Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epstein–Barr virus and multiple sclerosis

Abstract

Epstein–Barr virus (EBV) is a ubiquitous human lymphotropic herpesvirus with a well-established causal role in several cancers. Recent studies have provided compelling epidemiological and mechanistic evidence for a causal role of EBV in multiple sclerosis (MS). MS is the most prevalent chronic inflammatory and neurodegenerative disease of the central nervous system and is thought to be triggered in genetically predisposed individuals by an infectious agent, with EBV as the lead candidate. How a ubiquitous virus that typically leads to benign latent infections can promote cancer and autoimmune disease in at-risk populations is not fully understood. Here we review the evidence that EBV is a causal agent for MS and how various risk factors may affect EBV infection and immune control. We focus on EBV contributing to MS through reprogramming of latently infected B lymphocytes and the chronic presentation of viral antigens as a potential source of autoreactivity through molecular mimicry. We consider how knowledge of EBV-associated cancers may be instructive for understanding the role of EBV in MS and discuss the potential for therapies that target EBV to treat MS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The maturation of the immune system, EBV infection and the development of MS.
Fig. 2: EBNA1 sequences and their potential role in molecular mimicry and autoreactivity.
Fig. 3: EBV latency drives B cell survival of inflammatory B cells.
Fig. 4: Mechanisms of EBV-mediated inflammatory cascades in periphery and CNS.

Similar content being viewed by others

References

  1. Young, L. S. & Rickinson, A. B. Epstein-Barr virus: 40 years on. Nat. Rev. Cancer 4, 757–768 (2004).

    Article  CAS  Google Scholar 

  2. Young, L. S., Yap, L. F. & Murray, P. G. Epstein-Barr virus: more than 50 years old and still providing surprises. Nat. Rev. Cancer 16, 789–802 (2016).

    Article  CAS  Google Scholar 

  3. Wong, Y., Meehan, M. T., Burrows, S. R., Doolan, D. L. & Miles, J. J. Estimating the global burden of Epstein-Barr virus-related cancers. J. Cancer Res. Clin. Oncol. https://doi.org/10.1007/s00432-021-03824-y (2021).

    Article  Google Scholar 

  4. Shannon-Lowe, C. & Rickinson, A. The global landscape of EBV-associated tumors. Front. Oncol. 9, 713 (2019).

    Article  Google Scholar 

  5. Dunmire, S. K., Verghese, P. S. & Balfour, H. H. Jr. Primary Epstein-Barr virus infection. J. Clin. Virol. 102, 84–92 (2018).

    Article  Google Scholar 

  6. Fournier, B. & Latour, S. Immunity to EBV as revealed by immunedeficiencies. Curr. Opin. Immunol. 72, 107–115 (2021).

    Article  CAS  Google Scholar 

  7. Ascherio, A. & Munger, K. L. Epidemiology of multiple sclerosis: from risk factors to prevention-an update. Semin. Neurol. 36, 103–114 (2016).

    Article  Google Scholar 

  8. Laderach, F. & Munz, C. Epstein Barr virus exploits genetic susceptibility to increase multiple sclerosis risk. Microorganisms https://doi.org/10.3390/microorganisms9112191 (2021).

    Article  Google Scholar 

  9. Walton, C. et al. Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition. Mult. Scler. 26, 1816–1821 (2020).

    Article  Google Scholar 

  10. Alroughani, R. & Boyko, A. Pediatric multiple sclerosis: a review. BMC Neurol. 18, 27 (2018).

    Article  Google Scholar 

  11. Rodgers, M. M. et al. Gait characteristics of individuals with multiple sclerosis before and after a 6-month aerobic training program. J. Rehabil. Res. Dev. 36, 183–188 (1999).

    CAS  Google Scholar 

  12. Confavreux, C. & Vukusic, S. The clinical course of multiple sclerosis. Handb. Clin. Neurol. 122, 343–369 (2014).

    Article  Google Scholar 

  13. Thompson, A. J. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 17, 162–173 (2018).

    Article  Google Scholar 

  14. Brodin, P. et al. Variation in the human immune system is largely driven by non-heritable influences. Cell 160, 37–47 (2015).

    Article  CAS  Google Scholar 

  15. Soldan, S. S. & Jacobson, S. in Neurotropic Viral Infections (ed. Reiss, C.) 175–220 (Springer, 2016).

  16. Ruprecht, K. The role of Epstein-Barr virus in the etiology of multiple sclerosis: a current review. Expert Rev. Clin. Immunol. 16, 1143–1157 (2020).

    Article  CAS  Google Scholar 

  17. Lanz, T. V. et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 603, 321–327 (2022).

    Article  CAS  Google Scholar 

  18. Bjornevik, K. et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 375, 296–301 (2022).

    Article  CAS  Google Scholar 

  19. Bar-Or, A., Banwell, B., Berger, J. R. & Lieberman, P. M. Guilty by association: Epstein-Barr virus in multiple sclerosis. Nat. Med. 28, 904–906 (2022).

    Article  CAS  Google Scholar 

  20. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

    Article  Google Scholar 

  21. Baer, R. et al. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310, 207–211 (1984).

    Article  CAS  Google Scholar 

  22. Kanda, T., Yajima, M. & Ikuta, K. Epstein-Barr virus strain variation and cancer. Cancer Sci. 110, 1132–1139 (2019).

    Article  CAS  Google Scholar 

  23. Thorley-Lawson, D. A. EBV persistence–introducing the virus. Curr. Top. Microbiol. Immunol. 390, 151–209 (2015).

    CAS  Google Scholar 

  24. Farrell, P. J. Epstein-Barr virus strain variation. Curr. Top. Microbiol. Immunol. 390, 45–69 (2015).

    CAS  Google Scholar 

  25. Santpere, G. et al. Genome-wide analysis of wild-type Epstein-Barr virus genomes derived from healthy individuals of the 1000 Genomes Project. Genome Biol. Evol. 6, 846–860 (2014).

    Article  Google Scholar 

  26. Lay, M. L. et al. Epstein-Barr virus genotypes and strains in central nervous system demyelinating disease and Epstein-Barr virus-related illnesses in Australia. Intervirology 55, 372–379 (2012).

    Article  Google Scholar 

  27. Brennan, R. M. et al. Strains of Epstein-Barr virus infecting multiple sclerosis patients. Mult. Scler. 16, 643–651 (2010).

    Article  CAS  Google Scholar 

  28. de-Thé, G. et al. Sero-epidemiology of the Epstein-Barr virus: preliminary analysis of an international study- a review 3–16 (IARC Science Publications, 1975).

  29. Balfour, H. H. Jr. et al. Age-specific prevalence of Epstein-Barr virus infection among individuals aged 6-19 years in the United States and factors affecting its acquisition. J. Infect. Dis. 208, 1286–1293 (2013).

    Article  Google Scholar 

  30. Chandran, B. & Hutt-Fletcher, L. in Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis (eds Arvin, A. et al.) (Cambridge Univ. Press, 2007).

  31. Thorley-Lawson, D. A. Epstein-Barr virus: exploiting the immune system. Nat. Rev. Immunol. 1, 75–82 (2001).

    Article  CAS  Google Scholar 

  32. Thompson, M. P. & Kurzrock, R. Epstein-Barr virus and cancer. Clin. Cancer Res. 10, 803–821 (2004).

    Article  CAS  Google Scholar 

  33. Hassani, A., Corboy, J. R., Al-Salam, S. & Khan, G. Epstein-Barr virus is present in the brain of most cases of multiple sclerosis and may engage more than just B cells. PLoS ONE 13, e0192109 (2018).

    Article  Google Scholar 

  34. Gianella, S. et al. Effect of cytomegalovirus and Epstein-Barr virus replication on intestinal mucosal gene expression and microbiome composition of HIV-infected and uninfected individuals. AIDS 31, 2059–2067 (2017).

    Article  Google Scholar 

  35. Speck, P., Haan, K. M. & Longnecker, R. Epstein-Barr virus entry into cells. Virology 277, 1–5 (2000).

    Article  CAS  Google Scholar 

  36. Xiao, J., Palefsky, J. M., Herrera, R. & Tugizov, S. M. Characterization of the Epstein-Barr virus glycoprotein BMRF-2. Virology 359, 382–396 (2007).

    Article  CAS  Google Scholar 

  37. Xiao, J., Palefsky, J. M., Herrera, R., Berline, J. & Tugizov, S. M. EBV BMRF-2 facilitates cell-to-cell spread of virus within polarized oral epithelial cells. Virology 388, 335–343 (2009).

    Article  CAS  Google Scholar 

  38. Zhang, H. et al. Ephrin receptor A2 is an epithelial cell receptor for Epstein-Barr virus entry. Nat. Microbiol. 3, 1–8 (2018).

    Google Scholar 

  39. Stubbins, R. J. et al. Epstein-Barr virus associated smooth muscle tumors in solid organ transplant recipients: incidence over 31 years at a single institution and review of the literature. Transpl. Infect. Dis. 21, e13010 (2019).

    Article  Google Scholar 

  40. Kimura, H. & Cohen, J. I. Chronic active Epstein-Barr virus disease. Front. Immunol. 8, 1867 (2017).

    Article  Google Scholar 

  41. Jha, H. C. et al. Gammaherpesvirus infection of human neuronal cells. mBio 6, e01844–e01815 (2015).

    Article  CAS  Google Scholar 

  42. Menet, A. et al. Epstein-Barr virus infection of human astrocyte cell lines. J. Virol. 73, 7722–7733 (1999).

    Article  CAS  Google Scholar 

  43. Kanda, T. EBV-encoded latent genes. Adv. Exp. Med. Biol. 1045, 377–394 (2018).

    Article  CAS  Google Scholar 

  44. Kieff, E. & Rickinson, A. B. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 2603–2654 (Lippincott Williams and Wilkins, 2007).

  45. Shinozaki-Ushiku, A., Kunita, A. & Fukayama, M. Update on Epstein-Barr virus and gastric cancer (review). Int. J. Oncol. 46, 1421–1434 (2015).

    Article  CAS  Google Scholar 

  46. Greenspan, J. S., Greenspan, D. & Webster-Cyriaque, J. Hairy leukoplakia; lessons learned: 30-plus years. Oral Dis. 22, 120–127 (2016).

    Article  Google Scholar 

  47. Murata, T. et al. Molecular basis of Epstein-Barr virus latency establishment and lytic reactivation. Viruses https://doi.org/10.3390/v13122344 (2021).

    Article  Google Scholar 

  48. McKenzie, J. & El-Guindy, A. Epstein-Barr virus lytic cycle reactivation. Curr. Top. Microbiol. Immunol. 391, 237–261 (2015).

    CAS  Google Scholar 

  49. Chan, C. K. et al. Epstein-Barr virus antibody patterns preceding the diagnosis of nasopharyngeal carcinoma. Cancer Causes Control. 2, 125–131 (1991).

    Article  CAS  Google Scholar 

  50. Mueller, N. et al. Epstein-Barr virus antibody patterns preceding the diagnosis of non-Hodgkin’s lymphoma. Int. J. Cancer 49, 387–393 (1991).

    Article  CAS  Google Scholar 

  51. Lu, F. et al. Defective Epstein-Barr virus genomes and atypical viral gene expression in B-cell lines derived from multiple myeloma patients. J. Virol. 95, e0008821 (2021).

    Article  Google Scholar 

  52. Rosemarie, Q. & Sugden, B. Epstein-Barr virus: how its lytic phase contributes to oncogenesis. Microorganisms https://doi.org/10.3390/microorganisms8111824 (2020).

    Article  Google Scholar 

  53. Maple, P. A. C., Gran, B., Tanasescu, R., Pritchard, D. I. & Constantinescu, C. S. An absence of Epstein-Barr virus reactivation and associations with disease activity in people with multiple sclerosis undergoing therapeutic hookworm vaccination. Vaccines https://doi.org/10.3390/vaccines8030487 (2020).

    Article  Google Scholar 

  54. Torkildsen, O., Nyland, H., Myrmel, H. & Myhr, K. M. Epstein-Barr virus reactivation and multiple sclerosis. Eur. J. Neurol. 15, 106–108 (2008).

    CAS  Google Scholar 

  55. Yea, C. et al. Epstein-Barr virus in oral shedding of children with multiple sclerosis. Neurology 81, 1392–1399 (2013).

    Article  Google Scholar 

  56. Soldan, S. S. & Lieberman, P. M. Epstein-Barr virus infection in the development of neurological disorders. Drug Discov. Today Dis. Model. 32, 35–52 (2020).

    Article  Google Scholar 

  57. Munz, C. Latency and lytic replication in Epstein-Barr virus-associated oncogenesis. Nat. Rev. Microbiol. 17, 691–700 (2019).

    Article  CAS  Google Scholar 

  58. Leen, A. et al. Differential immunogenicity of Epstein-Barr virus latent-cycle proteins for human CD4+ T-helper 1 responses. J. Virol. 75, 8649–8659 (2001).

    Article  CAS  Google Scholar 

  59. Bickham, K. et al. EBNA1-specific CD4+ T cells in healthy carriers of Epstein-Barr virus are primarily Th1 in function. J. Clin. Invest. 107, 121–130 (2001).

    Article  CAS  Google Scholar 

  60. Munz, C. et al. Human CD4+ T lymphocytes consistently respond to the latent Epstein-Barr virus nuclear antigen EBNA1. J. Exp. Med. 191, 1649–1660 (2000).

    Article  CAS  Google Scholar 

  61. Azzi, T. et al. Role for early-differentiated natural killer cells in infectious mononucleosis. Blood 124, 2533–2543 (2014).

    Article  CAS  Google Scholar 

  62. Dunmire, S. K., Grimm, J. M., Schmeling, D. O., Balfour, H. H. Jr & Hogquist, K. A. The incubation period of primary Epstein-Barr virus infection: viral dynamics and immunologic events. PLoS Pathog. 11, e1005286 (2015).

    Article  Google Scholar 

  63. Williams, H. et al. The immune response to primary EBV infection: a role for natural killer cells. Br. J. Haematol. 129, 266–274 (2005).

    Article  Google Scholar 

  64. Strowig, T. et al. Priming of protective T cell responses against virus-induced tumors in mice with human immune system components. J. Exp. Med. 206, 1423–1434 (2009).

    Article  Google Scholar 

  65. Chijioke, O. et al. Human natural killer cells prevent infectious mononucleosis features by targeting lytic Epstein-Barr virus infection. Cell Rep. 5, 1489–1498 (2013).

    Article  CAS  Google Scholar 

  66. Zumwalde, N. A. et al. Adoptively transferred Vγ9Vδ2 T cells show potent antitumor effects in a preclinical B cell lymphomagenesis model. JCI Insight https://doi.org/10.1172/jci.insight.93179 (2017).

    Article  Google Scholar 

  67. Lino, C. N. R. & Ghosh, S. Epstein-Barr virus in inborn immunodeficiency-more than infection. Cancers https://doi.org/10.3390/cancers13194752 (2021).

    Article  Google Scholar 

  68. Cohen, J. I. Primary immunodeficiencies associated with EBV disease. Curr. Top. Microbiol. Immunol. 390, 241–265 (2015).

    CAS  Google Scholar 

  69. Huo, S. et al. EBV-EBNA1 constructs an immunosuppressive microenvironment for nasopharyngeal carcinoma by promoting the chemoattraction of Treg cells. J. Immunother. Cancer https://doi.org/10.1136/jitc-2020-001588 (2020).

    Article  Google Scholar 

  70. Westhoff Smith, D., Chakravorty, A., Hayes, M., Hammerschmidt, W. & Sugden, B. The Epstein-Barr virus oncogene EBNA1 suppresses natural killer cell responses and apoptosis early after infection of peripheral B cells. mBio 12, e0224321 (2021).

    Article  Google Scholar 

  71. Keane, J. T. et al. The interaction of Epstein-Barr virus encoded transcription factor EBNA2 with multiple sclerosis risk loci is dependent on the risk genotype. EBioMedicine 71, 103572 (2021).

    Article  CAS  Google Scholar 

  72. Spender, L. C. et al. Cell target genes of Epstein-Barr virus transcription factor EBNA-2: induction of the p55alpha regulatory subunit of PI3-kinase and its role in survival of EREB2.5 cells. J. Gen. Virol. 87, 2859–2867 (2006).

    Article  CAS  Google Scholar 

  73. Pages, F. et al. Epstein-Barr virus nuclear antigen 2 induces interleukin-18 receptor expression in B cells. Blood 105, 1632–1639 (2005).

    Article  CAS  Google Scholar 

  74. Anastasiadou, E. et al. Epstein-Barr virus-encoded EBNA2 alters immune checkpoint PD-L1 expression by downregulating miR-34a in B-cell lymphomas. Leukemia 33, 132–147 (2019).

    Article  CAS  Google Scholar 

  75. Yanagi, Y. et al. RNAseq analysis identifies involvement of EBNA2 in PD-L1 induction during Epstein-Barr virus infection of primary B cells. Virology 557, 44–54 (2021).

    Article  CAS  Google Scholar 

  76. Kanda, K. et al. The EBNA2-related resistance towards alpha interferon (IFN-alpha) in Burkitt’s lymphoma cells effects induction of IFN-induced genes but not the activation of transcription factor ISGF-3. Mol. Cell Biol. 12, 4930–4936 (1992).

    CAS  Google Scholar 

  77. Su, C. et al. EBNA2 driven enhancer switching at the CIITA-DEXI locus suppresses HLA class II gene expression during EBV infection of B-lymphocytes. PLoS Pathog. 17, e1009834 (2021).

    Article  CAS  Google Scholar 

  78. Jochum, S., Moosmann, A., Lang, S., Hammerschmidt, W. & Zeidler, R. The EBV immunoevasins vIL-10 and BNLF2a protect newly infected B cells from immune recognition and elimination. PLoS Pathog. 8, e1002704 (2012).

    Article  CAS  Google Scholar 

  79. Bouvet, M. et al. Multiple viral microRNAs regulate interferon release and signaling early during infection with Epstein-Barr virus. mBio https://doi.org/10.1128/mBio.03440-20 (2021).

    Article  Google Scholar 

  80. Murer, A. et al. MicroRNAs of Epstein-Barr virus attenuate T-cell-mediated immune control in vivo. mBio https://doi.org/10.1128/mBio.01941-18 (2019).

    Article  Google Scholar 

  81. Joshi, N., Usuku, K. & Hauser, S. L. The T-cell response to myelin basic protein in familial multiple sclerosis: diversity of fine specificity, restricting elements, and T-cell receptor usage. Ann. Neurol. 34, 385–393 (1993).

    Article  CAS  Google Scholar 

  82. Martin, C. et al. Absence of seven human herpesviruses, including HHV-6, by polymerase chain reaction in CSF and blood from patients with multiple sclerosis and optic neuritis. Acta Neurol. Scand. 95, 280–283 (1997).

    Article  CAS  Google Scholar 

  83. Sindic, C. J., Monteyne, P. & Laterre, E. C. The intrathecal synthesis of virus-specific oligoclonal IgG in multiple sclerosis. J. Neuroimmunol. 54, 75–80 (1994).

    Article  CAS  Google Scholar 

  84. Sriram, S. et al. Chlamydia pneumoniae infection of the central nervous system in multiple sclerosis. Ann. Neurol. 46, 6–14 (1999).

    Article  CAS  Google Scholar 

  85. Virtanen, J. O., Wohler, J., Fenton, K., Reich, D. S. & Jacobson, S. Oligoclonal bands in multiple sclerosis reactive against two herpesviruses and association with magnetic resonance imaging findings. Mult. Scler. 20, 27–34 (2014).

    Article  CAS  Google Scholar 

  86. Franciotta, D. et al. Cerebrospinal BAFF and Epstein-Barr virus-specific oligoclonal bands in multiple sclerosis and other inflammatory demyelinating neurological diseases. J. Neuroimmunol. 230, 160–163 (2011).

    Article  CAS  Google Scholar 

  87. Wang, Z. et al. Antibodies from multiple sclerosis brain identified Epstein-Barr virus nuclear antigen 1 & 2 epitopes which are recognized by oligoclonal bands. J. Neuroimmune Pharmacol. 16, 567–580 (2021).

    Article  Google Scholar 

  88. van Nierop, G. P., Mautner, J., Mitterreiter, J. G., Hintzen, R. Q. & Verjans, G. M. Intrathecal CD8 T-cells of multiple sclerosis patients recognize lytic Epstein-Barr virus proteins. Mult. Scler. 22, 279–291 (2016).

    Article  Google Scholar 

  89. Chabas, D. et al. The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science 294, 1731–1735 (2001).

    Article  CAS  Google Scholar 

  90. Cencioni, M. T., Mattoscio, M., Magliozzi, R., Bar-Or, A. & Muraro, P. A. B cells in multiple sclerosis - from targeted depletion to immune reconstitution therapies. Nat. Rev. Neurol. 17, 399–414 (2021).

    Article  Google Scholar 

  91. Lisak, R. P. et al. B cells from patients with multiple sclerosis induce cell death via apoptosis in neurons in vitro. J. Neuroimmunol. 309, 88–99 (2017).

    Article  CAS  Google Scholar 

  92. Li, R. et al. Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy. Sci. Transl. Med. 7, 310ra166 (2015).

    Article  Google Scholar 

  93. Panitch, H. S., Hirsch, R. L., Schindler, J. & Johnson, K. P. Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system. Neurology 37, 1097–1102 (1987).

    Article  CAS  Google Scholar 

  94. Feng, X. et al. Low expression of interferon-stimulated genes in active multiple sclerosis is linked to subnormal phosphorylation of STAT1. J. Neuroimmunol. 129, 205–215 (2002).

    Article  CAS  Google Scholar 

  95. Lucchinetti, C. et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47, 707–717 (2000).

    Article  CAS  Google Scholar 

  96. Lassmann, H. Multiple sclerosis pathology. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a028936 (2018).

    Article  Google Scholar 

  97. Barnett, M. H. & Prineas, J. W. Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann. Neurol. 55, 458–468 (2004).

    Article  Google Scholar 

  98. Salou, M., Nicol, B., Garcia, A. & Laplaud, D. A. Involvement of CD8+ T cells in multiple sclerosis. Front. Immunol. 6, 604 (2015).

    Article  Google Scholar 

  99. Salou, M. et al. Expanded CD8 T-cell sharing between periphery and CNS in multiple sclerosis. Ann. Clin. Transl. Neurol. 2, 609–622 (2015).

    Article  CAS  Google Scholar 

  100. Cagol, A. et al. Association of brain atrophy with disease progression independent of relapse activity in patients with relapsing multiple sclerosis. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2022.1025 (2022).

    Article  Google Scholar 

  101. Kim, W. & Patsopoulos, N. A. Genetics and functional genomics of multiple sclerosis. Semin. Immunopathol. 4, 63–79 (2022).

    Article  CAS  Google Scholar 

  102. Yuan, S., Xiong, Y. & Larsson, S. C. An atlas on risk factors for multiple sclerosis: a Mendelian randomization study. J. Neurol. 268, 114–124 (2021).

    Article  CAS  Google Scholar 

  103. Jersild, C., Dupont, B., Fog, T., Platz, P. J. & Svejgaard, A. Histocompatibility determinants in multiple sclerosis. Transplant. Rev. 22, 148–163 (1975).

    CAS  Google Scholar 

  104. Cook, S. D. Multiple sclerosis and viruses. Mult. Scler. 3, 388–389 (1997).

    Article  CAS  Google Scholar 

  105. Australia & New Zealand Multiple Sclerosis Genetics Consortium. Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nat. Genet. 41, 824–828 (2009).

    Article  Google Scholar 

  106. De Jager, P. L. et al. Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat. Genet. 41, 776–782 (2009).

    Article  Google Scholar 

  107. International Multiple Sclerosis Genetics Consortium. Risk alleles for multiple sclerosis identified by a genomewide study. N. Engl. J. Med. 357, 851–862 (2007).

    Article  Google Scholar 

  108. Cree, B. A. Multiple sclerosis genetics. Handb. Clin. Neurol. 122, 193–209 (2014).

    Article  Google Scholar 

  109. Lin, X., Deng, F. Y., Lu, X. & Lei, S. F. Susceptibility genes for multiple sclerosis identified in a gene-based genome-wide association study. J. Clin. Neurol. (2015).

  110. He, B., Yang, B., Lundahl, J., Fredrikson, S. & Hillert, J. The myelin basic protein gene in multiple sclerosis: identification of discrete alleles of a 1.3 kb tetranucleotide repeat sequence. Acta Neurol. Scand. 97, 46–51 (1998).

    Article  CAS  Google Scholar 

  111. Kellar-Wood, H., Robertson, N., Govan, G. G., Compston, D. A. & Harding, A. E. Leber’s hereditary optic neuropathy mitochondrial DNA mutations in multiple sclerosis. Ann. Neurol. 36, 109–112 (1994).

    Article  CAS  Google Scholar 

  112. Reynier, P. et al. mtDNA haplogroup J: a contributing factor of optic neuritis. Eur. J. Hum. Genet. 7, 404–406 (1999).

    Article  CAS  Google Scholar 

  113. Thompson, R. J. et al. Analysis of polymorphisms of the 2’,3’-cyclic nucleotide-3’-phosphodiesterase gene in patients with multiple sclerosis. Mult. Scler. 2, 215–221 (1996).

    Article  CAS  Google Scholar 

  114. Sollid, L. M. Epstein-Barr virus as a driver of multiple sclerosis. Sci. Immunol. 7, eabo7799 (2022).

    Article  CAS  Google Scholar 

  115. Wucherpfennig, K. W. & Strominger, J. L. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80, 695–705 (1995).

    Article  CAS  Google Scholar 

  116. Lunemann, J. D. et al. EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN-gamma and IL-2. J. Exp. Med. 205, 1763–1773 (2008).

    Article  CAS  Google Scholar 

  117. Tengvall, K. et al. Molecular mimicry between Anoctamin 2 and Epstein-Barr virus nuclear antigen 1 associates with multiple sclerosis risk. Proc. Natl Acad. Sci. USA 116, 16955–16960 (2019).

    Article  CAS  Google Scholar 

  118. van Sechel, A. C. et al. EBV-induced expression and HLA-DR-restricted presentation by human B cells of alpha B-crystallin, a candidate autoantigen in multiple sclerosis. J. Immunol. 162, 129–135 (1999).

    Google Scholar 

  119. Jelcic, I. et al. Memory B cells activate brain-homing, autoreactive CD4(+) T cells in multiple sclerosis. Cell 175, 85–100 e123 (2018).

    Article  CAS  Google Scholar 

  120. Nociti, V. et al. Epstein-Barr virus antibodies in serum and cerebrospinal fluid from multiple sclerosis, chronic inflammatory demyelinating polyradiculoneuropathy and amyotrophic lateral sclerosis. J. Neuroimmunol. 225, 149–152 (2010).

    Article  CAS  Google Scholar 

  121. Ascherio, A., Munger, K. L. & Lunemann, J. D. The initiation and prevention of multiple sclerosis. Nat. Rev. Neurol. 8, 602–612 (2012).

    Article  CAS  Google Scholar 

  122. Lunemann, J. D. & Ascherio, A. Immune responses to EBNA1: biomarkers in MS. Neurology 73, 13–14 (2009).

    Article  Google Scholar 

  123. Mescheriakova, J. Y., van Nierop, G. P., van der Eijk, A. A., Kreft, K. L. & Hintzen, R. Q. EBNA-1 titer gradient in families with multiple sclerosis indicates a genetic contribution. Neurol. Neuroimmunol. Neuroinflamm. https://doi.org/10.1212/NXI.0000000000000872 (2020).

    Article  Google Scholar 

  124. Hedström, A. K. et al. High levels of Epstein-Barr virus nuclear antigen-1-specific antibodies and infectious mononucleosis act both independently and synergistically to increase multiple sclerosis risk. Front. Neurol. 10, 1368 (2019).

    Article  Google Scholar 

  125. van Noort, J. M., Bajramovic, J. J., Plomp, A. C. & van Stipdonk, M. J. Mistaken self, a novel model that links microbial infections with myelin-directed autoimmunity in multiple sclerosis. J. Neuroimmunol. 105, 46–57 (2000).

    Article  Google Scholar 

  126. Hecker, M. et al. High-density peptide microarray analysis of IgG autoantibody reactivities in serum and cerebrospinal fluid of multiple sclerosis patients. Mol. Cell Proteom. 15, 1360–1380 (2016).

    Article  CAS  Google Scholar 

  127. Capone, G. et al. Peptide matching between Epstein-Barr virus and human proteins. Pathog. Dis. 69, 205–212 (2013).

    Article  CAS  Google Scholar 

  128. Meier, U. C., Cipian, R. C., Karimi, A., Ramasamy, R. & Middeldorp, J. M. Cumulative roles for Epstein-Barr virus, human endogenous retroviruses, and human herpes virus-6 in driving an inflammatory cascade underlying MS pathogenesis. Front. Immunol. 12, 757302 (2021).

    Article  CAS  Google Scholar 

  129. Dantuma, N. P., Sharipo, A. & Masucci, M. G. Avoiding proteasomal processing: the case of EBNA1. Curr. Top. Microbiol. Immunol. 269, 23–36 (2002).

    CAS  Google Scholar 

  130. Levitskaya, J., Sharipo, A., Leonchiks, A., Ciechanover, A. & Masucci, M. G. Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc. Natl Acad. Sci. USA 94, 12616–12621 (1997).

    Article  CAS  Google Scholar 

  131. Levitskaya, J. et al. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375, 685–688 (1995).

    Article  CAS  Google Scholar 

  132. Tovar Fernandez, M. C. et al. Substrate-specific presentation of MHC class I-restricted antigens via autophagy pathway. Cell Immunol. 374, 104484 (2022).

    Article  CAS  Google Scholar 

  133. Apcher, S., Daskalogianni, C., Manoury, B. & Fahraeus, R. Epstein Barr virus-encoded EBNA1 interference with MHC class I antigen presentation reveals a close correlation between mRNA translation initiation and antigen presentation. PLoS Pathog. 6, e1001151 (2010).

    Article  Google Scholar 

  134. Tellam, J. T. et al. mRNA Structural constraints on EBNA1 synthesis impact on in vivo antigen presentation and early priming of CD8+ T cells. PLoS Pathog. 10, e1004423 (2014).

    Article  Google Scholar 

  135. Murat, P. et al. G-quadruplexes regulate Epstein-Barr virus-encoded nuclear antigen 1 mRNA translation. Nat. Chem. Biol. 10, 358–364 (2014).

    Article  CAS  Google Scholar 

  136. Tellam, J. T., Lekieffre, L., Zhong, J., Lynn, D. J. & Khanna, R. Messenger RNA sequence rather than protein sequence determines the level of self-synthesis and antigen presentation of the EBV-encoded antigen, EBNA1. PLoS Pathog. 8, e1003112 (2012).

    Article  CAS  Google Scholar 

  137. Pender, M. P. The essential role of Epstein-Barr virus in the pathogenesis of multiple sclerosis. Neuroscientist 17, 351–367 (2011).

    Article  CAS  Google Scholar 

  138. Melchers, F. & Rolink, A. R. B cell tolerance–how to make it and how to break it. Curr. Top. Microbiol. Immunol. 305, 1–23 (2006).

    CAS  Google Scholar 

  139. Weniger, M. A. & Kuppers, R. Molecular biology of Hodgkin lymphoma. Leukemia 35, 968–981 (2021).

    Article  CAS  Google Scholar 

  140. Sommermann, T. et al. Functional interplay of Epstein-Barr virus oncoproteins in a mouse model of B cell lymphomagenesis. Proc. Natl Acad. Sci. USA 117, 14421–14432 (2020).

    Article  CAS  Google Scholar 

  141. Laurence, M. & Benito-Leon, J. Epstein-Barr virus and multiple sclerosis: updating Pender’s hypothesis. Mult. Scler. Relat. Disord. 16, 8–14 (2017).

    Article  Google Scholar 

  142. Choi, I. K. et al. Mechanism of EBV inducing anti-tumour immunity and its therapeutic use. Nature 590, 157–162 (2021).

    Article  CAS  Google Scholar 

  143. Deng, Y. et al. CD27 is required for protective lytic EBV antigen-specific CD8+ T-cell expansion. Blood 137, 3225–3236 (2021).

    Article  CAS  Google Scholar 

  144. Veroni, C., Serafini, B., Rosicarelli, B., Fagnani, C. & Aloisi, F. Transcriptional profile and Epstein-Barr virus infection status of laser-cut immune infiltrates from the brain of patients with progressive multiple sclerosis. J. Neuroinflamm. 15, 18 (2018).

    Article  Google Scholar 

  145. Magliozzi, R. et al. B-cell enrichment and Epstein-Barr virus infection in inflammatory cortical lesions in secondary progressive multiple sclerosis. J. Neuropathol. Exp. Neurol. 72, 29–41 (2013).

    Article  CAS  Google Scholar 

  146. Serafini, B. et al. Epstein-Barr virus latent infection and BAFF expression in B cells in the multiple sclerosis brain: implications for viral persistence and intrathecal B-cell activation. J. Neuropathol. Exp. Neurol. 69, 677–693 (2010).

    Article  CAS  Google Scholar 

  147. Tzartos, J. S. et al. Association of innate immune activation with latent Epstein-Barr virus in active MS lesions. Neurology 78, 15–23 (2012).

    Article  CAS  Google Scholar 

  148. Moreno, M. A. et al. Molecular signature of Epstein-Barr virus infection in MS brain lesions. Neurol. Neuroimmunol. Neuroinflamm 5, e466 (2018).

    Article  Google Scholar 

  149. Serafini, B., Rosicarelli, B., Veroni, C., Mazzola, G. A. & Aloisi, F. Epstein-Barr virus-specific CD8 T cells selectively infiltrate the brain in multiple sclerosis and interact locally with virus-infected cells: clue for a virus-driven immunopathological mechanism. J. Virol. https://doi.org/10.1128/JVI.00980-19 (2019).

    Article  Google Scholar 

  150. Recher, M. et al. Extralymphatic virus sanctuaries as a consequence of potent T-cell activation. Nat. Med. 13, 1316–1323 (2007).

    Article  CAS  Google Scholar 

  151. Hochberg, D. et al. Acute infection with Epstein-Barr virus targets and overwhelms the peripheral memory B-cell compartment with resting, latently infected cells. J. Virol. 78, 5194–5204 (2004).

    Article  CAS  Google Scholar 

  152. Veroni, C. et al. Immune and Epstein-Barr virus gene expression in cerebrospinal fluid and peripheral blood mononuclear cells from patients with relapsing-remitting multiple sclerosis. J. Neuroinflamm. 12, 132 (2015).

    Article  Google Scholar 

  153. Kiriyama, T., Kataoka, H., Kasai, T., Nonomura, A. & Ueno, S. Negative association of Epstein-Barr virus or herpes simplex virus-1 with tumefactive central nervous system inflammatory demyelinating disease. J. Neurovirol. 16, 466–471 (2010).

    Article  Google Scholar 

  154. Sargsyan, S. A. et al. Absence of Epstein-Barr virus in the brain and CSF of patients with multiple sclerosis. Neurology 74, 1127–1135 (2010).

    Article  CAS  Google Scholar 

  155. Willis, S. N. et al. Epstein-Barr virus infection is not a characteristic feature of multiple sclerosis brain. Brain 132, 3318–3328 (2009).

    Article  Google Scholar 

  156. Peferoen, L. A. et al. Epstein Barr virus is not a characteristic feature in the central nervous system in established multiple sclerosis. Brain 133, e137 (2010).

    Article  Google Scholar 

  157. Torkildsen, O. et al. Upregulation of immunoglobulin-related genes in cortical sections from multiple sclerosis patients. Brain Pathol. 20, 720–729 (2010).

    Article  CAS  Google Scholar 

  158. Lassmann, H., Niedobitek, G., Aloisi, F., Middeldorp, J. M. & NeuroproMiSe EBV Working Group. Epstein-Barr virus in the multiple sclerosis brain: a controversial issue–report on a focused workshop held in the Centre for Brain Research of the Medical University of Vienna, Austria. Brain 134, 2772–2786 (2011).

    Article  Google Scholar 

  159. Hislop, A. D. & Taylor, G. S. T-cell responses to EBV. Curr. Top. Microbiol. Immunol. 391, 325–353 (2015).

    CAS  Google Scholar 

  160. Hislop, A. D., Taylor, G. S., Sauce, D. & Rickinson, A. B. Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu. Rev. Immunol. 25, 587–617 (2007).

    Article  CAS  Google Scholar 

  161. Munger, K. L., Levin, L. I., O’Reilly, E. J., Falk, K. I. & Ascherio, A. Anti-Epstein-Barr virus antibodies as serological markers of multiple sclerosis: a prospective study among United States military personnel. Mult. Scler. 17, 1185–1193 (2011).

    Article  CAS  Google Scholar 

  162. Levin, L. I. et al. Temporal relationship between elevation of Epstein-Barr virus antibody titers and initial onset of neurological symptoms in multiple sclerosis. JAMA 293, 2496–2500 (2005).

    Article  CAS  Google Scholar 

  163. Lunemann, J. D. et al. Increased frequency and broadened specificity of latent EBV nuclear antigen-1-specific T cells in multiple sclerosis. Brain 129, 1493–1506 (2006).

    Article  Google Scholar 

  164. International Multiple Sclerosis Genetics Consortium. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219 (2011).

    Article  Google Scholar 

  165. Jilek, S. et al. Strong EBV-specific CD8+ T-cell response in patients with early multiple sclerosis. Brain 131, 1712–1721 (2008).

    Article  Google Scholar 

  166. Angelini, D. F. et al. Increased CD8+ T cell response to Epstein-Barr virus lytic antigens in the active phase of multiple sclerosis. PLoS Pathog. 9, e1003220 (2013).

    Article  CAS  Google Scholar 

  167. Pender, M. P., Csurhes, P. A., Pfluger, C. M. & Burrows, S. R. Deficiency of CD8+ effector memory T cells is an early and persistent feature of multiple sclerosis. Mult. Scler. 20, 1825–1832 (2014).

    Article  Google Scholar 

  168. Pender, M. P., Csurhes, P. A., Pfluger, C. M. & Burrows, S. R. Decreased CD8+ T cell response to Epstein-Barr virus infected B cells in multiple sclerosis is not due to decreased HLA class I expression on B cells or monocytes. BMC Neurol. 11, 95 (2011).

    Article  CAS  Google Scholar 

  169. Pender, M. P., Csurhes, P. A., Pfluger, C. M. & Burrows, S. R. CD8 T cell deficiency impairs control of Epstein–Barr virus and worsens with age in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 83, 353–354 (2012).

    Article  Google Scholar 

  170. Veroni, C. & Aloisi, F. The CD8 T cell-Epstein-Barr virus-B cell trialogue: a central issue in multiple sclerosis pathogenesis. Front. Immunol. 12, 665718 (2021).

    Article  CAS  Google Scholar 

  171. van Langelaar, J. et al. The association of Epstein-Barr virus infection with CXCR3+ B-cell development in multiple sclerosis: impact of immunotherapies. Eur. J. Immunol. 51, 626–633 (2021).

    Article  Google Scholar 

  172. Baglio, S. R. et al. Sensing of latent EBV infection through exosomal transfer of 5’pppRNA. Proc. Natl Acad. Sci. USA 113, E587–E596 (2016).

    Article  CAS  Google Scholar 

  173. Afrasiabi, A. et al. The interaction of human and Epstein-Barr virus miRNAs with multiple sclerosis risk loci. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22062927 (2021).

    Article  Google Scholar 

  174. Chen, C. C. et al. Elucidation of exosome migration across the blood–brain barrier model in vitro. Cell. Mol. Bioeng. 9, 509–529 (2016).

    Article  CAS  Google Scholar 

  175. Jiang, S. et al. The Epstein-Barr virus regulome in lymphoblastoid cells. Cell Host Microbe 22, 561–573.e4 (2017).

    Article  CAS  Google Scholar 

  176. Harley, J. B. et al. Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity. Nat. Genet. 50, 699–707 (2018).

    Article  CAS  Google Scholar 

  177. Hong, T. et al. Epstein-Barr virus nuclear antigen 2 extensively rewires the human chromatin landscape at autoimmune risk loci. Genome Res. https://doi.org/10.1101/gr.264705.120 (2021).

    Article  Google Scholar 

  178. Afrasiabi, A. et al. Evidence from genome wide association studies implicates reduced control of Epstein-Barr virus infection in multiple sclerosis susceptibility. Genome Med. 11, 26 (2019).

    Article  Google Scholar 

  179. Ricigliano, V. A. et al. EBNA2 binds to genomic intervals associated with multiple sclerosis and overlaps with vitamin D receptor occupancy. PLoS ONE 10, e0119605 (2015).

    Article  Google Scholar 

  180. Mechelli, R. et al. Epstein-Barr virus genetic variants are associated with multiple sclerosis. Neurology 84, 1362–1368 (2015).

    Article  CAS  Google Scholar 

  181. Zhou, Y. et al. Utilising multi-large omics data to elucidate biological mechanisms within multiple sclerosis genetic susceptibility loci. Mult. Scler. 27, 2141–2149 (2021).

    Article  CAS  Google Scholar 

  182. Ruhrmann, S., Stridh, P., Kular, L. & Jagodic, M. Genomic imprinting: a missing piece of the multiple sclerosis puzzle? Int. J. Biochem. Cell Biol. 67, 49–57 (2015).

    Article  CAS  Google Scholar 

  183. Kular, L. & Jagodic, M. Epigenetic insights into multiple sclerosis disease progression. J. Intern. Med. 288, 82–102 (2020).

    Article  CAS  Google Scholar 

  184. Kular, L. et al. DNA methylation as a mediator of HLA-DRB1*15:01 and a protective variant in multiple sclerosis. Nat. Commun. 9, 2397 (2018).

    Article  Google Scholar 

  185. He, Y., Huang, L., Tang, Y., Yang, Z. & Han, Z. Genome-wide identification and analysis of splicing QTLs in multiple sclerosis by RNA-seq data. Front. Genet. 12, 769804 (2021).

    Article  CAS  Google Scholar 

  186. Wanke, F. et al. EBI2 is highly expressed in multiple sclerosis lesions and promotes early CNS migration of encephalitogenic CD4 T cells. Cell Rep. 18, 1270–1284 (2017).

    Article  CAS  Google Scholar 

  187. Guo, R. & Gewurz, B. E. Epigenetic control of the Epstein-Barr lifecycle. Curr. Opin. Virol. 52, 78–88 (2022).

    Article  CAS  Google Scholar 

  188. Tempera, I. & Lieberman, P. M. Epigenetic regulation of EBV persistence and oncogenesis. Semin. Cancer Biol. 26, 22–29 (2014).

    Article  CAS  Google Scholar 

  189. Kucukali, C. I., Kurtuncu, M., Coban, A., Cebi, M. & Tuzun, E. Epigenetics of multiple sclerosis: an updated review. Neuromol. Med. 17, 83–96 (2015).

    Article  CAS  Google Scholar 

  190. Soldan, S. S. et al. Epigenetic plasticity enables CNS-trafficking of EBV-infected B lymphocytes. PLoS Pathog. 17, e1009618 (2021).

    Article  CAS  Google Scholar 

  191. Greer, J. M. et al. Immunogenic and encephalitogenic epitope clusters of myelin proteolipid protein. J. Immunol. 156, 371–379 (1996).

    CAS  Google Scholar 

  192. Zdimerova, H. et al. Attenuated immune control of Epstein-Barr virus in humanized mice is associated with the multiple sclerosis risk factor HLA-DR15. Eur. J. Immunol. 51, 64–75 (2021).

    Article  CAS  Google Scholar 

  193. Agostini, S. et al. HLA alleles modulate EBV viral load in multiple sclerosis. J. Transl. Med. 16, 80 (2018).

    Article  CAS  Google Scholar 

  194. Wandinger, K. et al. Association between clinical disease activity and Epstein-Barr virus reactivation in MS. Neurology 55, 178–184 (2000).

    Article  CAS  Google Scholar 

  195. Cocuzza, C. E. et al. Quantitative detection of Epstein-Barr virus DNA in cerebrospinal fluid and blood samples of patients with relapsing-remitting multiple sclerosis. PLoS ONE 9, e94497 (2014).

    Article  Google Scholar 

  196. Lindsey, J. W., Hatfield, L. M., Crawford, M. P. & Patel, S. Quantitative PCR for Epstein-Barr virus DNA and RNA in multiple sclerosis. Mult. Scler. 15, 153–158 (2009).

    Article  CAS  Google Scholar 

  197. Buljevac, D. et al. Epstein-Barr virus and disease activity in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 76, 1377–1381 (2005).

    Article  CAS  Google Scholar 

  198. Hollenbach, J. A. & Oksenberg, J. R. The immunogenetics of multiple sclerosis: a comprehensive review. J. Autoimmun. 64, 13–25 (2015).

    Article  CAS  Google Scholar 

  199. Enz, L. S. et al. Increased HLA-DR expression and cortical demyelination in MS links with HLA-DR15. Neurol. Neuroimmunol. Neuroinflamm. https://doi.org/10.1212/NXI.0000000000000656 (2020).

    Article  Google Scholar 

  200. Martin, R., Sospedra, M., Eiermann, T. & Olsson, T. Multiple sclerosis: doubling down on MHC. Trends Genet. 37, 784–797 (2021).

    Article  CAS  Google Scholar 

  201. Menegatti, J., Schub, D., Schafer, M., Grasser, F. A. & Ruprecht, K. HLA-DRB1*15:01 is a co-receptor for Epstein-Barr virus, linking genetic and environmental risk factors for multiple sclerosis. Eur. J. Immunol. 51, 2348–2350 (2021).

    Article  CAS  Google Scholar 

  202. Burnham, J. A., Wright, R. R., Dreisbach, J. & Murray, R. S. The effect of high-dose steroids on MRI gadolinium enhancement in acute demyelinating lesions. Neurology 41, 1349–1354 (1991).

    Article  CAS  Google Scholar 

  203. Baker, D., Marta, M., Pryce, G., Giovannoni, G. & Schmierer, K. Memory B cells are major targets for effective immunotherapy in relapsing multiple sclerosis. EBioMedicine 16, 41–50 (2017).

    Article  Google Scholar 

  204. Ceronie, B. et al. Cladribine treatment of multiple sclerosis is associated with depletion of memory B cells. J. Neurol. 265, 1199–1209 (2018).

    Article  CAS  Google Scholar 

  205. Hauser, S. L. et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med. 358, 676–688 (2008).

    Article  CAS  Google Scholar 

  206. Kappos, L. et al. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet 378, 1779–1787 (2011).

    Article  CAS  Google Scholar 

  207. Segal, B. M. et al. Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing-remitting multiple sclerosis: a phase II, double-blind, placebo-controlled, randomised, dose-ranging study. Lancet Neurol. 7, 796–804 (2008).

    Article  CAS  Google Scholar 

  208. Kappos, L. et al. Atacicept in multiple sclerosis (ATAMS): a randomised, placebo-controlled, double-blind, phase 2 trial. Lancet Neurol. 13, 353–363 (2014).

    Article  CAS  Google Scholar 

  209. Bilger, A. et al. Leflunomide/teriflunomide inhibit Epstein-Barr virus (EBV)- induced lymphoproliferative disease and lytic viral replication. Oncotarget 8, 44266–44280 (2017).

    Article  Google Scholar 

  210. Doubrovina, E. et al. Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+ lymphomas after allogeneic hematopoietic cell transplantation. Blood 119, 2644–2656 (2012).

    Article  CAS  Google Scholar 

  211. Heslop, H. E. et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood 115, 925–935 (2010).

    Article  CAS  Google Scholar 

  212. Savoldo, B. et al. Treatment of solid organ transplant recipients with autologous Epstein Barr virus-specific cytotoxic T lymphocytes (CTLs). Blood 108, 2942–2949 (2006).

    Article  CAS  Google Scholar 

  213. Pender, M. P. et al. Epstein-Barr virus-specific adoptive immunotherapy for progressive multiple sclerosis. Mult. Scler. 20, 1541–1544 (2014).

    Article  Google Scholar 

  214. Pender, M. P. et al. Epstein-Barr virus-specific T cell therapy for progressive multiple sclerosis. JCI Insight https://doi.org/10.1172/jci.insight.124714 (2018).

    Article  Google Scholar 

  215. Pender, M. P. et al. Epstein-Barr virus-specific T cell therapy for progressive multiple sclerosis. JCI Insight https://doi.org/10.1172/jci.insight.144624 (2020).

    Article  Google Scholar 

  216. Pender, M. P., Csurhes, P. A., Burrows, J. M. & Burrows, S. R. Defective T-cell control of Epstein-Barr virus infection in multiple sclerosis. Clin. Transl. Immunol. 6, e126 (2017).

    Article  Google Scholar 

  217. Bar-Or, A. et al. Updated open-label extension clinical data and new magnetization transfer ratio imaging data from a phase I study of ATA188, an off-the-shelf, allogeneic Epstein-Barr virus-targeted T-cell immunotherapy for progressive multiple sclerosis [ECTRIMS 2021 poster]. Multiple Sclerosis J. 27 (2_suppl.), P638 (2021).

    Google Scholar 

  218. Lycke, J. et al. Acyclovir treatment of relapsing-remitting multiple sclerosis. A randomized, placebo-controlled, double-blind study. J. Neurol. 243, 214–224 (1996).

    Article  CAS  Google Scholar 

  219. Bech, E. et al. A randomized, double-blind, placebo-controlled MRI study of anti-herpes virus therapy in MS. Neurology 58, 31–36 (2002).

    Article  CAS  Google Scholar 

  220. Friedman, J. E. et al. A randomized clinical trial of valacyclovir in multiple sclerosis. Mult. Scler. 11, 286–295 (2005).

    Article  CAS  Google Scholar 

  221. Annibali, V. et al. IFN-beta and multiple sclerosis: from etiology to therapy and back. Cytokine Growth Factor. Rev. 26, 221–228 (2015).

    Article  CAS  Google Scholar 

  222. Bentz, G. L., Liu, R., Hahn, A. M., Shackelford, J. & Pagano, J. S. Epstein-Barr virus BRLF1 inhibits transcription of IRF3 and IRF7 and suppresses induction of interferon-beta. Virology 402, 121–128 (2010).

    Article  CAS  Google Scholar 

  223. Hahn, A. M., Huye, L. E., Ning, S., Webster-Cyriaque, J. & Pagano, J. S. Interferon regulatory factor 7 is negatively regulated by the Epstein-Barr virus immediate-early gene, BZLF-1. J. Virol. 79, 10040–10052 (2005).

    Article  CAS  Google Scholar 

  224. De Clercq, E. Potential of acyclic nucleoside phosphonates in the treatment of DNA virus and retrovirus infections. Expert Rev. Anti Infect. Ther. 1, 21–43 (2003).

    Article  Google Scholar 

  225. Drosu, N. C., Edelman, E. R. & Housman, D. E. Tenofovir prodrugs potently inhibit Epstein-Barr virus lytic DNA replication by targeting the viral DNA polymerase. Proc. Natl Acad. Sci. USA 117, 12368–12374 (2020).

    Article  CAS  Google Scholar 

  226. Torkildsen, O., Myhr, K. M., Skogen, V., Steffensen, L. H. & Bjornevik, K. Tenofovir as a treatment option for multiple sclerosis. Mult. Scler. Relat. Disord. 46, 102569 (2020).

    Article  Google Scholar 

  227. Elliott, S. L. et al. Phase I trial of a CD8+ T-cell peptide epitope-based vaccine for infectious mononucleosis. J. Virol. 82, 1448–1457 (2008).

    Article  CAS  Google Scholar 

  228. Sokal, E. M. et al. Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein-Barr virus vaccine in healthy young adults. J. Infect. Dis. 196, 1749–1753 (2007).

    Article  Google Scholar 

  229. Moutschen, M. et al. Phase I/II studies to evaluate safety and immunogenicity of a recombinant gp350 Epstein-Barr virus vaccine healthy adults. Vaccine 25, 4697–4705 (2007).

    Article  CAS  Google Scholar 

  230. Bach, J. F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002).

    Article  Google Scholar 

  231. Sheik-Ali, S. Infectious mononucleosis and multiple sclerosis - updated review on associated risk. Mult. Scler. Relat. Disord. 14, 56–59 (2017).

    Article  Google Scholar 

  232. Dirmeier, U. et al. Latent membrane protein 1 of Epstein-Barr virus coordinately regulates proliferation with control of apoptosis. Oncogene 24, 1711–1717 (2005).

    Article  CAS  Google Scholar 

  233. Hussain, M., Gatherer, D. & Wilson, J. B. Modelling the structure of full-length Epstein-Barr virus nuclear antigen 1. Virus Genes 49, 358–372 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Paul M. Lieberman.

Ethics declarations

Competing interests

P.M.L. founded and is an adviser to Vironika LLC. P.M.L. is named on a patent for inhibitors of EBNA1. S.S.S. declares no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Christian Münz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Burkitt lymphoma

An aggressive form of non-Hodgkin lymphoma endemic to sub-Saharan Africa, where it is associated with Epstein–Barr virus infection.

Relapsing–remitting MS

(RRMS). A form of multiple sclerosis (MS) where disease exacerbations are interspersed with periods of disease inactivity.

Secondary progressive MS

(SPMS). A form of multiple sclerosis (MS) that follows relapsing–remitting MS where progressive disability accumulates with or without discernible relapse.

Primary progressive MS

(PPMS). A form of multiple sclerosis (MS) that lacks distinct periods of disease exacerbations.

Clinically isolated syndrome

An initial episode of neurological symptoms associated with inflammation and demyelination with symptoms characteristic of multiple sclerosis that frequently, although not always, progresses to multiple sclerosis.

Waldeyer’s tonsillar ring

A ring of lymphoid tissue surrounding the nasopharynx and oropharynx that includes the tonsils and adenoids.

Germinal centre

(GC). An area within lymph nodes and other secondary lymphoid organs, including the spleen, where T cell-dependent B cell activation, differentiation and proliferation occur. Germinal centres are concentrated areas of B cell somatic mutation and selection.

Chronic active EBV infection

A rare condition marked by poor control of Epstein–Barr virus (EBV) infection, resulting in high EBV plasma viral loads and systemic infiltration by EBV-positive B cells or EBV-positive T cells.

Oral hairy leukoplakia

A white lesion on the tongue with a ‘hairy’ appearance that is caused by Epstein–Barr virus lytic infection and that can occur in immunocompromised individuals, especially those with HIV/AIDS.

Infectious mononucleosis

A self-limiting disorder characterized by fever, extreme fatigue, sore throat and highly swollen lymph nodes; most frequently caused by immune response to primary Epstein–Barr virus infection, although milder forms are associated with cytomegalovirus infection.

Graft-versus-host disease

A condition in which the donor’s immune system (the graft) rejects the recipient (the host) as non-self.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soldan, S.S., Lieberman, P.M. Epstein–Barr virus and multiple sclerosis. Nat Rev Microbiol 21, 51–64 (2023). https://doi.org/10.1038/s41579-022-00770-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-022-00770-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing