Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Heterogeneity of type 2 innate lymphoid cells

Abstract

More than a decade ago, type 2 innate lymphoid cells (ILC2s) were discovered to be members of a family of innate immune cells consisting of five subsets that form a first line of defence against infections before the recruitment of adaptive immune cells. Initially, ILC2s were implicated in the early immune response to parasitic infections, but it is now clear that ILC2s are highly diverse and have crucial roles in the regulation of tissue homeostasis and repair. ILC2s can also regulate the functions of other type 2 immune cells, including T helper 2 cells, type 2 macrophages and eosinophils. Dysregulation of ILC2s contributes to type 2-mediated pathology in a wide variety of diseases, potentially making ILC2s attractive targets for therapeutic interventions. In this Review, we focus on the spectrum of ILC2 phenotypes that have been described across different tissues and disease states with an emphasis on human ILC2s. We discuss recent insights in ILC2 biology and suggest how this knowledge might be used for novel disease treatments and improved human health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The plasticity and migration of ILC2s generate phenotypic diversity in tissues.
Fig. 2: ILC2s can contribute to tumour rejection or tumour growth.
Fig. 3: ILC2s are involved in adipose tissue homeostasis.
Fig. 4: ILC2s are involved in virus-induced exacerbations of airway inflammation.

Similar content being viewed by others

References

  1. Neill, D. R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Price, A. E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl Acad. Sci. USA 107, 11489–11494 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mjosberg, J. M. et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat. Immunol. 12, 1055–1062 (2011).

    Article  PubMed  Google Scholar 

  5. Monticelli, L. A. et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12, 1045–1054 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fort, M. M. et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15, 985–995 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Fallon, P. G. et al. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J. Exp. Med. 203, 1105–1116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mazzurana, L. et al. Tissue-specific transcriptional imprinting and heterogeneity in human innate lymphoid cells revealed by full-length single-cell RNA-sequencing. Cell Res. 31, 554–568 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bal, S. M., Golebski, K. & Spits, H. Plasticity of innate lymphoid cell subsets. Nat. Rev. Immunol. 20, 552–565 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Seehus, C. R. et al. Alternative activation generates IL-10 producing type 2 innate lymphoid cells. Nat. Commun. 8, 1900 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Golebski, K. et al. IL-1beta, IL-23, and TGF-beta drive plasticity of human ILC2s towards IL-17-producing ILCs in nasal inflammation. Nat. Commun. 10, 2162 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Morita, H. et al. Induction of human regulatory innate lymphoid cells from group 2 innate lymphoid cells by retinoic acid. J. Allergy Clin. Immunol. 143, 2190–2201.e9 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Golebski, K. et al. Induction of IL-10-producing type 2 innate lymphoid cells by allergen immunotherapy is associated with clinical response. Immunity 54, 291–307.e7 (2021). This study describes the differentiation of human IL-10-producing ‘regulatory’ ILC2s and their role in allergen immunotherapy.

    Article  CAS  PubMed  Google Scholar 

  14. Huang, Y. et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science 359, 114–119 (2018). The first description of the gut–lung axis of migratory ILC2s in helminth infection in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van der Ploeg, E. K. et al. Steroid-resistant human inflammatory ILC2s are marked by CD45RO and elevated in type 2 respiratory diseases. Sci. Immunol. 6, eabd3489 (2021). This study describes activated and steroid-resistant CD45R0+ ILC2s in patients with asthma and chronic rhinosinusitis with nasal polyps.

    Article  PubMed  Google Scholar 

  16. Oyesola, O. O. et al. The prostaglandin D2 receptor CRTH2 promotes IL-33-induced ILC2 accumulation in the lung. J. Immunol. 204, 1001–1011 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wojno, E. D. et al. The prostaglandin D(2) receptor CRTH2 regulates accumulation of group 2 innate lymphoid cells in the inflamed lung. Mucosal Immunol. 8, 1313–1323 (2015).

    Article  PubMed  Google Scholar 

  18. Nagasawa, M. et al. KLRG1 and NKp46 discriminate subpopulations of human CD117+CRTH2- ILCs biased toward ILC2 or ILC3. J. Exp. Med. 216, 1762–1776 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu, S. et al. Optimal identification of human conventional and nonconventional (CRTH2-IL7Ralpha-) ILC2s using additional surface markers. J. Allergy Clin. Immunol. 146, 390–405 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nagasawa, M., Germar, K., Blom, B. & Spits, H. Human CD5+ innate lymphoid cells are functionally immature and their development from CD34+ progenitor cells is regulated by Id2. Front. Immunol. 8, 1047 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hernandez, D. C. et al. An in vitro platform supports generation of human innate lymphoid cells from CD34+ hematopoietic progenitors that recapitulate ex vivo identity. Immunity 54, 2417–2432.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Alisjahbana, A. et al. CD5 surface expression marks intravascular human innate lymphoid cells that have a distinct ontogeny and migrate to the lung. Front. Immunol. 12, 752104 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maric, J. et al. Cytokine-induced endogenous production of prostaglandin D2 is essential for human group 2 innate lymphoid cell activation. J. Allergy Clin. Immunol. 143, 2202–2214.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Hochdorfer, T., Winkler, C., Pardali, K. & Mjosberg, J. Expression of c-Kit discriminates between two functionally distinct subsets of human type 2 innate lymphoid cells. Eur. J. Immunol. 49, 884–893 (2019).

    Article  PubMed  Google Scholar 

  25. Bernink, J. H. et al. c-Kit-positive ILC2s exhibit an ILC3-like signature that may contribute to IL-17-mediated pathologies. Nat. Immunol. 20, 992–1003 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Bal, S. M. et al. IL-1beta, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat. Immunol. 17, 636–645 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Bernink, J. H. et al. Interleukin-12 and -23 control plasticity of CD127+ group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity 43, 146–160 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Bernink, J. H. et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat. Immunol. 14, 221–229 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Lim, A. I. et al. IL-12 drives functional plasticity of human group 2 innate lymphoid cells. J. Exp. Med. 213, 569–583 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ohne, Y. et al. IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity. Nat. Immunol. 17, 646–655 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Silver, J. S. et al. Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. Nat. Immunol. 17, 626–635 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Almeida, F. F. & Belz, G. T. Innate lymphoid cells: models of plasticity for immune homeostasis and rapid responsiveness in protection. Mucosal Immunol. 9, 1103–1112 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Jegatheeswaran, S., Mathews, J. A. & Crome, S. Q. Searching for the elusive regulatory innate lymphoid cell. J. Immunol. 207, 1949–1957 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Bando, J. K. et al. ILC2s are the predominant source of intestinal ILC-derived IL-10. J. Exp. Med. 217, e20191520 (2020).

    Article  PubMed  Google Scholar 

  35. Chantveerawong, T. et al. Increased circulating CRTH2+ Tregs are associated with asthma control and exacerbation. Allergy 77, 681–685 (2021).

    Article  PubMed  Google Scholar 

  36. Boonpiyathad, T. et al. IL-10-producing innate lymphoid cells increased in patients with house dust mite allergic rhinitis following immunotherapy. J. Allergy Clin. Immunol. 147, 1507–1510.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Howard, E. et al. IL-10 production by ILC2s requires Blimp-1 and cMaf, modulates cellular metabolism, and ameliorates airway hyperreactivity. J. Allergy Clin. Immunol. 147, 1281–1295.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Gasteiger, G., Fan, X., Dikiy, S., Lee, S. Y. & Rudensky, A. Y. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 350, 981–985 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ricardo-Gonzalez, R. R. et al. Tissue-specific pathways extrude activated ILC2s to disseminate type 2 immunity. J. Exp. Med. 217, e20191172 (2020). This study tracks the origin of circulating ILC2s in mice to conclude that tissue-specific activation of ILC2s contributes to systemic type 2 immunity.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hurrell, B. P. et al. Distinct roles of LFA-1 and ICAM-1 on ILC2s control lung infiltration, effector functions, and development of airway hyperreactivity. Front. Immunol. 11, 542818 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, S. et al. Neuropilin-1 mediates lung tissue-specific control of ILC2s function in type 2 immunity. Nat. Immunol. 23, 237–250 (2021).

    Article  Google Scholar 

  42. Zeis, P. et al. In situ maturation and tissue adaptation of type 2 innate lymphoid cell progenitors. Immunity 53, 775–792.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Campbell, L. et al. ILC2s mediate systemic innate protection by priming mucus production at distal mucosal sites. J. Exp. Med. 216, 2714–2723 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fonseca, R. et al. Developmental plasticity allows outside-in immune responses by resident memory T cells. Nat. Immunol. 21, 412–421 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Forkel, M. et al. Distinct alterations in the composition of mucosal innate lymphoid cells in newly diagnosed and established Crohn’s disease and ulcerative colitis. J. Crohns Colitis 13, 67–78 (2019).

    Article  PubMed  Google Scholar 

  46. Pu, Q. et al. Gut microbiota regulate gut-lung axis inflammatory responses by mediating ILC2 compartmental migration. J. Immunol. 207, 257–267 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Hepworth, M. R. et al. Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells. Science 348, 1031–1035 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xiao, S. Y., Li, Y. & Chen, W. F. Kinetics of thymocyte developmental process in fetal and neonatal mice. Cell Res. 13, 265–273 (2003).

    Article  PubMed  Google Scholar 

  49. Schneider, C. et al. A metabolite-triggered tuft cell-ILC2 circuit drives small intestinal remodeling. Cell 174, 271–284.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, N. et al. Memory CD4+ T cells are generated in the human fetal intestine. Nat. Immunol. 20, 301–312 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schreurs, R. et al. Human fetal TNF-alpha-cytokine-producing CD4+ effector memory T cells promote intestinal development and mediate inflammation early in life. Immunity 50, 462–476.e8 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Mao, K. et al. Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism. Nature 554, 255–259 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Chen, R. et al. Allergen-induced increases in sputum levels of group 2 innate lymphoid cells in subjects with asthma. Am. J. Respir. Crit. Care Med. 196, 700–712 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Winkler, C. et al. Activation of group 2 innate lymphoid cells after allergen challenge in asthmatic patients. J. Allergy Clin. Immunol. 144, 61–69.e7 (2019). This study describes activated ILC2s in blood and BAL fluid following lung segmental allergen provocation in patients with allergic asthma.

    Article  CAS  PubMed  Google Scholar 

  55. Miller, M. M. et al. BATF acts as an essential regulator of IL-25-responsive migratory ILC2 cell fate and function. Sci. Immunol. 5, eaay3994 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Puttur, F. et al. Pulmonary environmental cues drive group 2 innate lymphoid cell dynamics in mice and humans. Sci. Immunol. 4, eaav7638 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ercolano, G., Falquet, M., Vanoni, G., Trabanelli, S. & Jandus, C. ILC2s: new actors in tumor immunity. Front. Immunol. 10, 2801 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xu, X. et al. Group-2 innate lymphoid cells promote HCC progression through CXCL2-neutrophil-induced immunosuppression. Hepatology 74, 2526–2543 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Heinrich, B. et al. The tumour microenvironment shapes innate lymphoid cells in patients with hepatocellular carcinoma. Gut https://doi.org/10.1136/gutjnl-2021-325288 (2021).

    Article  PubMed  Google Scholar 

  60. Jacquelot, N. et al. Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma. Nat. Immunol. 22, 851–864 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Moral, J. A. et al. ILC2s amplify PD-1 blockade by activating tissue-specific cancer immunity. Nature 579, 130–135 (2020). The first description of the role of ILC2s in mediating the effects of anti-PD1 cancer immunotherapy in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Qi, J. et al. Single-cell transcriptomic landscape reveals tumor specific innate lymphoid cells associated with colorectal cancer progression. Cell Rep. Med. 2, 100353 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Goc, J. et al. Dysregulation of ILC3s unleashes progression and immunotherapy resistance in colon cancer. Cell 184, 5015–5030.e16 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ercolano, G. et al. PPAR drives IL-33-dependent ILC2 pro-tumoral functions. Nat. Commun. 12, 2538 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huang, Q. et al. Type 2 innate lymphoid cells protect against colorectal cancer progression and predict improved patient survival. Cancers 13, 559 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Trabanelli, S. et al. Tumour-derived PGD2 and NKp30-B7H6 engagement drives an immunosuppressive ILC2-MDSC axis. Nat. Commun. 8, 593 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wu, L. et al. Mesenchymal PGD2 activates an ILC2-Treg axis to promote proliferation of normal and malignant HSPCs. Leukemia 34, 3028–3041 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schuijs, M. J. et al. ILC2-driven innate immune checkpoint mechanism antagonizes NK cell antimetastatic function in the lung. Nat. Immunol. 21, 998–1009 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Batyrova, B. et al. PD-1 expression affects cytokine production by ILC2 and is influenced by peroxisome proliferator-activated receptor-gamma. Immun. Inflamm. Dis. 8, 8–23 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Wang, S. et al. Transdifferentiation of tumor infiltrating innate lymphoid cells during progression of colorectal cancer. Cell Res. 30, 610–622 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ricardo-Gonzalez, R. R. et al. Tissue signals imprint ILC2 identity with anticipatory function. Nat. Immunol. 19, 1093–1099 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schneider, C. et al. Tissue-resident group 2 innate lymphoid cells differentiate by layered ontogeny and in situ perinatal priming. Immunity 50, 1425–1438.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Brestoff, J. R. et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242–246 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Lee, M. W. et al. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160, 74–87 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Rana, B. M. J. et al. A stromal cell niche sustains ILC2-mediated type-2 conditioning in adipose tissue. J. Exp. Med. 216, 1999–2009 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Koga, S. et al. Peripheral PDGFRalpha+gp38+ mesenchymal cells support the differentiation of fetal liver-derived ILC2. J. Exp. Med. 215, 1609–1626 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shan, B. et al. Cold-responsive adipocyte progenitors couple adrenergic signaling to immune cell activation to promote beige adipocyte accrual. Genes Dev. 35, 1333–1338 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cardoso, F. et al. Neuro-mesenchymal units control ILC2 and obesity via a brain-adipose circuit. Nature 597, 410–414 (2021). Describes ILC2s as effectors in the neuronal regulation of adipose tissue metabolism.

    Article  CAS  PubMed  Google Scholar 

  79. Galle-Treger, L. et al. Costimulation of type-2 innate lymphoid cells by GITR promotes effector function and ameliorates type 2 diabetes. Nat. Commun. 10, 713 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rodriguez-Rodriguez, N., Gogoi, M. & McKenzie, A. N. J. Group 2 innate lymphoid cells: team players in regulating asthma. Annu. Rev. Immunol. 39, 167–198 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. He, J. et al. Bilirubin represents a negative regulator of ILC2 in allergic airway inflammation. Mucosal Immunol. https://doi.org/10.1038/s41385-021-00460-0 (2021).

    Article  PubMed  Google Scholar 

  82. Karagiannis, F. et al. Lipid-droplet formation drives pathogenic group 2 innate lymphoid cells in airway inflammation. Immunity 52, 620–634.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Thio, C. L., Chi, P. Y., Lai, A. C. & Chang, Y. J. Regulation of type 2 innate lymphoid cell-dependent airway hyperreactivity by butyrate. J. Allergy Clin. Immunol. 142, 1867–1883.e12 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Surace, L. et al. Dichotomous metabolic networks govern human ILC2 proliferation and function. Nat. Immunol. 22, 1367–1374 (2021). The first report of the metabolic requirements for maintenance, proliferation and effector cytokine production of human ILC2s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wallrapp, A. et al. Calcitonin gene-related peptide negatively regulates alarmin-driven type 2 innate lymphoid cell responses. Immunity 51, 709–723.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wallrapp, A. et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 549, 351–356 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nagashima, H. et al. Neuropeptide CGRP limits group 2 innate lymphoid cell responses and constrains type 2 inflammation. Immunity 51, 682–695.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sui, P. et al. Pulmonary neuroendocrine cells amplify allergic asthma responses. Science 360, eaan8546 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Mayer, J. U. et al. Homeostatic IL-13 in healthy skin directs dendritic cell differentiation to promote TH2 and inhibit TH17 cell polarization. Nat. Immunol. 22, 1538–1550 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Kim, B. S. et al. TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci. Transl. Med. 5, 170ra116 (2013).

    Article  Google Scholar 

  91. Bielecki, P. et al. Skin-resident innate lymphoid cells converge on a pathogenic effector state. Nature 592, 128–132 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Alkon, N. et al. Single-cell analysis reveals innate lymphoid cell lineage infidelity in atopic dermatitis. J. Allergy Clin. Immunol. 149, 624–639 (2021).

    Article  PubMed  Google Scholar 

  93. Teunissen, M. B. M. et al. Composition of innate lymphoid cell subsets in the human skin: enrichment of NCR+ ILC3 in lesional skin and blood of psoriasis patients. J. Invest. Dermatol. 134, 2351–2360 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Kloverpris, H. N. et al. Innate lymphoid cells are depleted irreversibly during acute HIV-1 infection in the absence of viral suppression. Immunity 44, 391–405 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Warren, K. J. et al. Neutralization of IL-33 modifies the type 2 and type 3 inflammatory signature of viral induced asthma exacerbation. Respir. Res. 22, 206 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fonseca, W. et al. Uric acid pathway activation during respiratory virus infection promotes Th2 immune response via innate cytokine production and ILC2 accumulation. Mucosal Immunol. 13, 691–701 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vu, L. D. et al. Elevated levels of type 2 respiratory innate lymphoid cells in human infants with severe respiratory syncytial virus bronchiolitis. Am. J. Respir. Crit. Care Med. 200, 1414–1423 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fonseca, W., Lukacs, N. W., Elesela, S. & Malinczak, C. A. Role of ILC2 in viral-induced lung pathogenesis. Front. Immunol. 12, 675169 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rajput, C. et al. Rhinovirus C infection induces type 2 innate lymphoid cell expansion and eosinophilic airway inflammation. Front. Immunol. 12, 649520 (2021). Demonstrates that the accumulation of bronchial ILC2s during in vivo rhinovirus infection correlates with respiratory symptoms in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dhariwal, J. et al. Pulmonary innate lymphoid cell responses during rhinovirus-induced asthma exacerbations in vivo: a clinical trial. Am. J. Respir. Crit. Care Med. 204, 1259–1273 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Satoh-Takayama, N. et al. Bacteria-induced group 2 innate lymphoid cells in the stomach provide immune protection through induction of IgA. Immunity 52, 635–649.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Kramer, B. et al. Compartment-specific distribution of human intestinal innate lymphoid cells is altered in HIV patients under effective therapy. PLoS Pathog. 13, e1006373 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ordovas-Montanes, J. et al. Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature 560, 649–654 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Saco, T., Ugalde, I. C., Cardet, J. C. & Casale, T. B. Strategies for choosing a biologic for your patient with allergy or asthma. Ann. Allergy Asthma Immunol. 127, 627–637 (2021).

    Article  PubMed  Google Scholar 

  105. Bacharier, L. B. et al. Dupilumab in children with uncontrolled moderate-to-severe asthma. N. Engl. J. Med. 385, 2230–2240 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Bruce, D. W. et al. Third party type 2 innate lymphoid cells prevent and treat GI tract GvHD. Blood Adv. 5, 4578–4589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Huang, Q. et al. IL-10 producing type 2 innate lymphoid cells prolong islet allograft survival. EMBO Mol. Med. 12, e12305 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. DuPage, M. & Bluestone, J. A. Harnessing the plasticity of CD4+ T cells to treat immune-mediated disease. Nat. Rev. Immunol. 16, 149–163 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Sica, A. & Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122, 787–795 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Garcia, M. et al. Innate lymphoid cell composition associates with COVID-19 disease severity. Clin. Transl. Immunol. 9, e1224 (2020).

    Article  CAS  Google Scholar 

  111. Gomez-Cadena, A. et al. Severe COVID-19 patients exhibit an ILC2 NKG2D+ population in their impaired ILC compartment. Cell. Mol. Immunol. 18, 484–486 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Schulz-Kuhnt, A. et al. ILC2 lung-homing in cystic fibrosis patients: functional involvement of CCR6 and impact on respiratory failure. Front. Immunol. 11, 691 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. Bernink, K. Golabski and R. Stadhouders for helpful input on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Hergen Spits or Jenny Mjösberg.

Ethics declarations

Competing interests

H.S. is a consultant for GlaxoSmithKline. J.M. declares no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks G. Eberl, N. Satoh-Takayama and R. Locksley for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Alarmin

A type of damage-associated molecular pattern composed of endogenously produced proteins or peptides, including IL-33, that are released upon immune activation, degranulation, cell injury or death.

Chronic rhinosinusitis with nasal polyps

(CRSwNP). A chronic inflammation of sinonasal tissues, resulting in the formation of inflammatory lesions and polyps, and manifested as rhinorrhoea, nasal congestion, and facial pressure and/or pain.

Beiging

The process by which white adipose tissue is converted to a phenotype more similar to that of brown adipose tissue, thereby increasing energy expenditure by reducing lipids stored within the adipose tissue.

Enkephalins

Small peptides that function as neurotransmitters and that bind to opioid receptors.

Metabolic syndrome

A combination of conditions, including high blood pressure, high blood glucose levels, high levels of waist body fat, and high cholesterol or triglyceride levels, that predisposes for development of heart disease and type 2 diabetes.

Ketogenic diet

Dietary intake of high levels of fat and low levels of carbohydrate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spits, H., Mjösberg, J. Heterogeneity of type 2 innate lymphoid cells. Nat Rev Immunol 22, 701–712 (2022). https://doi.org/10.1038/s41577-022-00704-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-022-00704-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research