong, G. & Li, X. C. Adaptive features of innate immune cells and their relevance to graft rejection. Curr. Opin. Organ. Transpl. 24, 664–669 (2019).

    Article  CAS  Google Scholar 

  159. Han, X. et al. Generation of hypoimmunogenic human pluripotent stem cells. Proc. Natl Acad. Sci. USA 116, 10441–10446 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Deuse, T. et al. Hypoimmune induced pluripotent stem cell-derived cell therapeutics treat cardiovascular and pulmonary diseases in immunocompetent allogeneic mice. Proc. Natl Acad. Sci. USA 118, e2022091118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Yoshihara, E. et al. Immune-evasive human islet-like organoids ameliorate diabetes. Nature 586, 606–611 (2020). This study describes the feasibility of universal stem cells for generating hypoimmunigenic islet cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Dolgin, E. Diabetes cell therapies take evasive action. Nat. Biotechnol. 40, 291–295 (2022).

    Article  CAS  PubMed  Google Scholar 

  163. Bochenek, M. A. et al. Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques. Nat. Biomed. Eng. 2, 810–821 (2018). Demonstrates the use of immunomodulatory biomaterials to enable long-term transplantation of allogeneic islets without immunosuppression in non-human primates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bose, S. et al. A retrievable implant for the long-term encapsulation and survival of therapeutic xenogeneic cells. Nat. Biomed. Eng. 4, 814–826 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Farina, M., Alexander, J. F., Thekkedath, U., Ferrari, M. & Grattoni, A. Cell encapsulation: overcoming barriers in cell transplantation in diabetes and beyond. Adv. Drug Deliv. Rev. 139, 92–115 (2019).

    Article  CAS  PubMed  Google Scholar 

  166. Basta, G. et al. Long-term metabolic and immunological follow-up of nonimmunosuppressed patients with type 1 diabetes treated with microencapsulated islet allografts: four cases. Diabetes Care 34, 2406–2409 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Calafiore, R. et al. Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes: first two cases. Diabetes Care 29, 137–138 (2006).

    Article  PubMed  Google Scholar 

  168. Tuch, B. E. et al. Safety and viability of microencapsulated human islets transplanted into diabetic humans. Diabetes Care 32, 1887–1889 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Elliott, R. B. et al. Live encapsulated porcine islets from a type 1 diabetic patient 9.5yr after xenotransplantation. Xenotransplantation 14, 157–161 (2007).

    Article  PubMed  Google Scholar 

  170. Desai, T. & Shea, L. D. Advances in islet encapsulation technologies. Nat. Rev. Drug Discov. 16, 338–350 (2017).

    Article  CAS  PubMed  Google Scholar 

  171. Strand, B. L., Coron, A. E. & Skjak-Braek, G. Current and future perspectives on alginate encapsulated pancreatic islet. Stem Cell Transl. Med. 6, 1053–1058 (2017).

    Article  CAS  Google Scholar 

  172. Desai, T. & Shea, L. D. Advances in islet encapsulation technologies. Nat. Rev. Drug Discov. 16, 367 (2017).

    Article  CAS  PubMed  Google Scholar 

  173. Chew, E. Y. et al. Effect of ciliary neurotrophic factor on retinal neurodegeneration in patients with macular telangiectasia type 2: a randomized clinical trial. Ophthalmology 126, 540–549 (2019).

    Article  PubMed  Google Scholar 

  174. Lohr, M. et al. Cell therapy using microencapsulated 293 cells transfected with a gene construct expressing CYP2B1, an ifosfamide converting enzyme, instilled intra-arterially in patients with advanced-stage pancreatic carcinoma: a phase I/II study. J. Mol. Med. 77, 393–398 (1999).

    Article  CAS  PubMed  Google Scholar 

  175. Snow, B. et al. A phase IIb, randomised, double-blind, placebo-controlled, dose-ranging investigation of the safety and efficacy of NTCELL((R)) [immunoprotected (alginate-encapsulated) porcine choroid plexus cells for xenotransplantation] in patients with Parkinson’s disease. Parkinsonism Relat. Disord. 61, 88–93 (2019).

    Article  PubMed  Google Scholar 

  176. Doloff, J. C. et al. Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-human primates. Nat. Mater. 16, 671–680 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ashimova, A., Yegorov, S., Negmetzhanov, B. & Hortelano, G. Cell encapsulation within alginate microcapsules: immunological challenges and outlook. Front. Bioeng. Biotechnol. 7, 380 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Veiseh, O. & Vegas, A. J. Domesticating the foreign body response: recent advances and applications. Adv. Drug Deliv. Rev. 144, 148–161 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Sheikh, Z., Brooks, P. J., Barzilay, O., Fine, N. & Glogauer, M. Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials 8, 5671–5701 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Dondossola, E. et al. Examination of the foreign body response to biomaterials by nonlinear intravital microscopy. Nat. Biomed. Eng. 1, 0007 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Veiseh, O. et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14, 643–651 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Farah, S. et al. Long-term implant fibrosis prevention in rodents and non-human primates using crystallized drug formulations. Nat. Mater. 18, 892–904 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Yesilyurt, V. et al. A facile and versatile method to endow biomaterial devices with zwitterionic surface coatings. Adv. Health. Mater. 6, https://doi.org/10.1002/adhm.201601091 (2017).

    Article  Google Scholar 

  184. Vegas, A. J. et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol. 34, 345–352 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Bygd, H. C. & Bratlie, K. M. The effect of chemically modified alginates on macrophage phenotype and biomolecule transport. J. Biomed. Mater. Res. A 104, 1707–1719 (2016).

    Article  CAS  PubMed  Google Scholar 

  186. Shapiro, A. D. et al. First-in-human phase 1/2 clinical trial of SIG-001, an innovative shielded cell therapy platform, for hemophilia Α. Blood 136 (Suppl. 1), 8 (2020).

    Google Scholar 

  187. Blackman, L. D., Gunatillake, P. A., Cass, P. & Locock, K. E. S. An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. Chem. Soc. Rev. 48, 757–770 (2019).

    Article  CAS  PubMed  Google Scholar 

  188. Jiang, S. & Cao, Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Mater. 22, 920–932 (2010).

    Article  CAS  PubMed  Google Scholar 

  189. Xie, X. et al. Reduction of measurement noise in a continuous glucose monitor by coating the sensor with a zwitterionic polymer. Nat. Biomed. Eng. 2, 894–906 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Liu, Q. et al. Zwitterionically modified alginates mitigate cellular overgrowth for cell encapsulation. Nat. Commun. 10, 5262 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Mariani, E., Lisignoli, G., Borzi, R. M. & Pulsatelli, L. Biomaterials: foreign bodies or tuners for the immune response? Int. J. Mol. Sci. 20, 636 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  192. Chandorkar, Y., K, R. & Basu, B. The foreign body response demystified. ACS Biomater. Sci. Eng. 5, 19–44 (2019).

    Article  PubMed  CAS  Google Scholar 

  193. Vassey, M. J. et al. Immune modulation by design: using topography to control human monocyte attachment and macrophage differentiation. Adv. Sci. 7, 1903392 (2020).

    Article  CAS  Google Scholar 

  194. Roach, P., Eglin, D., Rohde, K. & Perry, C. C. Modern biomaterials: a review — bulk properties and implications of surface modifications. J. Mater. Sci. Mater. Med. 18, 1263–1277 (2007).

    Article  CAS  PubMed  Google Scholar 

  195. Doloff, J. C. et al. The surface topography of silicone breast implants mediates the foreign body response in mice, rabbits and humans. Nat. Biomed. Eng. 5, 1115–1130 (2021).

    Article  CAS  PubMed  Google Scholar 

  196. Chen, S. et al. Characterization of topographical effects on macrophage behavior in a foreign body response model. Biomaterials 31, 3479–3491 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Hulander, M. et al. Immune complement activation is attenuated by surface nanotopography. Int. J. Nanomed. 6, 2653–2666 (2011).

    Article  CAS  Google Scholar 

  198. Jahed, Z. et al. Cell responses to metallic nanostructure arrays with complex geometries. Biomaterials 35, 9363–9371 (2014).

    Article  CAS  PubMed  Google Scholar 

  199. Rajyalakshmi, A., Ercan, B., Balasubramanian, K. & Webster, T. J. Reduced adhesion of macrophages on anodized titanium with select nanotube surface features. Int. J. Nanomed. 6, 1765–1771 (2011).

    CAS  Google Scholar 

  200. Finbloom, J. A., Sousa, F., Stevens, M. M. & Desai, T. A. Engineering the drug carrier biointerface to overcome biological barriers to drug delivery. Adv. Drug Deliv. Rev. 167, 89–108 (2020).

    Article  CAS  PubMed  Google Scholar 

  201. Lin, C.-C., Metters, A. T. & Anseth, K. S. Functional PEG–peptide hydrogels to modulate local inflammation inducedby the pro-inflammatory cytokine TNFα. Biomaterials 30, 4907–4914 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Chang, R. et al. Nanoporous immunoprotective device for stem-cell-derived beta-cell replacement therapy. ACS Nano 11, 7747–7757 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Goswami, D. et al. Design considerations for macroencapsulation devices for stem cell derived islets for the treatment of type 1 diabetes. Adv. Sci. 8, e2100820 (2021).

    Article  CAS  Google Scholar 

  204. Wang, L. H. et al. An inverse-breathing encapsulation system for cell delivery. Sci. Adv. 7, eabd5835 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Yang, K. et al. A therapeutic convection-enhanced macroencapsulation device for enhancing beta cell viability and insulin secretion. Proc. Natl Acad. Sci. USA 118, e2101258118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Mirabella, T. et al. 3D-printed vascular networks direct therapeutic angiogenesis in ischaemia. Nat. Biomed. Eng. 1, 0083 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Sarker, M. D., Naghieh, S., Sharma, N. K. & Chen, X. 3D biofabrication of vascular networks for tissue regeneration: a report on recent advances. J. Pharm. Anal. 8, 277–296 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Mastrullo, V., Cathery, W., Velliou, E., Madeddu, P. & Campagnolo, P. Angiogenesis in tissue engineering: as Nature intended? Front. Bioeng. Biotechnol. 8, 188 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Grigoryan, B. et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364, 458–464 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Regehly, M. et al. Xolography for linear volumetric 3D printing. Nature 588, 620–624 (2020).

    Article  CAS  PubMed  Google Scholar 

  211. Skylar-Scott, M. A., Mueller, J., Visser, C. W. & Lewis, J. A. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 575, 330–335 (2019).

    Article  CAS  PubMed  Google Scholar 

  212. Skylar-Scott, M. A. et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. 5, eaaw2459 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Lee, A. et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482–487 (2019).

    Article  CAS  PubMed  Google Scholar 

  214. Hynes, W. F. et al. Examining metastatic behavior within 3D bioprinted vasculature for the validation of a 3D computational flow model. Sci. Adv. 6, eabb3308 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Kinstlinger, I. S. et al. Generation of model tissues with dendritic vascular networks via sacrificial laser-sintered carbohydrate templates. Nat. Biomed. Eng. 4, 916–932 (2020).

    Article  CAS  PubMed  Google Scholar 

  216. Kinstlinger, I. S. & Miller, J. S. 3D-printed fluidic networks as vasculature for engineered tissue. Lab. Chip 16, 2025–2043 (2016).

    Article  CAS  PubMed  Google Scholar 

  217. TG, P. & C, S. Vascular wall shear stress: basic principles and methods. Hellenic J. Cardiol. 46, 9–15 (2005).

    Google Scholar 

  218. Koons, G. L., Diba, M. & Mikos, A. G. Materials design for bone-tissue engineering. Nat. Rev. Mater. 5, 584–603 (2020).

    Article  CAS  Google Scholar 

  219. Frassica, M. T. & Grunlan, M. A. Perspectives on synthetic materials to guide tissue regeneration for osteochondral defect repair. ACS Biomater. Sci. Eng. 6, 4324–4336 (2020).

    Article  CAS  PubMed  Google Scholar 

  220. Wainwright, D. J. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burn 21, 243–248 (1995).

    Article  CAS  Google Scholar 

  221. Veves, A., Falanga, V., Armstrong, D. G. & Sabolinski, M. L. Graftskin, a human skin equivalent, is effective in the management of noninfected neuropathic diabetic foot ulcers: a prospective randomized multicenter clinical trial. Diabetes Care 24, 290–295 (2001).

    Article  CAS  PubMed  Google Scholar 

  222. Bargehr, J. et al. Epicardial cells derived from human embryonic stem cells augment cardiomyocyte-driven heart regeneration. Nat. Biotechnol. 37, 895–906 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Kearney, C. J. et al. Switchable release of entrapped nanoparticles from alginate hydrogels. Adv. Healthc. Mater. 4, 1634–1639 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Abedi, M. H., Lee, J., Piraner, D. I. & Shapiro, M. G. Thermal control of engineered T-cells. ACS Synth. Biol. 9, 1941–1950 (2020).

    Article  CAS  PubMed  Google Scholar 

  225. Chen, R., Romero, G., Christiansen, M. G., Mohr, A. & Anikeeva, P. Wireless magnetothermal deep brain stimulation. Science 347, 1477–1480 (2015).

    Article  CAS  PubMed  Google Scholar 

  226. Krawczyk, K. et al. Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice. Science 368, 993–1001 (2020).

    Article  CAS  PubMed  Google Scholar 

  227. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Muul, L. M. et al. Persistence and expression of the adenosine deaminase gene for 12 years and immune reaction to gene transfer components: long-term results of the first clinical gene therapy trial. Blood 101, 2563–2569 (2003).

    Article  CAS  PubMed  Google Scholar 

  229. Schweizer, M. T. et al. A phase I study to assess the safety and cancer-homing ability of allogeneic bone marrow-derived mesenchymal stem cells in men with localized prostate cancer. Stem Cell Transl. Med. 8, 441–449 (2019).

    Article  CAS  Google Scholar 

  230. Shapiro, A. M. et al. International trial of the Edmonton protocol for islet transplantation. N. Engl. J. Med. 355, 1318–1330 (2006).

    Article  CAS  PubMed  Google Scholar 

  231. Matsumoto, S., Abalovich, A., Wechsler, C., Wynyard, S. & Elliott, R. B. Clinical benefit of islet xenotransplantation for the treatment of type 1 diabetes. EBioMedicine 12, 255–262 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Ludwig, B. et al. Transplantation of human islets without immunosuppression. Proc. Natl Acad. Sci. USA 110, 19054–19058 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Eriksdotter-Jonhagen, M. et al. Encapsulated cell biodelivery of nerve growth factor to the basal forebrain in patients with Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 33, 18–28 (2012).

    Article  PubMed  CAS  Google Scholar 

  234. Kauper, K. et al. Two-year intraocular delivery of ciliary neurotrophic factor by encapsulated cell technology implants in patients with chronic retinal degenerative diseases. Invest. Ophthalmol. Vis. Sci. 53, 7484–7491 (2012).

    Article  CAS  PubMed  Google Scholar 

  235. Dhawan, A. et al. Alginate microencapsulated human hepatocytes for the treatment of acute liver failure in children. J. Hepatol. 72, 877–884 (2020).

    Article  CAS  PubMed  Google Scholar 

  236. Xu, X. et al. A CRISPR-based approach for targeted DNA demethylation. Cell Discov. 2, 16009 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Liu, X. S. et al. Editing DNA methylation in the mammalian genome. Cell 167, 233–247. e217 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Yue, Y. et al. Extensive germline genome engineering in pigs. Nat. Biomed. Eng. 5, 134–143 (2021).

    Article  CAS  PubMed  Google Scholar 

  239. Alessandrini, M., Krause, K. H., Speck, R. F. & Pepper, M. S. Transplantation of gene-modified haematopoietic stem cells: application and clinical considerations. S. Afr. Med. J. 109, 64–69 (2019).

    Article  CAS  PubMed  Google Scholar 

  240. Lutzko, C. et al. Genetically corrected autologous stem cells engraft, but host immune responses limit their utility in canine alpha-L-iduronidase deficiency. Blood 93, 1895–1905 (1999).

    CAS  PubMed  Google Scholar 

  241. Squeri, G. et al. Targeting a pre-existing anti-transgene T cell response for effective gene therapy of MPS-I in the mouse model of the disease. Mol. Ther. 27, 1215–1227 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Thompson, A. A. et al. Gene therapy in patients with transfusion-dependent beta-thalassemia. N. Engl. J. Med. 378, 1479–1493 (2018).

    Article  CAS  PubMed  Google Scholar 

  243. Geller, M. A. & Miller, J. S. Use of allogeneic NK cells for cancer immunotherapy. Immunotherapy 3, 1445–1459 (2011).

    Article  CAS  PubMed  Google Scholar 

  244. Ankrum, J. A., Ong, J. F. & Karp, J. M. Mesenchymal stem cells: immune evasive, not immune privileged. Nat. Biotechnol. 32, 252–260 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Brusko, T. M., Russ, H. A. & Stabler, C. L. Strategies for durable beta cell replacement in type 1 diabetes. Science 373, 516–522 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Barney, L. et al. Optimization of shielded encapsulated cell therapy for hemophilia and beyond. Mol. Ther. 28, 364 (2020).

    Google Scholar 

  247. Anderson, J. M., Rodriguez, A. & Chang, D. T. Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008).

    Article  CAS  PubMed  Google Scholar 

  248. Vegas, A. J. et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat. Med. 22, 306–311 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Ibraheim, R. et al. All-in-one adeno-associated virus delivery and genome editing by Neisseria meningitidis Cas9 in vivo. Genome Biol. 19, 137 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  251. Fonfara, I., Richter, H., Bratovic, M., Le Rhun, A. & Charpentier, E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532, 517–521 (2016).

    Article  CAS  PubMed  Google Scholar 

  252. Zetsche, B. et al. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat. Biotechnol. 35, 31–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  253. Abudayyeh, O. O. et al. RNA targeting with CRISPR-Cas13. Nature 550, 280–284 (2017). This study describes the use of CRISPR–Cas13 to target endogenous RNAs for degradation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  254. Konermann, S. et al. Transcriptome engineering with RNA-targeting Type VI-D CRISPR effectors. Cell 173, 665–676.e614 (2018). This study describes the development of the widely used dCas9–VPR CRISPRa platform.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Pickar-Oliver, A. et al. Targeted transcriptional modulation with type I CRISPR-Cas systems in human cells. Nat. Biotechnol. 37, 1493–1501 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Cameron, P. et al. Harnessing type I CRISPR-Cas systems for genome engineering in human cells. Nat. Biotechnol. 37, 1471–1477 (2019).

    Article  CAS  PubMed  Google Scholar 

  257. Kleinstiver, B. P. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2016). References 257 and 258 highlight engineering efforts resulting in Cas9 proteins with improved specificity profiles in human cells.

    Article  CAS  PubMed  Google Scholar 

  259. Chen, J. S. et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550, 407–410 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  261. Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368, 290–296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013). References 263 and 264 are landmark studies describing the use of the dCas9 protein as a platform to modulate gene expression in human cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015).

    Article  CAS  PubMed  Google Scholar 

  266. Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Yeo, N. C. et al. An enhanced CRISPR repressor for targeted mammalian gene regulation. Nat. Methods 15, 611–616 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Stepper, P. et al. Efficient targeted DNA methylation with chimeric dCas9-Dnmt3a-Dnmt3L methyltransferase. Nucleic Acids Res. 45, 1703–1713 (2017).

    Article  CAS  PubMed  Google Scholar 

  269. O’Geen, H. et al. dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression. Nucleic Acids Res. 45, 9901–9916 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge editorial assistance of J. Veljkovic Garafalo, an employee of Sigilon Therapeutics (Cambridge, MA). Work in the authors’ laboratories was supported by the JDRF grant JDRF 3-SRA-2021-1023-S-B (O.V.), the US NIH, grants R01DK120459 (O.V.), R35GM143532 (I.B.H.), R21EB030772 (I.B.H.) and R01EB032272 (C.J.B.), ONR N00014-21-1-4006 (C.J.B.) the Cancer Prevention & Research Institute of Texas (CPRIT) grants RR170030 (I.B.H.) and RP210205 (O.V.).

Author information

Authors and Affiliations

Authors

Contributions

All authors performed literature reviews and participated in the writing of the manuscript. C.J.B., I.B.H. and O.V. share corresponding author responsibilities.

Corresponding authors

Correspondence to Caleb J. Bashor, Isaac B. Hilton or Omid Veiseh.

Ethics declarations

Competing interests

All authors are inventors on several patents in the field of cell-based therapeutics, biomaterials, genome editing and genetic engineering that are owned by their current or former employers. D.M.S. holds equity in Sigilon Therapeutics and is currently an employee and shareholder of Arbor Bio. H.B. holds equity in Sigilon Therapeutics and is currently an employee and shareholder of Flagship Pioneering. O.V. is co-founder, holds equity in and receives consulting payments from Sigilon Therapeutics, Pana Bio, Avenge Bio and Curada Bio. O.V. has received compensation for consulting from Establishment Labs and Auregen Bio Therapeutics SA. The views presented here should not be considered as endorsements of any specific product or company.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Adoptive cell transfer

The transfer of cells into a recipient patient.

Gene therapy

A therapy whereby vectors are administered to modify a person’s genes to treat or cure a disease.

Chimeric antigen receptors

Receptors that have been engineered to direct immune cell response to cells expressing specific antigens.

Cell therapy

A form of treatment in which viable cells are administered to a patient to elicit a medicinal effect.

Epigenome editing

Genetic engineering approach in which the epigenome is modified at specific genomic sites using engineered molecules.

Allogeneic cell therapies

Cell therapy interventions that rely on a single donor source to treat many patients.

Pluripotent stem cells

Cells that have the capacity to self-renew by dividing and to differentiate into various phenotypes.

Universal cells

Cells that have been genetically manipulated to remove required components for immune recognition to create a universal donor.

Non-homologous end joining

(NHEJ). An error-prone mechanism in which broken ends of DNA are joined together.

Homology-directed repair

(HDR). A precise repair mechanism that uses homologous donor DNA to repair DNA damage.

Base editing

CRISPR–Cas9-based genome editing technology that allows the introduction of point mutations in the DNA without generating double-stranded breaks.

Safety kill switch

Engineered gene into therapeutic cells that can be activated using small molecules to induce apoptosis to enhance the safety of cell therapy.

Switch-like activation

When system activates abruptly at a specific threshold of input.

Boolean AND-gate

A system that performs a computation whereby an output occurs only when all the inputs are present.

Hypoimmunogenic

Describes genetically manipulated cells designed to avoid adaptive and innate immune surveillance.

Autologous cell therapy

Cell therapy intervention that uses an individual’s own cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashor, C.J., Hilton, I.B., Bandukwala, H. et al. Engineering the next generation of cell-based therapeutics. Nat Rev Drug Discov 21, 655–675 (2022). https://doi.org/10.1038/s41573-022-00476-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-022-00476-6

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research