Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of vaccines in combatting antimicrobial resistance

Abstract

The use of antibiotics has enabled the successful treatment of bacterial infections, saving the lives and improving the health of many patients worldwide. However, the emergence and spread of antimicrobial resistance (AMR) has been highlighted as a global threat by different health organizations, and pathogens resistant to antimicrobials cause substantial morbidity and death. As resistance to multiple drugs increases, novel and effective therapies as well as prevention strategies are needed. In this Review, we discuss evidence that vaccines can have a major role in fighting AMR. Vaccines are used prophylactically, decreasing the number of infectious disease cases, and thus antibiotic use and the emergence and spread of AMR. We also describe the current state of development of vaccines against resistant bacterial pathogens that cause a substantial disease burden both in high-income countries and in low- and medium-income countries, discuss possible obstacles that hinder progress in vaccine development and speculate on the impact of next-generation vaccines against bacterial infectious diseases on AMR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of vaccines on antimicrobial resistance.
Fig. 2: Mechanisms of action of antibiotics and vaccines and emergence of resistance.
Fig. 3: Vaccine development for antimicrobial-resistant pathogens.

Similar content being viewed by others

References

  1. Kapoor, G., Saigal, S. & Elongavan, A. Action and resistance mechanisms of antibiotics: a guide for clinicians. J. Anaesthesiol. Clin. Pharmacol. 33, 300–305 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Mladenovic-Antic, S. et al. Correlation between antimicrobial consumption and antimicrobial resistance of Pseudomonas aeruginosa in a hospital setting: a 10-year study. J. Clin. Pharm. Ther. 41, 532–537 (2016).

    PubMed  CAS  Google Scholar 

  3. Hay, S. I. et al. Measuring and mapping the global burden of antimicrobial resistance. BMC Med. 16, 78 (2018).

    PubMed  PubMed Central  Google Scholar 

  4. IACG No Time To Wait: Securing The Future From Drug-Resistant Infections (2019).

  5. United Nations. Political Declaration of the High-Level Meeting of the General Assembly on Antimicrobial Resistance, A/71/L.2. 22 (2016).

  6. Aslam, B. et al. Antibiotic resistance: a rundown of a global crisis. Infect. Drug Resist. 11, 1645–1658 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Rappuoli, R., Santoni, A. & Mantovani, A. Vaccines: an achievement of civilization, a human right, our health insurance for the future. J. Exp. Med. 216, 7–9 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Kennedy, D. A. & Read, A. F. Why the evolution of vaccine resistance is less of a concern than the evolution of drug resistance. Proc. Natl Acad. Sci. USA 115, 12878–12886 (2018). This review compares emergence of drug resistance and vaccine resistance and explains why vaccine resistance is not a major concern.

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Baker, S. J., Payne, D. J., Rappuoli, R. & De Gregorio, E. Technologies to address antimicrobial resistance. Proc. Natl Acad. Sci. USA 115, 12887–12895 (2018). This review describes how innovative vaccine technologies have the potential to boost the development of vaccines targeting several classes of multidrug-resistant bacteria.

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Klugman, K. P. & Black, S. Impact of existing vaccines in reducing antibiotic resistance: Primary and secondary effects. Proc. Natl Acad. Sci. USA 115, 12896–12901 (2018).

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Jansen, K. U., Knirsch, C. & Anderson, A. S. The role of vaccines in preventing bacterial antimicrobial resistance. Nat. Med. 24, 10–19 (2018). This review highlights the value of vaccines as one of the modalities to combat AMR globally, using select examples.

    PubMed  CAS  Google Scholar 

  12. Cassini, A. et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect. Dis. 19, 56–66 (2019).

    PubMed  PubMed Central  Google Scholar 

  13. CDC. Antibiotic Resistance Threats in the United States, 2019. https://www.cdc.gov/DrugResistance/Biggest-Threats.html (Department of Health and Human Services, 2019). This is a CDC report with the latest national death and infection estimates that underscore the continued threat of antibiotic resistance in the USA.

  14. World Health Organization. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1 (2017). This WHO document reports a list of antibiotic-resistant bacteria to help in prioritizing research and development investments for new and effective interventions

  15. CDC, Healthcare-associated infections, https://www.cdc.gov/hai/patientsafety/ar-hospitals.html

  16. Hersh, A. L., Chambers, H. F., Maselli, J. H. & Gonzales, R. National trends in ambulatory visits and antibiotic prescribing for skin and soft-tissue infections. Arch. Intern. Med. 168, 1585–1591 (2008).

    PubMed  Google Scholar 

  17. Prosperi, M. et al. Molecular epidemiology of community-associated methicillin-resistant Staphylococcus aureus in the genomic era: a cross-sectional study. Sci. Rep. 3, 1902 (2013).

    PubMed  PubMed Central  Google Scholar 

  18. Khan, M. S. et al. ‘LMICs as reservoirs of AMR’: a comparative analysis of policy discourse on antimicrobial resistance with reference to Pakistan. Health Policy Plan. 34, 178–187 (2019).

    PubMed  Google Scholar 

  19. FAO Global Forum on Food Security and Nutrition, http://www.fao.org/3/cb0863en/cb0863en.pdf

  20. Founou, R. C., Founou, L. L. & Essack, S. Y. Clinical and economic impact of antibiotic resistance in developing countries: a systematic review and meta-analysis. PLoS ONE 12, e0189621 (2017). This study analyses the published literature on the clinical and economic implications of AMR in developing countries.

    PubMed  PubMed Central  Google Scholar 

  21. Ayukekbong, J. A., Ntemgwa, M. & Atabe, A. N. The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob. Resist. Infect. Control. 6, 47 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. Bagnoli, F. & Payne, D. J. Reaction: alternative modalities to address antibiotic-resistant pathogens. Chem 3, 369–372 (2017).

    CAS  Google Scholar 

  23. Romanò, L. et al. Hepatitis B vaccination. Hum. Vaccin. Immunother. 11, 53–57 (2015).

    PubMed  Google Scholar 

  24. Zanetti, A. R., Van Damme, P. & Shouval, D. The global impact of vaccination against hepatitis B: a historical overview. Vaccine 26, 6266–6273 (2008).

    PubMed  Google Scholar 

  25. Octavia, S. et al. Newly emerging clones of Bordetella pertussis carrying prn2 and ptxP3 alleles implicated in Australian pertussis epidemic in 2008-2010. J. Infect. Dis. 205, 1220–1224 (2012).

    PubMed  CAS  Google Scholar 

  26. Cherry, J. D. Epidemic pertussis in 2012–the resurgence of a vaccine-preventable disease. N. Engl. J. Med. 367, 785–787 (2012).

    PubMed  CAS  Google Scholar 

  27. Mooi, F. R. et al. Polymorphism in the Bordetella pertussis virulence factors P.69/pertactin and pertussis toxin in the Netherlands: temporal trends and evidence for vaccine-driven evolution. Infect. Immun. 66, 670–675 (1998).

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Mishra, R. P., Oviedo-Orta, E., Prachi, P., Rappuoli, R. & Bagnoli, F. Vaccines and antibiotic resistance. Curr. Opin. Microbiol. 15, 596–602 (2012).

    PubMed  CAS  Google Scholar 

  29. Miller, E., Andrews, N. J., Waight, P. A., Slack, M. P. & George, R. C. Herd immunity and serotype replacement 4 years after seven-valent pneumococcal conjugate vaccination in England and Wales: an observational cohort study. Lancet Infect. Dis. 11, 760–768 (2011).

    PubMed  CAS  Google Scholar 

  30. Moore, M. R. et al. Population snapshot of emergent Streptococcus pneumoniae serotype 19A in the United States, 2005. J. Infect. Dis. 197, 1016–1027 (2008).

    PubMed  Google Scholar 

  31. Lipsitch, M. & Siber, G. R. How can vaccines contribute to solving the antimicrobial resistance problem? mBio 7, e00428-16 (2016). This minireview describes the significant contributions of current vaccines and the potential of future vaccines in controlling AMR and elucidates the mechanisms by which this can occur.

    PubMed  PubMed Central  Google Scholar 

  32. Sihvonen, R., Siira, L., Toropainen, M., Kuusela, P. & Patari-Sampo, A. Streptococcus pneumoniae antimicrobial resistance decreased in the Helsinki Metropolitan Area after routine 10-valent pneumococcal conjugate vaccination of infants in Finland. Eur. J. Clin. Microbiol. Infect. Dis. 36, 2109–2116 (2017).

    PubMed  CAS  Google Scholar 

  33. John, T. J., Cherian, T. & Raghupathy, P. Haemophilus influenzae disease in children in India: a hospital perspective. Pediatr. Infect. Dis. J. 17, S169–S171 (1998).

    PubMed  CAS  Google Scholar 

  34. Oliver, S. P., Murinda, S. E. & Jayarao, B. M. Impact of antibiotic use in adult dairy cows on antimicrobial resistance of veterinary and human pathogens: a comprehensive review. Foodborne Pathog. Dis. 8, 337–355 (2011).

    PubMed  CAS  Google Scholar 

  35. No authors. Standing up to antimicrobial resistance. Nat Rev Microbiol 8, 836 (2010).

    Google Scholar 

  36. McEwen, S. A. & Fedorka-Cray, P. J. Antimicrobial use and resistance in animals. Clin. Infect. Dis. 34 (Suppl. 3), S93–S106 (2002).

    PubMed  CAS  Google Scholar 

  37. Hoelzer, K. et al. Vaccines as alternatives to antibiotics for food producing animals. Part 1: challenges and needs. Vet. Res. 49, 64 (2018).

    PubMed  PubMed Central  Google Scholar 

  38. Tekle, Y. I. et al. Controlling antimicrobial resistance through targeted, vaccine-induced replacement of strains. PLoS ONE 7, e50688 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  39. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01887912 (2013).

  40. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03090191?term=vaccine&cond=clostridium+difficile&rank=7 (2017).

  41. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02316470?term=vaccine (2014).

  42. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04026009 (2019).

  43. Pechine, S., Bruxelle, J. F., Janoir, C. & Collignon, A. Targeting clostridium difficile surface components to develop immunotherapeutic strategies against Clostridium difficile infection. Front. Microbiol. 9, 1009 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. Starks, C. M. et al. Optimization and qualification of an assay that demonstrates that a FimH vaccine induces functional antibody responses in women with histories of urinary tract infections. Hum. Vaccin. Immunother. https://doi.org/10.1080/21645515.2020.1770034 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Huttner, A. & Gambillara, V. The development and early clinical testing of the ExPEC4V conjugate vaccine against uropathogenic Escherichia coli. Clin. Microbiol. Infect. 24, 1046–1050 (2018).

    PubMed  CAS  Google Scholar 

  46. Huttner, A. et al. Safety, immunogenicity, and preliminary clinical efficacy of a vaccine against extraintestinal pathogenic Escherichia coli in women with a history of recurrent urinary tract infection: a randomised, single-blind, placebo-controlled phase 1b trial. Lancet Infect. Dis. 17, 528–537 (2017).

    PubMed  CAS  Google Scholar 

  47. Fattom, A. et al. Efficacy profile of a bivalent Staphylococcus aureus glycoconjugated vaccine in adults on hemodialysis: phase III randomized study. Hum. Vaccin. Immunother. 11, 632–641 (2015).

    PubMed  PubMed Central  Google Scholar 

  48. Fowler, V. G. et al. Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery: a randomized trial. JAMA 309, 1368–1378 (2013).

    PubMed  CAS  Google Scholar 

  49. Pozzi, C. et al. Vaccines for Staphylococcus aureus and target populations. Curr. Top. Microbiol. Immunol. 409, 491–528 (2017).

    PubMed  CAS  Google Scholar 

  50. Edwards, J. L., Jennings, M. P. & Seib, K. L. Neisseria gonorrhoeae vaccine development: hope on the horizon? Curr. Opin. Infect. Dis. 31, 246–250 (2018).

    PubMed  CAS  Google Scholar 

  51. Vincent, L. R. & Jerse, A. E. Biological feasibility and importance of a gonorrhea vaccine for global public health. Vaccine 37, 7419–7426 (2018).

    PubMed  Google Scholar 

  52. Petousis-Harris, H. et al. Effectiveness of a group B outer membrane vesicle meningococcal vaccine against gonorrhoea in New Zealand: a retrospective case-control study. Lancet 390, 1603–1610 (2017).

    PubMed  CAS  Google Scholar 

  53. Craig, A. P. et al. The potential impact of vaccination on the prevalence of gonorrhea. Vaccine 33, 4520–4525 (2015).

    PubMed  PubMed Central  Google Scholar 

  54. Petousis-Harris, H. & Radcliff, F. J. Exploitation of Neisseria meningitidis group B OMV vaccines against N. gonorrhoeae to inform the development and deployment of effective gonorrhea vaccines. Front. Immunol. 10, 683 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  55. University of Alabama at Birmingham NIH study to explore vaccine for gonorrhea prevention. https://www.uab.edu/news/health/item/10852-nih-study-to-explore-vaccine-for-gonorrhea-prevention (2019).

  56. Raterman, E. L. & Jerse, A. E. Female mouse model of Neisseria gonorrhoeae infection. Methods Mol. Biol. 1997, 413–429 (2019).

    PubMed  CAS  Google Scholar 

  57. Edwards, J. L. & Apicella, M. A. The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clin. Microbiol. Rev. 17, 965–981 (2004).

    PubMed  PubMed Central  CAS  Google Scholar 

  58. The Boston Consulting Group. Vaccines to tackle drug resistant infections. An evaluation of R&D opportunities (2018). This report evaluates the development potential of vaccines against pathogens with high levels of AMR.

  59. Priebe, G. P. & Goldberg, J. B. Vaccines for Pseudomonas aeruginosa: a long and winding road. Expert Rev. Vaccines 13, 507–519 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Doring, G., Meisner, C. & Stern, M. A double-blind randomized placebo-controlled phase III study of a Pseudomonas aeruginosa flagella vaccine in cystic fibrosis patients. Proc. Natl Acad. Sci. USA 104, 11020–11025 (2007).

    PubMed  PubMed Central  Google Scholar 

  61. Pier, G. B. et al. Human immune response to Pseudomonas aeruginosa mucoid exopolysaccharide (alginate) vaccine. Infect. Immun. 62, 3972–3979 (1994).

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Rello, J. et al. A randomized placebo-controlled phase II study of a Pseudomonas vaccine in ventilated ICU patients. Crit. Care 21, 22 (2017).

    PubMed  PubMed Central  Google Scholar 

  63. Bianconi, I. et al. Genome-based approach delivers vaccine candidates against Pseudomonas aeruginosa. Front. Immunol. 9, 3021 (2018).

    PubMed  CAS  Google Scholar 

  64. Choi, M., Tennant, S. M., Simon, R. & Cross, A. S. Progress towards the development of Klebsiella vaccines. Expert Rev. Vaccines 18, 681–691 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Seeberger, P. H. et al. A semi-synthetic glycoconjugate vaccine candidate for carbapenem-resistant Klebsiella pneumoniae. Angew. Chem. Int. Ed. 56, 13973–13978 (2017).

    CAS  Google Scholar 

  66. Zigterman, J. W. et al. Immunogenic properties of octasaccharide-protein conjugates derived from Klebsiella serotype 11 capsular polysaccharide. Infect. Immun. 47, 421–428 (1985).

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Feldman, M. F. et al. A promising bioconjugate vaccine against hypervirulent Klebsiella pneumoniae. Proc. Natl Acad. Sci. USA 116, 18655–18663 (2019).

    PubMed  CAS  PubMed Central  Google Scholar 

  68. Follador, R. et al. The diversity of Klebsiella pneumoniae surface polysaccharides. Microb. Genom. 2, e000073 (2016).

    PubMed  PubMed Central  Google Scholar 

  69. Hegerle, N. et al. Development of a broad spectrum glycoconjugate vaccine to prevent wound and disseminated infections with Klebsiella pneumoniae and Pseudomonas aeruginosa. PLoS ONE 13, e0203143 (2018).

    PubMed  PubMed Central  Google Scholar 

  70. Lee, W. H. et al. Vaccination with Klebsiella pneumoniae-derived extracellular vesicles protects against bacteria-induced lethality via both humoral and cellular immunity. Exp. Mol. Med. 47, e183 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Martin, R. M. et al. Molecular epidemiology of colonizing and infecting isolates of Klebsiella pneumoniae. mSphere https://doi.org/10.1128/mSphere.00261-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  72. World Health Organization. Typhoid vaccines: WHO position paper, March 2018 - recommendations. Vaccine 37, 214–216 (2019).

    PubMed  CAS  Google Scholar 

  73. MacLennan, C. A., Martin, L. B. & Micoli, F. Vaccines against invasive Salmonella disease: current status and future directions. Hum. Vaccin. Immunother. 10, 1478–1493 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. Lin, F. Y. et al. The efficacy of a Salmonella typhi Vi conjugate vaccine in two-to-five-year-old children. N. Engl. J. Med. 344, 1263–1269 (2001).

    PubMed  CAS  Google Scholar 

  75. Wahid, R., Salerno-Goncalves, R., Tacket, C. O., Levine, M. M. & Sztein, M. B. Cell-mediated immune responses in humans after immunization with one or two doses of oral live attenuated typhoid vaccine CVD 909. Vaccine 25, 1416–1425 (2007).

    PubMed  CAS  Google Scholar 

  76. Wahid, R. et al. Oral priming with Salmonella Typhi vaccine strain CVD 909 followed by parenteral boost with the S. Typhi Vi capsular polysaccharide vaccine induces CD27+ IgD- S. Typhi-specific IgA and IgG B memory cells in humans. Clin. Immunol. 138, 187–200 (2011).

    PubMed  CAS  Google Scholar 

  77. Jin, C. et al. Efficacy and immunogenicity of a Vi-tetanus toxoid conjugate vaccine in the prevention of typhoid fever using a controlled human infection model of Salmonella Typhi: a randomised controlled, phase 2b trial. Lancet 390, 2472–2480 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  78. Martin, L. B. et al. Status of paratyphoid fever vaccine research and development. Vaccine 34, 2900–2902 (2016).

    PubMed  CAS  Google Scholar 

  79. Gat, O. et al. Cell-associated flagella enhance the protection conferred by mucosally-administered attenuated Salmonella Paratyphi A vaccines. PLoS Negl. Trop. Dis. 5, e1373 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  80. Micoli, F. et al. O:2-CRM(197) conjugates against Salmonella Paratyphi A. PLoS ONE 7, e47039 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Tennant, S. M., MacLennan, C. A., Simon, R., Martin, L. B. & Khan, M. I. Nontyphoidal salmonella disease: current status of vaccine research and development. Vaccine 34, 2907–2910 (2016).

    PubMed  CAS  Google Scholar 

  82. Lanzilao, L. et al. Strain selection for generation of O-antigen-based glycoconjugate vaccines against invasive nontyphoidal salmonella disease. PLoS ONE 10, e0139847 (2015).

    PubMed  PubMed Central  Google Scholar 

  83. Watson, D. C., Robbins, J. B. & Szu, S. C. Protection of mice against Salmonella typhimurium with an O-specific polysaccharide-protein conjugate vaccine. Infect. Immun. 60, 4679–4686 (1992).

    PubMed  PubMed Central  CAS  Google Scholar 

  84. Simon, R. et al. Sustained protection in mice immunized with fractional doses of Salmonella Enteritidis core and O polysaccharide-flagellin glycoconjugates. PLoS ONE 8, e64680 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  85. Micoli, F. et al. Comparative immunogenicity and efficacy of equivalent outer membrane vesicle and glycoconjugate vaccines against nontyphoidal Salmonella. Proc. Natl Acad. Sci. USA 115, 10428–10433 (2018).

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Mani, S., Wierzba, T. & Walker, R. I. Status of vaccine research and development for Shigella. Vaccine 34, 2887–2894 (2016).

    PubMed  CAS  Google Scholar 

  87. van der Put, R. M. et al. A synthetic carbohydrate conjugate vaccine candidate against shigellosis: improved bioconjugation and impact of alum on immunogenicity. Bioconjug. Chem. 27, 883–892 (2016).

    PubMed  Google Scholar 

  88. Hatz, C. F. et al. Safety and immunogenicity of a candidate bioconjugate vaccine against Shigella dysenteriae type 1 administered to healthy adults: a single blind, partially randomized phase I study. Vaccine 33, 4594–4601 (2015).

    PubMed  CAS  Google Scholar 

  89. Riddle, M. S. et al. Safety and immunogenicity of a candidate bioconjugate vaccine against Shigella flexneri 2a administered to healthy adults: a single-blind, randomized phase I study. Clin. Vaccine Immunol. 23, 908–917 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Obiero, C. W. et al. A phase 2a randomized study to evaluate the safety and immunogenicity of the 1790GAHB generalized modules for membrane antigen vaccine against shigella sonnei administered intramuscularly to adults from a shigellosis-endemic country. Front. Immunol. 8, 1884 (2017).

    PubMed  PubMed Central  Google Scholar 

  91. Micoli, F. & MacLennan, C. A. Outer membrane vesicle vaccines. Semin. Immunol. 25, 87–88 (2020).

    Google Scholar 

  92. Martinez-Becerra, F. J. et al. Broadly protective Shigella vaccine based on type III secretion apparatus proteins. Infect. Immun. 80, 1222–1231 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  93. Pore, D. & Chakrabarti, M. K. Outer membrane protein A (OmpA) from Shigella flexneri 2a: a promising subunit vaccine candidate. Vaccine 31, 3644–3650 (2013).

    PubMed  CAS  Google Scholar 

  94. Steer, A. C. et al. Status of research and development of vaccines for Streptococcus pyogenes. Vaccine 34, 2953–2958 (2016).

    PubMed  Google Scholar 

  95. McNeil, S. A. et al. Safety and immunogenicity of 26-valent group A Streptococcus vaccine in healthy adult volunteers. Clin. Infect. Dis. 41, 1114–1122 (2005).

    PubMed  CAS  Google Scholar 

  96. Dale, J. B., Penfound, T. A., Chiang, E. Y. & Walton, W. J. New 30-valent M protein-based vaccine evokes cross-opsonic antibodies against non-vaccine serotypes of group A streptococci. Vaccine 29, 8175–8178 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Steer, A. C., Law, I., Matatolu, L., Beall, B. W. & Carapetis, J. R. Global emm type distribution of group A streptococci: systematic review and implications for vaccine development. Lancet Infect. Dis. 9, 611–616 (2009).

    PubMed  Google Scholar 

  98. Batzloff, M. R. et al. Protection against group A streptococcus by immunization with J8-diphtheria toxoid: contribution of J8- and diphtheria toxoid-specific antibodies to protection. J. Infect. Dis. 187, 1598–1608 (2003).

    PubMed  CAS  Google Scholar 

  99. Guilherme, L. et al. Towards a vaccine against rheumatic fever. Clin. Dev. Immunol. 13, 125–132 (2006).

    PubMed  PubMed Central  CAS  Google Scholar 

  100. Sheel, M., Moreland, N. J., Fraser, J. D. & Carapetis, J. Development of group A streptococcal vaccines: an unmet global health need. Expert Rev. Vaccines 15, 227–238 (2016).

    PubMed  CAS  Google Scholar 

  101. Pandey, M. et al. A synthetic M protein peptide synergizes with a CXC chemokine protease to induce vaccine-mediated protection against virulent streptococcal pyoderma and bacteremia. J. Immunol. 194, 5915–5925 (2015).

    PubMed  CAS  Google Scholar 

  102. Bensi, G. et al. Multi high-throughput approach for highly selective identification of vaccine candidates: the group A Streptococcus case. Mol Cell Proteomics 11, M111.015693 (2012).

    PubMed  PubMed Central  Google Scholar 

  103. Rivera-Hernandez, T. et al. An experimental group a streptococcus vaccine that reduces pharyngitis and tonsillitis in a nonhuman primate model. mBio https://doi.org/10.1128/mBio.00693-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kabanova, A. et al. Evaluation of a group A Streptococcus synthetic oligosaccharide as vaccine candidate. Vaccine 29, 104–114 (2010).

    PubMed  CAS  Google Scholar 

  105. Henningham, A. et al. Virulence role of the GlcNAc side chain of the Lancefield cell wall carbohydrate antigen in non-M1-serotype group A Streptococcus. mBio https://doi.org/10.1128/mBio.02294-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Schodel, F. et al. Clinical development strategy for a candidate group A streptococcal vaccine. Vaccine 35, 2007–2014 (2017).

    PubMed  Google Scholar 

  107. Gamez-Gonzalez, L. B., Hamada, H., Llamas-Guillen, B. A., Ruiz-Fernandez, M. & Yamazaki-Nakashimada, M. BCG and Kawasaki disease in Mexico and Japan. Hum. Vaccin. Immunother. 13, 1091–1093 (2017).

    PubMed  PubMed Central  Google Scholar 

  108. Mangtani, P. et al. Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin. Infect. Dis. 58, 470–480 (2014).

    PubMed  Google Scholar 

  109. Nemes, E. et al. Prevention of M. tuberculosis infection with H4:IC31 vaccine or BCG revaccination. N. Engl. J. Med. 379, 138–149 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  110. Tait, D. R. et al. Final analysis of a trial of M72/AS01E vaccine to prevent tuberculosis. N. Engl. J. Med. 381, 2429–2439 (2019).

    PubMed  CAS  Google Scholar 

  111. Van Der Meeren, O. et al. Phase 2b controlled trial of M72/AS01E vaccine to prevent tuberculosis. N. Engl. J. Med. 379, 1621–1634 (2018).

    Google Scholar 

  112. Vekemans, J., O’Brien, K. L. & Farrar, J. Tuberculosis vaccines: rising opportunities. PLoS Med. 16, e1002791 (2019).

    PubMed  PubMed Central  Google Scholar 

  113. FAO Global Forum on Food Security and Nutrition, http://www.fao.org/3/cb0863en/cb0863en.pdf

  114. Cabral, M. P. et al. Design of live attenuated bacterial vaccines based on D-glutamate auxotrophy. Nat. Commun. 8, 15480 (2017).

    PubMed  CAS  Google Scholar 

  115. Micoli, F. et al. Glycoconjugate vaccines: current approaches towards faster vaccine design. Expert Rev. Vaccines 18, 881–895 (2019).

    PubMed  CAS  Google Scholar 

  116. Krammer, F. SARS-CoV-2 vaccines in development. Nature 586, 516–527 (2020).

    PubMed  CAS  Google Scholar 

  117. Sevilla, J. P., Bloom, D. E., Cadarette, D., Jit, M. & Lipsitch, M. Toward economic evaluation of the value of vaccines and other health technologies in addressing AMR. Proc. Natl Acad. Sci. USA 115, 12911–12919 (2018).

    PubMed  CAS  PubMed Central  Google Scholar 

  118. Roope, L. S. J. et al. The challenge of antimicrobial resistance: what economics can contribute. Science 364, eaau4679 (2019). This article highlights prospects for future research on the economics of AMR.

    PubMed  CAS  Google Scholar 

  119. Bloom, D. E., Black, S., Salisbury, D. & Rappuoli, R. Antimicrobial resistance and the role of vaccines. Proc. Natl Acad. Sci. USA 115, 12868–12871 (2018). This article highlights that an integrated strategy that includes antibiotics, vaccines, diagnostic tools, antibodies and new tools targeting the host or the microbiome or delivered by bacteriophages is required to fight AMR effectively.

    PubMed  CAS  PubMed Central  Google Scholar 

  120. Balsells, E. et al. Infection prevention and control of Clostridium difficile: a global review of guidelines, strategies, and recommendations. J. Glob. Health 6, 020410 (2016).

    PubMed  PubMed Central  Google Scholar 

  121. Peng, Z. et al. Update on antimicrobial resistance in clostridium difficile: resistance mechanisms and antimicrobial susceptibility testing. J. Clin. Microbiol. 55, 1998–2008 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  122. Asadi Karam, M. R., Habibi, M. & Bouzari, S. Urinary tract infection: pathogenicity, antibiotic resistance and development of effective vaccines against uropathogenic Escherichia coli. Mol. Immunol. 108, 56–67 (2019).

    PubMed  CAS  Google Scholar 

  123. Kourtis, A. P. et al. Vital signs: epidemiology and recent trends in methicillin-resistant and in methicillin-susceptible Staphylococcus aureus bloodstream infections - United States. MMWR Morb. Mortal. Wkly. Rep. 68, 214–219 (2019).

    PubMed  PubMed Central  Google Scholar 

  124. Unemo, M., Del Rio, C. & Shafer, W. M. Antimicrobial resistance expressed by Neisseria gonorrhoeae: a major global public health problem in the 21st century. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.EI10-0009-2015 (2016).

    Article  PubMed  Google Scholar 

  125. El Zowalaty, M. E. et al. Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiol. 10, 1683–1706 (2015).

    PubMed  CAS  Google Scholar 

  126. Munoz-Price, L. S. et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect. Dis. 13, 785–796 (2013).

    PubMed  PubMed Central  Google Scholar 

  127. Dyson, Z. A., Klemm, E. J., Palmer, S. & Dougan, G. Antibiotic resistance and typhoid. Clin. Infect. Dis. 68, S165–s170 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  128. Qamar, F. N., Azmatullah, A., Kazi, A. M., Khan, E. & Zaidi, A. K. A three-year review of antimicrobial resistance of Salmonella enterica serovars Typhi and Paratyphi A in Pakistan. J. Infect. Dev. Ctries. 8, 981–986 (2014).

    PubMed  Google Scholar 

  129. Kariuki, S., Gordon, M. A., Feasey, N. & Parry, C. M. Antimicrobial resistance and management of invasive Salmonella disease. Vaccine 33, C21–C29 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  130. Gordon, M. A. et al. Epidemics of invasive Salmonella enterica serovar enteritidis and S. enterica Serovar typhimurium infection associated with multidrug resistance among adults and children in Malawi. Clin. Infect. Dis. 46, 963–969 (2008).

    PubMed  Google Scholar 

  131. Puzari, M., Sharma, M. & Chetia, P. Emergence of antibiotic resistant Shigella species: a matter of concern. J. Infect. Public Health 11, 451–454 (2018).

    PubMed  Google Scholar 

  132. Zafar, A. et al. Antibiotic susceptibility in Streptococcus pneumoniae, Haemophilus influenzae and Streptococcus pyogenes in Pakistan: a review of results from the Survey of Antibiotic Resistance (SOAR) 2002-15. J. Antimicrob. Chemother. 71, i103–i109 (2016).

    PubMed  PubMed Central  Google Scholar 

  133. US Department of Health and Human Services. Antibiotic resistance threats in the United States. https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf (2013).

  134. Gandhi, N. R. et al. Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet 375, 1830–1843 (2010).

    PubMed  Google Scholar 

  135. Nguyen, L. Antibiotic resistance mechanisms in M. tuberculosis: an update. Arch. Toxicol. 90, 1585–1604 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  136. Marston, H. D., Paules, C. I. & Fauci, A. S. Monoclonal antibodies for emerging infectious diseases - borrowing from history. N. Engl. J. Med. 378, 1469–1472 (2018).

    PubMed  CAS  Google Scholar 

  137. McConnell, M. J. Where are we with monoclonal antibodies for multidrug-resistant infections? Drug Discov. Today 24, 1132–1138 (2019).

    PubMed  CAS  Google Scholar 

  138. DiGiandomenico, A. et al. A multifunctional bispecific antibody protects against Pseudomonas aeruginosa. Sci. Transl. Med. 6, 262ra155 (2014).

    PubMed  Google Scholar 

  139. Lowy, I. et al. Treatment with monoclonal antibodies against Clostridium difficile toxins. N. Engl. J. Med. 362, 197–205 (2010).

    PubMed  CAS  Google Scholar 

  140. Gulati, S. et al. Complement alone drives efficacy of a chimeric antigonococcal monoclonal antibody. PLoS Biol. 17, e3000323 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  141. Fischetti, V. A. Development of phage lysins as novel therapeutics: a historical perspective. Viruses 10, 310 (2018).

    PubMed Central  Google Scholar 

  142. Merabishvili, M. et al. Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS ONE 4, e4944 (2009).

    PubMed  PubMed Central  Google Scholar 

  143. Sahota, J. S. et al. Bacteriophage delivery by nebulization and efficacy against phenotypically diverse Pseudomonas aeruginosa from cystic fibrosis patients. J. Aerosol Med. Pulm. Drug Deliv. 28, 353–360 (2015).

    PubMed  CAS  Google Scholar 

  144. Nale, J. Y. et al. Bacteriophage combinations significantly reduce Clostridium difficile growth in vitro and proliferation in vivo. Antimicrob. Agents Chemother. 60, 968–981 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  145. Lima, R., Del Fiol, F. S. & Balcao, V. M. Prospects for the use of new technologies to combat multidrug-resistant bacteria. Front. Pharmacol. 10, 692 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  146. Relman, D. A. & Lipsitch, M. Microbiome as a tool and a target in the effort to address antimicrobial resistance. Proc. Natl Acad. Sci. USA 115, 12902–12910 (2018).

    PubMed  CAS  PubMed Central  Google Scholar 

  147. Khanna, S. et al. A novel microbiome therapeutic increases gut microbial diversity and prevents recurrent Clostridium difficile infection. J. Infect. Dis. 214, 173–181 (2016).

    PubMed  Google Scholar 

  148. Gerding, D. N. et al. Administration of spores of nontoxigenic Clostridium difficile strain M3 for prevention of recurrent C. difficile infection: a randomized clinical trial. JAMA 313, 1719–1727 (2015).

    PubMed  Google Scholar 

  149. Kim, W. J. et al. Commensal Neisseria kill Neisseria gonorrhoeae through a DNA-dependent mechanism. Cell Host Microbe 26, 228–239.e8 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  150. Idelevich, E. A. & Becker, K. How to accelerate antimicrobial susceptibility testing. Clin. Microbiol. Infect. 25, 1347–1355 (2019).

    PubMed  CAS  Google Scholar 

  151. van Belkum, A. et al. Developmental roadmap for antimicrobial susceptibility testing systems. Nat. Rev. Microbiol. 17, 51–62 (2019).

    PubMed  Google Scholar 

  152. Li, W. et al. Rapid identification and antimicrobial susceptibility testing for urinary tract pathogens by direct analysis of urine samples using a MALDI-TOF MS-based combined protocol. Front. Microbiol. 10, 1182 (2019).

    PubMed  PubMed Central  Google Scholar 

  153. Rappuoli, R. Glycoconjugate vaccines: principles and mechanisms. Sci. Transl. Med. 10, eaat4615 (2018).

    PubMed  Google Scholar 

  154. Delany, I., Rappuoli, R. & De Gregorio, E. Vaccines for the 21st century. EMBO Mol. Med. 6, 708–720 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  155. Serruto, D., Serino, L., Masignani, V. & Pizza, M. Genome-based approaches to develop vaccines against bacterial pathogens. Vaccine 27, 3245–3250 (2009).

    PubMed  CAS  Google Scholar 

  156. Serruto, D., Bottomley, M. J., Ram, S., Giuliani, M. M. & Rappuoli, R. The new multicomponent vaccine against meningococcal serogroup B, 4CMenB: immunological, functional and structural characterization of the antigens. Vaccine 30, B87–B97 (2012).

    PubMed  CAS  Google Scholar 

  157. Moriel, D. G. et al. Identification of protective and broadly conserved vaccine antigens from the genome of extraintestinal pathogenic Escherichia coli. Proc. Natl Acad. Sci. USA 107, 9072–9077 (2010).

    PubMed  CAS  PubMed Central  Google Scholar 

  158. Rappuoli, R., Bottomley, M. J., D’Oro, U., Finco, O. & De Gregorio, E. Reverse vaccinology 2.0: human immunology instructs vaccine antigen design. J. Exp. Med. 213, 469–481 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  159. Crank, M. C. et al. A proof of concept for structure-based vaccine design targeting RSV in humans. Science 365, 505–509 (2019).

    PubMed  CAS  Google Scholar 

  160. Scarselli, M. et al. Rational design of a meningococcal antigen inducing broad protective immunity. Sci. Transl. Med. 3, 91ra62 (2011).

    PubMed  CAS  Google Scholar 

  161. Gnopo, Y. M. D., Watkins, H. C., Stevenson, T. C., DeLisa, M. P. & Putnam, D. Designer outer membrane vesicles as immunomodulatory systems-reprogramming bacteria for vaccine delivery. Adv. Drug Deliv. Rev. 114, 132–142 (2017).

    PubMed  CAS  Google Scholar 

  162. Gerke, C. et al. Production of a shigella sonnei vaccine based on generalized modules for membrane antigens (GMMA), 1790GAHB. PLoS ONE 10, e0134478 (2015).

    PubMed  PubMed Central  Google Scholar 

  163. Launay, O. et al. Safety profile and immunologic responses of a novel vaccine against Shigella sonnei administered intramuscularly, intradermally and intranasally: results from two parallel randomized phase 1 clinical studies in healthy adult volunteers in Europe. EBioMedicine 22, 164–172 (2017).

    PubMed  PubMed Central  Google Scholar 

  164. Launay, O. et al. Booster vaccination with GVGH Shigella sonnei 1790GAHB GMMA vaccine compared to single vaccination in unvaccinated healthy European adults: results from a phase 1 clinical trial. Front. Immunol. 10, 335 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  165. Wacker, M. et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298, 1790–1793 (2002).

    PubMed  CAS  Google Scholar 

  166. Kampf, M. M. et al. In vivo production of a novel glycoconjugate vaccine against Shigella flexneri 2a in recombinant Escherichia coli: identification of stimulating factors for in vivo glycosylation. Microb. Cell Fact. 14, 12 (2015).

    PubMed  PubMed Central  Google Scholar 

  167. Reed, S. G., Orr, M. T. & Fox, C. B. Key roles of adjuvants in modern vaccines. Nat. Med. 19, 1597–1608 (2013).

    PubMed  CAS  Google Scholar 

  168. Otieno, L. et al. Safety and immunogenicity of RTS,S/AS01 malaria vaccine in infants and children with WHO stage 1 or 2 HIV disease: a randomised, double-blind, controlled trial. Lancet Infect. Dis. 16, 1134–1144 (2016).

    PubMed  CAS  Google Scholar 

  169. Cunningham, A. L. et al. Efficacy of the herpes zoster subunit vaccine in adults 70 years of age or older. N. Engl. J. Med. 375, 1019–1032 (2016).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

F.M., F.B. and D.S. researched data for the article and wrote the article. All authors substantially contributed to the discussion of the content, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Rino Rappuoli.

Ethics declarations

Competing interests

F.M., F.B., R.R. and D.S. are employees of the GSK group of companies, which is involved in the discovery and commercialization of vaccines and therapeutics against bacterial infections.

Additional information

Peer review information

Nature Reviews Microbiology thanks K. Atkins and S. Vong for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

AMR Action Fund: https://amractionfund.com

CDC: https://www.cdc.gov/hai/patientsafety/ar-hospitals.html

FAO Global Forum on Food Security and Nutrition: http://www.fao.org/3/cb0863en/cb0863en.pdf

Institute for Health Metrics and Evaluation: http://www.healthdata.org/gbd

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Micoli, F., Bagnoli, F., Rappuoli, R. et al. The role of vaccines in combatting antimicrobial resistance. Nat Rev Microbiol 19, 287–302 (2021). https://doi.org/10.1038/s41579-020-00506-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-020-00506-3

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology