Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for human coronavirus attachment to sialic acid receptors

Abstract

Coronaviruses cause respiratory tract infections in humans and outbreaks of deadly pneumonia worldwide. Infections are initiated by the transmembrane spike (S) glycoprotein, which binds to host receptors and fuses the viral and cellular membranes. To understand the molecular basis of coronavirus attachment to oligosaccharide receptors, we determined cryo-EM structures of coronavirus OC43 S glycoprotein trimer in isolation and in complex with a 9-O-acetylated sialic acid. We show that the ligand binds with fast kinetics to a surface-exposed groove and that interactions at the identified site are essential for S-mediated viral entry into host cells, but free monosaccharide does not trigger fusogenic conformational changes. The receptor-interacting site is conserved in all coronavirus S glycoproteins that engage 9-O-acetyl-sialogycans, with an architecture similar to those of the ligand-binding pockets of coronavirus hemagglutinin esterases and influenza virus C/D hemagglutinin-esterase fusion glycoproteins. Our results demonstrate these viruses evolved similar strategies to engage sialoglycans at the surface of target cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cryo-EM structure of the apo-HCoV-OC43 S glycoprotein.
Fig. 2: Identification of a sialoglycan-binding site in the holo-HCoV-OC43 S glycoprotein structure.
Fig. 3: The identified HCoV-OC43 S interactions with sialosides are characterized by fast kinetics and are required for viral entry.
Fig. 4: Conservation of the receptor-binding groove among all 9-O-Ac-sialoglycan-recognizing coronaviruses.
Fig. 5: Conservation of the receptor-binding site architecture across coronavirus S, coronavirus HE and influenza virus HEF glycoproteins.

Similar content being viewed by others

Data availability

The cryo-EM maps and atomic models have been deposited in the Electron Microscopy Data Bank and the Protein Data Bank with accession codes EMD-0557 and PDB ID 6NZK (holo-HCoV-OC43 S) and EMD-20070 and PDB ID 6OHW (apo-HCoV-OC43 S).

References

  1. Ge, X. Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Haagmans, B. L. et al. Middle east respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. Lancet Infect. Dis. 14, 140–145 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Su, S. et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 24, 490–502 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Isaacs, D., Flowers, D., Clarke, J. R., Valman, H. B. & MacNaughton, M. R. Epidemiology of coronavirus respiratory infections. Arch. Dis. Child 58, 500–503 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Menachery, V. D. et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 21, 1508–1513 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Menachery, V. D. et al. SARS-like WIV1-CoV poised for human emergence. Proc. Natl Acad. Sci. USA 113, 3048–3053 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hu, B. et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 13, e1006698 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bosch, B. J., van der Zee, R., de Haan, C. A. & Rottier, P. J. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J. Virol. 77, 8801–8811 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Walls, A. C. et al. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature 531, 114–117 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Millet, J. K. & Whittaker, G. R. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus Res. 202, 120–134 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Belouzard, S., Chu, V. C. & Whittaker, G. R. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc. Natl Acad. Sci. USA 106, 5871–5876 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Millet, J. K. & Whittaker, G. R. Host cell entry of middle east respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc. Natl Acad. Sci. USA 111, 15214–15219 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Walls, A. C. et al. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc. Natl Acad. Sci. 114, 11157–11162 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Burkard, C. et al. Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner. PLoS Pathog. 10, e1004502 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Walls, A. et al. Crucial steps in the structure determination of a coronavirus spike glycoprotein using cryo-electron microscopy. Protein Sci. 26, 113–121 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Walls, A. C. et al. Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nat. Struct. Mol. Biol. 23, 899–905 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xiong, X. et al. Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections. J. Virol. 92, e01628-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kirchdoerfer, R. N. et al. Pre-fusion structure of a human coronavirus spike protein. Nature 531, 118–121 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kirchdoerfer, R. N. et al. Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Sci. Rep. 8, 15701 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Pallesen, J. et al. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc. Natl Acad. Sci. USA 114, E7348–E7357 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gui, M. et al. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Res. 27, 119–129 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Shang, J. et al. Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins. PLoS Pathog. 14, e1007009 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Song, W., Gui, M., Wang, X. & Xiang, Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog. 14, e1007236 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Shang, J.et al. Cryo-EM structure of porcine delta coronavirus spike protein in the pre-fusion state. J. Virol. https://doi.org/10.1128/JVI.01556-17 (2017).

  25. Walls, A. C. et al. Unexpected receptor functional mimicry elucidates activation of coronavirus fusion.Cell 176, 1026–1039.e15 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vijgen, L. et al. Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. J. Virol. 79, 1595–1604 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lau, S. K. et al. Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination. J. Virol. 85, 11325–11337 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vlasak, R., Luytjes, W., Spaan, W. & Palese, P. Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. Proc. Natl Acad. Sci. USA 85, 4526–4529 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang, X. et al. Human coronavirus HKU1 spike protein uses O-acetylated sialic acid as an attachment receptor determinant and employs hemagglutinin-esterase protein as a receptor-destroying enzyme. J. Virol. 89, 7202–7213 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. de Groot, R. J. Structure, function and evolution of the hemagglutinin-esterase proteins of corona- and toroviruses. Glycoconj. J. 23, 59–72 (2006).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Desforges, M., Desjardins, J., Zhang, C. & Talbot, P. J. The acetyl-esterase activity of the hemagglutinin-esterase protein of human coronavirus OC43 strongly enhances the production of infectious virus. J. Virol. 87, 3097–3107 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bakkers, M. J. et al. Betacoronavirus adaptation to humans involved progressive loss of hemagglutinin-esterase lectin activity. Cell Host Microbe 21, 356–366 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zeng, Q., Langereis, M. A., van Vliet, A. L., Huizinga, E. G. & de Groot, R. J. Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution. Proc. Natl Acad. Sci. USA 105, 9065–9069 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rosenthal, P. B. et al. Structure of the haemagglutinin-esterase-fusion glycoprotein of influenza C virus. Nature 396, 92–96 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Song, H. et al. An open receptor-binding cavity of hemagglutinin-esterase-fusion glycoprotein from newly-identified influenza D virus: basis for its broad cell tropism. PLoS Pathog. 12, e1005411 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Herrler, G. et al. The receptor-destroying enzyme of influenza C virus is neuraminate-O-acetylesterase. EMBO J. 4, 1503–1506 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stencel-Baerenwald, J. E., Reiss, K., Reiter, D. M., Stehle, T. & Dermody, T. S. The sweet spot: defining virus-sialic acid interactions. Nat. Rev. Microbiol 12, 739–749 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Neu, U., Bauer, J. & Stehle, T. Viruses and sialic acids: rules of engagement. Curr. Opin. Struct. Biol. 21, 610–618 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schauer, R. & Kamerling, J. P. Exploration of the sialic acid world. Adv. Carbohydr. Chem. Biochem 75, 1–213 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Peng, G. et al. Crystal structure of bovine coronavirus spike protein lectin domain. J. Biol. Chem. 287, 41931–41938 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Peng, G. et al. Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor. Proc. Natl Acad. Sci. USA 108, 10696–10701 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, W. et al. Identification of sialic acid-binding function for the middle east respiratory syndrome coronavirus spike glycoprotein. Proc. Natl Acad. Sci. USA 114, E8508–E8517 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hulswit, R. J. G. et al. Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A. Proc. Natl Acad. Sci. USA 116, 2681–2690 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Collins, A. R. HLA class I antigen serves as a receptor for human coronavirus OC43. Immunol. Invest 22, 95–103 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Langereis, M. A. et al. Complexity and diversity of the mammalian sialome revealed by nidovirus virolectins. Cell Rep. 11, 1966–1978 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bakkers, M. J. et al. Coronavirus receptor switch explained from the stereochemistry of protein-carbohydrate interactions and a single mutation. Proc. Natl Acad. Sci. USA 113, E3111–E3119 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, F., Li, W., Farzan, M. & Harrison, S. C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309, 1864–1868 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Lu, G. et al. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature 500, 227–231 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ou, X. et al. Crystal structure of the receptor binding domain of the spike glycoprotein of human betacoronavirus HKU1. Nat. Commun. 8, 15216 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yuan, Y. et al. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat. Commun. 8, 15092 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Campbell, M. G., Veesler, D., Cheng, A., Potter, C. S. & Carragher, B. A resolution reconstruction of the Thermoplasma acidophilum 20S proteasome using cryo-electron microscopy. eLife 4, e06380 (2015).

    Article  PubMed Central  Google Scholar 

  52. Seetharaman, J. et al. X-ray crystal structure of the human galectin-3 carbohydrate recognition domain at 2.1-A resolution. J. Biol. Chem. 273, 13047–13052 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Dormitzer, P. R., Sun, Z. Y., Wagner, G. & Harrison, S. C. The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J. 21, 885–897 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Langereis, M. A., Zeng, Q., Heesters, B. A., Huizinga, E. G. & de Groot, R. J. The murine coronavirus hemagglutinin-esterase receptor-binding site: a major shift in ligand specificity through modest changes in architecture. PLoS Pathog. 8, e1002492 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kunkel, F. & Herrler, G. Structural and functional analysis of the surface protein of human coronavirus OC43. Virology 195, 195–202 (1993).

    Article  CAS  PubMed  Google Scholar 

  56. Fei, Y. et al. Characterization of receptor binding profiles of influenza a viruses using an ellipsometry-based label-free glycan microarray assay platform. Biomolecules 5, 1480–1498 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xiong, X. et al. Receptor binding by a ferret-transmissible H5 avian influenza virus. Nature 497, 392–396 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Guo, H. et al. Kinetic analysis of the influenza A virus HA/NA balance reveals contribution of NA to virus-receptor binding and NA-dependent rolling on receptor-containing surfaces. PLoS Pathog. 14, e1007233 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Sakai, T., Takagi, H., Muraki, Y. & Saito, M. Unique directional motility of influenza C Virus controlled by its filamentous morphology and short-range motions. J. Virol. https://doi.org/10.1128/JVI.01522-17 (2018).

  60. Sakai, T., Nishimura, S. I., Naito, T. & Saito, M. Influenza A virus hemagglutinin and neuraminidase act as novel motile machinery. Sci. Rep. 7, 45043 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mukherjee, S. et al. Mechanism and significance of cell type-dependent neutralization of flaviviruses. J. Virol. 88, 7210–7220 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Park, J. E. et al. Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism. Proc. Natl Acad. Sci. USA 113, 12262–12267 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Owczarek, K. et al. Early events during human coronavirus OC43 entry to the cell. Sci. Rep. 8, 7124 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Wickramasinghe, I. N., de Vries, R. P., Grone, A., de Haan, C. A. & Verheije, M. H. Binding of avian coronavirus spike proteins to host factors reflects virus tropism and pathogenicity. J. Virol. 85, 8903–8912 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu, C. et al. Receptor usage and cell entry of porcine epidemic diarrhea coronavirus. J. Virol. 89, 6121–6125 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schultze, B. et al. Transmissible gastroenteritis coronavirus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glycolylneuraminic acid) binding activity. J. Virol. 70, 5634–5637 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nilsson, E. C. et al. The GD1a glycan is a cellular receptor for adenoviruses causing epidemic keratoconjunctivitis. Nat. Med 17, 105–109 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Reiter, D. M. et al. Crystal structure of reovirus attachment protein sigma1 in complex with sialylated oligosaccharides. PLoS Pathog. 7, e1002166 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ito, T. et al. Receptor specificity of influenza A viruses correlates with the agglutination of erythrocytes from different animal species. Virology 227, 493–499 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Raj, V. S. et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495, 251–254 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Tegunov, D. C., P. Real-time cryo-EM data pre-processing with Warp. Preprint at: https://www.biorxiv.org/content/10.1101/338558v1 (2018).

  73. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

  74. Zivanov, J., Nakane, T. & Scheres, S.H. W. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 6, 5–17 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Goddard, T. D., Huang, C. C. & Ferrin, T. E. Visualizing density maps with UCSF Chimera. J. Struct. Biol. 157, 281–287 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang, R. Y. et al. Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta. eLife 5, e17219 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Frenz, B. D. R. et al. Automatically fixing errors in glycoprotein structures with Rosetta. Structure 27, 1–6 (2019).

    Article  CAS  Google Scholar 

  82. DiMaio, F., Leaver-Fay, A., Bradley, P., Baker, D. & Andre, I. Modeling symmetric macromolecular structures in Rosetta3. PLoS One 6, e20450 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. DiMaio, F. et al. Atomic-accuracy models from 4.5-A cryo-electron microscopy data with density-guided iterative local refinement. Nat. Methods 12, 361–365 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D. Biol. Crystallogr 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Agirre, J. et al. Privateer: software for the conformational validation of carbohydrate structures. Nat. Struct. Mol. Biol. 22, 833–834 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Goddard, T. D. et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Dolinsky, T. J., Nielsen, J. E., McCammon, J. A. & Baker, N. A. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 32, W665–W667 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J. A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA 98, 10037–10041 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kaname, Y. et al. Acquisition of complement resistance through incorporation of CD55/decay-accelerating factor into viral particles bearing baculovirus GP64. J. Virol. 84, 3210–3219 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the National Institute of General Medical Sciences (R01GM120553 to D.V.), a Pew Biomedical Scholars Award (D.V.) and an Investigators in the Pathogenesis of Infectious Disease Award from the Burroughs Wellcome Fund (D.V.), the Zoonoses Anticipation and Preparedness Initiative (IMI115760, F.A.R. and B.-J.B.), the Pasteur Institute (M.A.T. and F.A.R.), the Centre National de la Recherche Scientifique (F.A.R.), the LabEx Integrative Biology of Emerging Infectious Diseases (F.A.R.), the Netherlands Organization for Scientific Research (NWO TOP-PUNT 718.015.003, G.-J.B.) and CSC grant 2014-03250042 (Y.L.). This work was also partly supported by the Arnold and Mabel Beckman cryo-EM center and the Proteomics Resource (UWPR95794) at the University of Washington, and the Electron Imaging Center for NanoMachines supported by the NIH (1U24GM116792, 1S10RR23057 and 1S10OD018111), NSF (DBI-1338135) and CNSI at UCLA. We thank Y. Matsuura (Osaka University, Japan) for provision of the VSV-G pseudotyped VSVΔG/Fluc plasmids.

Author information

Authors and Affiliations

Authors

Contributions

M.A.T., A.C.W., Y.L., R.J.d.G. and D.V. designed the experiments. C.W. and B.-J.B. designed and cloned the protein constructs. M.A.T. and C.W. carried out protein expression and purification. Z.L. and G.-J.B. provided key reagents; M.A.T. and A.C.W. performed cryo-EM sample preparation and data collection. M.A.T., A.C.W. and D.V. processed the cryo-EM data. M.A.T. and D.V. built and refined the atomic models. Y.L. and D.K. carried out the binding and pseudovirus assays. M.A.T., A.C.W., Y.L., R.J.d.G., F.A.R. and D.V. analyzed the data. M.A.T., A.C.W. and D.V. prepared the manuscript with input from all authors.

Corresponding author

Correspondence to David Veesler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1 CryoEM analysis of apo and holo HCoV-OC43 S glycoprotein.

a, c, Representative electron micrographs (defocus: 1.4 μm and 1.2 µm) and class averages of apo (a) and holo (c) HCoV-OC43 S trimer embedded in vitreous ice. Scale bars: 100 nm (micrograph) and 200 nm Å (class averages). b, d Gold-standard (blue) and model/map (red) Fourier shell correlation curves. The resolution was determined to 2.9 Å and 2.8 Å for the apo and holo HCoV-OC43 S glycoprotein maps, respectively. The 0.143 and 0.5 cut-off values are indicated by horizontal dashed lines.

Supplementary Figure 2 Carbohydrate ligands are recognized by distinct regions of the HCoV-OC43 S, human galectin-3 or rotavirus VP8* β-sandwich.

(a-c) Ribbon diagrams in two orthogonal orientations showing 9-O-Ac-Me-Sia bound to the HCoV-OC43 S domain A (a), galactose bound to human galectin-3 (b, PDB 1A3K) and sialic acid bound to rotavirus VP8* (c, PDB 1KQR). Each domain is shown in the same two orientations for comparison.

Supplementary Figure 3 Zoomed-in view of the sialoglycan-binding site in the holo-HCoV-OC43 S glycoprotein structure.

The A domain is rendered as a ribbon diagram with the side chains of key ligand-interacting residues shown as sticks and the corresponding cryoEM density shown as a blue mesh. The ligand is rendered as sticks with atoms colored by elements (carbon: grey, nitrogen: blue, oxygen: red).

Supplementary Figure 4 Free 9-O-Ac-Me-Sia receptor does not trigger HCoV-OC43 S fusogenic conformational changes.

(a) SDS-PAGE. (b) Purified wild-type HCoV-OC43 S ectodomain trimer in the prefusion conformation. (c-f) The wild-type HCoV-OC43 S ectodomain trimer remained in the prefusion conformation after cleavage with 28 µg.mL−1 trypsin (c), incubation with 100 mM 9-O-Ac-Me-Sia of pre-cleaved trimer (d) or trypsin cleavage of 9-O-Ac-Me-Sia-bound trimer (e), cleavage with 28 µg.mL−1 trypsin and incubation at pH 4.5 for 1 hour at room temperature (f), as visualized by single-particle electron microscopy of negatively stained samples. The wild-type HCoV-OC43 S ectodomain trimer was cleaved with 28 µg.mL−1 trypsin and heated for 20 minutes at 50 °C in the absence (g) or presence (h) of 10% isopropanol (used to dissolve the trypsin inhibitor added to stop the proteolytic reaction). Only the latter condition led to the formation of postfusion rosettes. Scale bars: 200 nm.

Supplementary Figure 5 Coronavirus S galectin-like A domains have a conserved architecture.

(a–d) Ribbon diagrams of the HCoV-OC43 (a), BCoV (b, PDB 4H14), PHEV (c, PDB 6QFY) and HCoV-HKU1 (d, PDB 5I08) A domains.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tortorici, M.A., Walls, A.C., Lang, Y. et al. Structural basis for human coronavirus attachment to sialic acid receptors. Nat Struct Mol Biol 26, 481–489 (2019). https://doi.org/10.1038/s41594-019-0233-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-019-0233-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing